1932

Abstract

More than 50 protein families have been identified that inhibit CRISPR (clustered regularly interspaced short palindromic repeats)-Cas-mediated adaptive immune systems. Here, we analyze the available anti-CRISPR (Acr) structures and describe common themes and unique mechanisms of stoichiometric and enzymatic suppressors of CRISPR-Cas. Stoichiometric inhibitors often function as molecular decoys of protein-binding partners or nucleic acid targets, while enzymatic suppressors covalently modify Cas ribonucleoprotein complexes or degrade immune signaling molecules. We review mechanistic insights that have been revealed by structures of Acrs, discuss some of the trade-offs associated with each of these strategies, and highlight how Acrs are regulated and deployed in the race to overcome adaptive immunity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-120107
2020-09-08
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-020518-120107.html?itemId=/content/journals/10.1146/annurev-micro-020518-120107&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Amitai G, Sorek R. 2016. CRISPR–Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 14:67–76
    [Google Scholar]
  2. 2. 
    Anders C, Niewoehner O, Duerst A, Jinek M 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–73
    [Google Scholar]
  3. 3. 
    Aschenbrenner S, Kallenberger SM, Hoffmann MD, Huck A, Eils R, Niopek D 2020. Coupling Cas9 to artificial inhibitory domains enhances CRISPR-Cas9 target specificity. Sci. Adv. 6:eaay0187
    [Google Scholar]
  4. 4. 
    Athukoralage JS, McMahon SA, Zhang C, Gruschow S, Graham S et al. 2020. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577:572–75
    [Google Scholar]
  5. 5. 
    Basgall EM, Goetting SC, Goeckel ME, Giersch RM, Roggenkamp E et al. 2018. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology 164:464–74
    [Google Scholar]
  6. 6. 
    Bhoobalan-Chitty Y, Johansen TB, Di Cianni N, Peng X 2019. Inhibition of type III CRISPR-cas immunity by an archaeal virus-encoded anti-CRISPR protein. Cell 179:448–58.e11
    [Google Scholar]
  7. 7. 
    Birkholz N, Fagerlund RD, Smith LM, Jackson SA, Fineran PC 2019. The autoregulator Aca2 mediates anti-CRISPR repression. Nucleic Acids Res 47:9658–65
    [Google Scholar]
  8. 8. 
    Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL et al. 2018. A unified resource for tracking anti-CRISPR names. CRISPR J 1:304–5
    [Google Scholar]
  9. 9. 
    Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF et al. 2015. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526:136–39
    [Google Scholar]
  10. 10. 
    Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–32
    [Google Scholar]
  11. 11. 
    Borges AL, Davidson AR, Bondy-Denomy J 2017. The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu. Rev. Virol. 4:37–59
    [Google Scholar]
  12. 12. 
    Borges AL, Zhang JY, Rollins MF, Osuna BA, Wiedenheft B, Bondy-Denomy J 2018. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174:917–25.e10
    [Google Scholar]
  13. 13. 
    Bryson AL, Hwang Y, Sherrill-Mix S, Wu GD, Lewis JD et al. 2015. Covalent modification of bacteriophage T4 DNA inhibits CRISPR-Cas9. mBio 6:e00648
    [Google Scholar]
  14. 14. 
    Bubeck F, Hoffmann MD, Harteveld Z, Aschenbrenner S, Bietz A et al. 2018. Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9. Nat. Methods 15:924–27
    [Google Scholar]
  15. 15. 
    Cady KC, Bondy-Denomy J, Heussler GE, Davidson AR, O'Toole GA 2012. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol. 194:5728–38
    [Google Scholar]
  16. 16. 
    Charpentier E, Richter H, van der Oost J, White MF 2015. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol. Rev. 39:428–41
    [Google Scholar]
  17. 17. 
    Charpentier E, van der Oost J, White MF 2013. crRNA biogenesis. CRISPR-Cas Systems R Barrangou, J van der Oost 115–44 Berlin: Springer
    [Google Scholar]
  18. 18. 
    Chowdhury S, Carter J, Rollins MF, Golden SM, Jackson RN et al. 2017. Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell 169:47–57.e11
    [Google Scholar]
  19. 19. 
    Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A 2017. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Sci. Adv. 3:eaao0027
    [Google Scholar]
  20. 20. 
    Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C et al. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol 190:1390–400
    [Google Scholar]
  21. 21. 
    Dolan AE, Hou Z, Xiao Y, Gramelspacher MJ, Heo J et al. 2019. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas. Mol. Cell 74:936–50.e5
    [Google Scholar]
  22. 22. 
    Dong D, Guo M, Wang S, Zhu Y, Wang S et al. 2017. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature 546:436–39
    [Google Scholar]
  23. 23. 
    Dong L, Guan X, Li N, Zhang F, Zhu Y et al. 2019. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat. Struct. Mol. Biol. 26:308–14
    [Google Scholar]
  24. 24. 
    Eaglesham JB, Pan Y, Kupper TS, Kranzusch PJ 2019. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling. Nature 566:259–63
    [Google Scholar]
  25. 25. 
    Elde NC, Child SJ, Eickbush MT, Kitzman JO, Rogers KS et al. 2012. Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell 150:831–41
    [Google Scholar]
  26. 26. 
    Fagerlund RD, Wilkinson ME, Klykov O, Barendregt A, Pearce FG et al. 2017. Spacer capture and integration by a type I-F Cas1-Cas2–3 CRISPR adaptation complex. PNAS 114:E5122–28
    [Google Scholar]
  27. 27. 
    Fuchsbauer O, Swuec P, Zimberger C, Amigues B, Levesque S et al. 2019. Cas9 allosteric inhibition by the anti-CRISPR protein AcrIIA6. Mol. Cell 76:6922–37.e7
    [Google Scholar]
  28. 28. 
    Guo TW, Bartesaghi A, Yang H, Falconieri V, Rao P et al. 2017. Cryo-EM structures reveal mechanism and inhibition of DNA targeting by a CRISPR-Cas surveillance complex. Cell 171:414–26.e12
    [Google Scholar]
  29. 29. 
    He F, Bhoobalan-Chitty Y, Van LB, Kjeldsen AL, Dedola M et al. 2018. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype ID immunity. Nat. Microbiol. 3:461–69
    [Google Scholar]
  30. 30. 
    Heler R, Samai P, Modell JW, Weiner C, Goldberg GW et al. 2015. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519:199–202
    [Google Scholar]
  31. 31. 
    Hidalgo-Cantabrana C, Goh YJ, Pan M, Sanozky-Dawes R, Barrangou R 2019. Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. PNAS 116:15774–83
    [Google Scholar]
  32. 32. 
    Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E 2018. The biology of CRISPR-Cas: backward and forward. Cell 172:1239–59
    [Google Scholar]
  33. 33. 
    Hornung V, Hartmann R, Ablasser A, Hopfner KP 2014. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat. Rev. Immunol. 14:521–28
    [Google Scholar]
  34. 34. 
    Hurford A, Day T. 2013. Immune evasion and the evolution of molecular mimicry in parasites. Evolution 67:2889–904
    [Google Scholar]
  35. 35. 
    Hwang S, Maxwell KL. 2019. Meet the anti-CRISPRs: widespread protein inhibitors of CRISPR-Cas systems. CRISPR J 2:23–30
    [Google Scholar]
  36. 36. 
    Hynes AP, Rousseau GM, Agudelo D, Goulet A, Amigues B et al. 2018. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat. Commun. 9:2919
    [Google Scholar]
  37. 37. 
    Jackson RN, van Erp PB, Sternberg SH, Wiedenheft B 2017. Conformational regulation of CRISPR-associated nucleases. Curr. Opin. Microbiol. 37:110–19
    [Google Scholar]
  38. 38. 
    Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJ 2017. CRISPR-Cas: adapting to change. Science 356:eaal5056
    [Google Scholar]
  39. 39. 
    Jiang F, Liu J-J, Osuna BA, Xu M, Berry JD et al. 2019. Temperature-responsive competitive inhibition of CRISPR-Cas9. Mol. Cell 73:601–10.e5
    [Google Scholar]
  40. 40. 
    Jones DL, Leroy P, Unoson C, Fange D, Ćurić V et al. 2017. Kinetics of dCas9 target search in Escherichia coli. Science 357:1420–24
    [Google Scholar]
  41. 41. 
    Ka D, An SY, Suh J-Y, Bae E 2017. Crystal structure of an anti-CRISPR protein, AcrIIA1. Nucleic Acids Res 46:485–92
    [Google Scholar]
  42. 42. 
    Kim Y, Lee SJ, Yoon HJ, Kim NK, Lee BJ, Suh JY 2019. Anti‐CRISPR AcrIIC3 discriminates between Cas9 orthologs via targeting the variable surface of the HNH nuclease domain. FEBS J 286:234661–74
    [Google Scholar]
  43. 43. 
    Klompe SE, Sternberg SH. 2018. Harnessing “A Billion Years of Experimentation”: the ongoing exploration and exploitation of CRISPR–Cas immune systems. CRISPR J 1:141–58
    [Google Scholar]
  44. 44. 
    Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH 2019. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571:219–25
    [Google Scholar]
  45. 45. 
    Knott GJ, Cress BF, Liu JJ, Thornton BW, Lew RJ et al. 2019. Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. eLife 8:e49110
    [Google Scholar]
  46. 46. 
    Knott GJ, Thornton BW, Lobba MJ, Liu JJ, Al-Shayeb B et al. 2019. Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nat. Struct. Mol. Biol. 26:315–21
    [Google Scholar]
  47. 47. 
    Koonin EV, Makarova KS, Wolf YI, Krupovic M 2019. Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat. Rev. Genet. 21:2119–31
    [Google Scholar]
  48. 48. 
    Landsberger M, Gandon S, Meaden S, Rollie C, Chevallereau A et al. 2018. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174:908–16.e12
    [Google Scholar]
  49. 49. 
    Liu L, Yin M, Wang M, Wang Y 2019. Phage AcrIIA2 DNA mimicry: structural basis of the CRISPR and anti-CRISPR arms race. Mol. Cell 73:611–20.e3
    [Google Scholar]
  50. 50. 
    Makarova KS, Aravind L, Wolf YI, Koonin EV 2011. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct 6:38
    [Google Scholar]
  51. 51. 
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS et al. 2019. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18:267–83
    [Google Scholar]
  52. 52. 
    Marino ND, Pinilla-Redondo R, Csorgo B, Bondy-Denomy J 2020. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nat. Methods 17:471–79
    [Google Scholar]
  53. 53. 
    McGinn J, Marraffini LA. 2019. Molecular mechanisms of CRISPR–Cas spacer acquisition. Nat. Rev. Microbiol. 17:7–12
    [Google Scholar]
  54. 54. 
    Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–40
    [Google Scholar]
  55. 55. 
    Moon SB, Kim DY, Ko JH, Kim YS 2019. Recent advances in the CRISPR genome editing tool set. Exp. Mol. Med. 51:1–11
    [Google Scholar]
  56. 56. 
    Niewoehner O, Garcia-Doval C, Rostol JT, Berk C, Schwede F et al. 2017. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 548:543–48
    [Google Scholar]
  57. 57. 
    Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–49
    [Google Scholar]
  58. 58. 
    Osuna BA, Karambelkar S, Mahendra C, Sarbach A, Johnson MC et al. 2020. Critical anti-CRISPR locus repression by a bi-functional Cas-9 inhibitor. Cell Host Microbe In press
    [Google Scholar]
  59. 59. 
    Pawluk A, Bondy-Denomy J, Cheung VH, Maxwell KL, Davidson AR 2014. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. mBio 5:e00896
    [Google Scholar]
  60. 60. 
    Pawluk A, Davidson AR, Maxwell KL 2018. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16:12–17
    [Google Scholar]
  61. 61. 
    Pawluk A, Staals RH, Taylor C, Watson BN, Saha S et al. 2016. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 1:16085
    [Google Scholar]
  62. 62. 
    Peng R, Li Z, Xu Y, He S, Peng Q et al. 2019. Structural insight into multistage inhibition of CRISPR-Cas12a by AcrVA4. PNAS 116:18928–36
    [Google Scholar]
  63. 63. 
    Peng R, Xu Y, Zhu T, Li N, Qi J et al. 2017. Alternate binding modes of anti-CRISPR viral suppressors AcrF1/2 to Csy surveillance complex revealed by cryo-EM structures. Cell Res 27:853–64
    [Google Scholar]
  64. 64. 
    Plagens A, Richter H, Charpentier E, Randau L 2015. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiol. Rev. 39:442–63
    [Google Scholar]
  65. 65. 
    Putnam CD, Tainer JA. 2005. Protein mimicry of DNA and pathway regulation. DNA Repair 4:1410–20
    [Google Scholar]
  66. 66. 
    Richter C, Gristwood T, Clulow JS, Fineran PC 2012. In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype IF CRISPR/Cas system. PLOS ONE 7:e49549
    [Google Scholar]
  67. 67. 
    Rollins MF, Chowdhury S, Carter J, Golden SM, Miettinen HM et al. 2019. Structure reveals a mechanism of CRISPR-RNA-guided nuclease recruitment and anti-CRISPR viral mimicry. Mol. Cell 74:132–42.e5
    [Google Scholar]
  68. 68. 
    Rollins MF, Chowdhury S, Carter J, Golden SM, Wilkinson RA et al. 2017. Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity. PNAS 114:E5113–21
    [Google Scholar]
  69. 69. 
    Rollins MF, Schuman JT, Paulus K, Bukhari HS, Wiedenheft B 2015. Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa. Nucleic Acids Res 43:2216–22
    [Google Scholar]
  70. 70. 
    Salah Ud-Din AI, Tikhomirova A, Roujeinikova A 2016. Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT). Int. J. Mol. Sci. 17:71018
    [Google Scholar]
  71. 71. 
    Santiago-Frangos A, Wiegand T, Wiedenheft B 2019. Cas9 slide-and-seek for phage defense and genome engineering. EMBO J 38:4e101474
    [Google Scholar]
  72. 72. 
    Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS 108:10098–103
    [Google Scholar]
  73. 73. 
    Shibata M, Nishimasu H, Kodera N, Hirano S, Ando T et al. 2017. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy. Nat. Commun. 8:1430
    [Google Scholar]
  74. 74. 
    Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ et al. 2017. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci. Adv. 3:e1701620
    [Google Scholar]
  75. 75. 
    Singh D, Sternberg SH, Fei J, Doudna JA, Ha T 2016. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat. Commun. 7:12778
    [Google Scholar]
  76. 76. 
    Stanley SY, Borges AL, Chen K-H, Swaney DL, Krogan NJ et al. 2019. Anti-CRISPR-associated proteins are crucial repressors of anti-CRISPR transcription. Cell 178:1452–64.e13
    [Google Scholar]
  77. 77. 
    Stanley SY, Maxwell KL. 2018. Phage-encoded anti-CRISPR DEFENSES. Annu. Rev. Genet. 52:445–64
    [Google Scholar]
  78. 78. 
    Stella S, Mesa P, Thomsen J, Paul B, Alcon P et al. 2018. Conformational activation promotes CRISPR-Cas12a catalysis and resetting of the endonuclease activity. Cell 175:1856–71.e21
    [Google Scholar]
  79. 79. 
    Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67
    [Google Scholar]
  80. 80. 
    Sternberg SH, Richter H, Charpentier E, Qimron U 2016. Adaptation in CRISPR-Cas systems. Mol. Cell 61:797–808
    [Google Scholar]
  81. 81. 
    Stone NP, Hilbert BJ, Hidalgo D, Halloran KT, Lee J et al. 2018. A hyperthermophilic phage decoration protein suggests common evolutionary origin with herpesvirus triplex proteins and an anti-CRISPR protein. Structure 26:936–47.e3
    [Google Scholar]
  82. 82. 
    Sun W, Yang J, Cheng Z, Amrani N, Liu C et al. 2019. Structures of Neisseria meningitidis Cas9 complexes in catalytically poised and anti-CRISPR-inhibited states. Mol. Cell 76:6938–52.e5
    [Google Scholar]
  83. 83. 
    Thavalingam A, Cheng Z, Garcia B, Huang X, Shah M et al. 2019. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2. Nat. Commun. 10:2806
    [Google Scholar]
  84. 84. 
    van Erp PBG, Patterson A, Kant R, Berry L, Golden SM et al. 2018. Conformational dynamics of DNA binding and Cas3 recruitment by the CRISPR RNA-guided cascade complex. ACS Chem. Biol. 13:481–90
    [Google Scholar]
  85. 85. 
    Vink JNA, Martens KJA, Vlot M, McKenzie RE, Almendros C et al. 2019. Direct visualization of native CRISPR target search in live bacteria reveals cascade DNA surveillance mechanism. Mol. Cell 77:139–50.e10
    [Google Scholar]
  86. 86. 
    Vlot M, Houkes J, Lochs SJA, Swarts DC, Zheng P et al. 2017. Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR–Cas effector complexes. Nucleic Acids Res 46:873–85
    [Google Scholar]
  87. 87. 
    Vorontsova D, Datsenko KA, Medvedeva S, Bondy-Denomy J, Savitskaya EE et al. 2015. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery. Nucleic Acids Res 43:10848–60
    [Google Scholar]
  88. 88. 
    Wang J, Ma J, Cheng Z, Meng X, You L et al. 2016. A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses. Cell Res 26:1165
    [Google Scholar]
  89. 89. 
    Wang X, Yao D, Xu JG, Li AR, Xu J et al. 2016. Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Nat. Struct. Mol. Biol. 23:868–70
    [Google Scholar]
  90. 90. 
    Watters KE, Fellmann C, Bai HB, Ren SM, Doudna JA 2018. Systematic discovery of natural CRISPR-Cas12a inhibitors. Science 362:236–39
    [Google Scholar]
  91. 91. 
    Wei Y, Terns RM, Terns MP 2015. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev 29:356–61
    [Google Scholar]
  92. 92. 
    Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K et al. 2011. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. PNAS 108:10092–97
    [Google Scholar]
  93. 93. 
    Wiegand T, Wiedenheft B. 2020. CRISPR surveillance turns transposon taxi. CRISPR J 3:10–12
    [Google Scholar]
  94. 94. 
    Wilkinson RA, Martin C, Nemudryi AA, Wiedenheft B 2019. CRISPR RNA-guided autonomous delivery of Cas9. Nat. Struct. Mol. Biol. 26:14–24
    [Google Scholar]
  95. 95. 
    Xiao Y, Luo M, Dolan AE, Liao M, Ke A 2018. Structure basis for RNA-guided DNA degradation by Cascade and Cas3. Science 361:6397eaat0839
    [Google Scholar]
  96. 96. 
    Yang H, Patel DJ. 2017. Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol. Cell 67:117–27.e5
    [Google Scholar]
  97. 97. 
    Yang M, Peng S, Sun R, Lin J, Wang N, Chen C 2018. The conformational dynamics of Cas9 governing DNA cleavage are revealed by single-molecule FRET. Cell Rep 22:372–82
    [Google Scholar]
  98. 98. 
    Zhang H, Li Z, Daczkowski CM, Gabel C, Mesecar AD, Chang L 2019. Structural basis for the inhibition of CRISPR-Cas12a by anti-CRISPR proteins. Cell Host Microbe 25:815–26.e4
    [Google Scholar]
  99. 99. 
    Zhu Y, Gao A, Zhan Q, Wang Y, Feng H et al. 2019. Diverse mechanisms of CRISPR-Cas9 inhibition by type IIC anti-CRISPR proteins. Mol. Cell 74:296–309.e7
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-120107
Loading
/content/journals/10.1146/annurev-micro-020518-120107
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error