1932

Abstract

In this review, we discuss the current status and future challenges for fully elucidating the fungal tree of life. In the last 15 years, advances in genomic technologies have revolutionized fungal systematics, ushering the field into the phylogenomic era. This has made the unthinkable possible, namely access to the entire genetic record of all known extant taxa. We first review the current status of the fungal tree and highlight areas where additional effort will be required. We then review the analytical challenges imposed by the volume of data and discuss methods to recover the most accurate species tree given the sea of gene trees. Highly resolved and deeply sampled trees are being leveraged in novel ways to study fungal radiations, species delimitation, and metabolic evolution. Finally, we discuss the critical issue of incorporating the unnamed and uncultured dark matter taxa that represent the vast majority of fungal diversity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-022020-051835
2020-09-08
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-022020-051835.html?itemId=/content/journals/10.1146/annurev-micro-022020-051835&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adams RH, Schield DR, Card DC, Castoe TA 2018. Assessing the impacts of positive selection on coalescent-based species tree estimation and species delimitation. Syst. Biol. 67:61076–90
    [Google Scholar]
  2. 2. 
    Ahrendt SR, Quandt CA, Ciobanu D, Clum A, Salamov A et al. 2018. Leveraging single-cell genomics to expand the fungal tree of life. Nat. Microbiol. 3:1417–28
    [Google Scholar]
  3. 3. 
    Alexander WG, Wisecaver JH, Rokas A, Hittinger CT 2016. Horizontally acquired genes in early-diverging pathogenic fungi enable the use of host nucleosides and nucleotides. PNAS 113:154116–21
    [Google Scholar]
  4. 4. 
    Ané C, Larget B, Baum DA, Smith SD, Rokas A 2007. Bayesian estimation of concordance among gene trees. Mol. Biol. Evol. 24:2412–26
    [Google Scholar]
  5. 5. 
    Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P et al. 2009. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: Are lichens cradles of symbiotrophic fungal diversification. Syst. Biol. 58:3283–97
    [Google Scholar]
  6. 6. 
    Barr DJS. 1980. An outline for the reclassification of the Chytridiales, and for a new order, the Spizellomycetales. Can. J. Bot. 58:222380–94
    [Google Scholar]
  7. 7. 
    Bass D, Czech L, Williams BAP, Berney C, Dunthorn M et al. 2018. Clarifying the relationships between Microsporidia and Cryptomycota. J. Eukaryot. Microbiol. 65:6773–82
    [Google Scholar]
  8. 8. 
    Bauer R, Garnica S, Oberwinkler F, Riess K, Weiß M, Begerow D 2015. Entorrhizomycota: A new fungal phylum reveals new perspectives on the evolution of fungi. PLOS ONE 10:7e0128183
    [Google Scholar]
  9. 9. 
    Beaudet D, Chen ECH, Mathieu S, Yildirir G, Ndikumana S et al. 2018. Ultra-low input transcriptomics reveal the spore functional content and phylogenetic affiliations of poorly studied arbuscular mycorrhizal fungi. DNA Res 25:2217–27
    [Google Scholar]
  10. 10. 
    Berbee ML. 2001. The phylogeny of plant and animal pathogens in the Ascomycota. Physiol. Mol. Plant Pathol. 59:4165–87
    [Google Scholar]
  11. 11. 
    Berbee ML, James TY, Strullu-Derrien C 2017. Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu. Rev. Microbiol. 71:41–60
    [Google Scholar]
  12. 12. 
    Berbee ML, Taylor JW. 2010. Dating the molecular clock in fungi—how close are we. Fungal Biol. Rev. 24:11–16
    [Google Scholar]
  13. 13. 
    Blackwell M. 2011. The Fungi: 1, 2, 3 … 5.1 million species. Am. J. Bot. 98:3426–38
    [Google Scholar]
  14. 14. 
    Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4:165165rv13
    [Google Scholar]
  15. 15. 
    Capella-Gutiérrez S, Marcet-Houben M, Gabaldon T 2012. Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol 10:47
    [Google Scholar]
  16. 16. 
    Carbone I, White JB, Miadlikowska J, Arnold AE, Miller MA et al. 2017. T-BAS: Tree-Based Alignment Selector toolkit for phylogenetic-based placement, alignment downloads and metadata visualization; an example with the Pezizomycotina tree of life. Bioinformatics 33:81160–68
    [Google Scholar]
  17. 17. 
    Cavalier-Smith T. 2013. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur. J. Protistol. 49:2115–78
    [Google Scholar]
  18. 18. 
    Celio GJ, Padamsee M, Dentinger BTM, Bauer R, McLaughlin DJ 2006. Assembling the Fungal Tree of Life: constructing the structural and biochemical database. Mycologia 98:6850–59
    [Google Scholar]
  19. 19. 
    Chambouvet A, Monier A, Maguire F, Itoïz S, del Campo J et al. 2019. Intracellular infection of diverse diatoms by an evolutionary distinct relative of the Fungi. Curr. Biol. 29:234093–101
    [Google Scholar]
  20. 20. 
    Chang Y, Wang SS, Sekimoto S, Aerts AL, Choi C et al. 2015. Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol. Evol. 7:61590–601
    [Google Scholar]
  21. 21. 
    Choi J, Kim S-H. 2017. A genome Tree of Life for the Fungi kingdom. PNAS 114:359391–96
    [Google Scholar]
  22. 22. 
    Corradi N. 2015. Microsporidia: eukaryotic intracellular parasites shaped by gene loss and horizontal gene transfers. Annu. Rev. Microbiol. 69:167–83
    [Google Scholar]
  23. 23. 
    Davis RH, Perkins DD. 2002. Neurospora: a model of model microbes. Nat. Rev. Genet. 3:5397–403
    [Google Scholar]
  24. 24. 
    Davis WJ, Amses KR, Benny GL, Carter-House D, Chang Y et al. 2019. Genome-scale phylogenetics reveals a monophyletic Zoopagales (Zoopagomycota, Fungi). Mol. Phylogenet. Evol. 133:152–63
    [Google Scholar]
  25. 25. 
    Dee JM, Mollicone M, Longcore JE, Roberson RW, Berbee ML 2015. Cytology and molecular phylogenetics of Monoblepharidomycetes provide evidence for multiple independent origins of the hyphal habit in the Fungi. Mycologia 107:4710–28
    [Google Scholar]
  26. 26. 
    Delsuc F, Brinkmann H, Philippe H 2005. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genetics 6:361–75
    [Google Scholar]
  27. 27. 
    Donovan PD, Gonzalez G, Higgins DG, Butler G, Ito K 2018. Identification of fungi in shotgun metagenomics datasets. PLOS ONE 13:2e0192898
    [Google Scholar]
  28. 28. 
    Ebersberger I, de Matos Simoes R, Kupczok A, Gube M, Kothe E et al. 2012. A consistent phylogenetic backbone for the Fungi. Mol. Biol. Evol. 29:51319–34
    [Google Scholar]
  29. 29. 
    Edwards SV, Xi Z, Janke A, Faircloth BC, McCormack JE et al. 2016. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol. Phylogenet. Evol. 94:Part A447–62
    [Google Scholar]
  30. 30. 
    Farrer RA, Chang M, Davis MJ, van Dorp L, Yang D-H et al. 2019. A new lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. mBio 10:6e02306–19
    [Google Scholar]
  31. 31. 
    Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:4783–91
    [Google Scholar]
  32. 32. 
    Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:7393186–94
    [Google Scholar]
  33. 33. 
    Floudas D, Binder M, Riley R, Barry K, Blanchette RA et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:60891715–19
    [Google Scholar]
  34. 34. 
    Fuller MS, Reichle RE. 1968. The fine structure of Monoblepharella sp. zoospores. Can. J. Bot. 46:3279–83
    [Google Scholar]
  35. 35. 
    Gallone B, Steensels J, Mertens S, Dzialo MC, Gordon JL et al. 2019. Interspecific hybridization facilitates niche adaptation in beer yeast. Nat. Ecol. Evol. 3:111562–75
    [Google Scholar]
  36. 36. 
    Gostinčar C, Stajich JE, Zupančič J, Zalar P, Gunde-Cimerman N 2018. Genomic evidence for intraspecific hybridization in a clonal and extremely halotolerant yeast. BMC Genom 19:1364
    [Google Scholar]
  37. 37. 
    Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R et al. 2014. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D1D699–704
    [Google Scholar]
  38. 38. 
    Grossart HP, Wurzbacher C, James TY, Kagami M 2016. Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol 19:28–38
    [Google Scholar]
  39. 39. 
    Haase MAB, Kominek J, Langdon QK, Kurtzman CP, Hittinger CT 2017. Genome sequence and physiological analysis of Yamadazyma laniorum f.a. sp. nov. and a reevaluation of the apocryphal xylose fermentation of its sister species. Candida tenuis. FEMS Yeast Res. 17:3fox019
    [Google Scholar]
  40. 40. 
    Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I et al. 2015. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet. Biol. 78:16–48
    [Google Scholar]
  41. 41. 
    Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S et al. 2017. Importance of resolving fungal nomenclature: the case of multiple pathogenic species in the Cryptococcus genus. mSphere 2:4e00238–17
    [Google Scholar]
  42. 42. 
    Hahn MW, Nakhleh L. 2016. Irrational exuberance for resolved species trees. Evolution 70:17–17
    [Google Scholar]
  43. 43. 
    Hanson PK. 2018. Saccharomyces cerevisiae: a unicellular model genetic organism of enduring importance. Curr. Protoc. Essent. Lab. Tech. 16:1e21
    [Google Scholar]
  44. 44. 
    Hawksworth D, Hibbett D, Kirk P, Lücking R 2016. (308–310) Proposals to permit DNA sequence data to serve as types of names of fungi. Taxon 65:899–900
    [Google Scholar]
  45. 45. 
    Hawksworth DL, Lücking R. 2017. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5:4 https://doi.org/10.1128/microbiolspec.FUNK-0052-2016
    [Crossref] [Google Scholar]
  46. 46. 
    He M-Q, Zhao R-L, Hyde KD, Begerow D, Kemler M et al. 2019. Notes, outline and divergence times of Basidiomycota. Fungal Divers 99:1105–367
    [Google Scholar]
  47. 47. 
    Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF et al. 2007. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 111:509–47
    [Google Scholar]
  48. 48. 
    Hibbett DS, Taylor JW. 2013. Fungal systematics: Is a new age of enlightenment at hand?. Nat. Rev. Microbiol. 11:2129–33
    [Google Scholar]
  49. 49. 
    Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R et al. 2015. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. PNAS 112:4112764–69
    [Google Scholar]
  50. 50. 
    Ianiri G, Coelho MA, Ruchti F, Sparber F, McMahon TJ et al. 2020. Horizontal gene transfer in the human and skin commensal Malassezia: a bacterially-derived flavohemoglobin is required for NO resistance and host interaction. bioRxiv 2020.01.28 923367
  51. 51. 
    James TY, Kauff F, Schoch C, Matheny PB, Hofstetter V et al. 2006. Reconstructing the early evolution of the fungi using a six gene phylogeny. Nature 443:818–22
    [Google Scholar]
  52. 52. 
    James TY, Pelin A, Bonen L, Ahrendt S, Sain D et al. 2013. Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr. Biol. 23:161548–53
    [Google Scholar]
  53. 53. 
    James TY, Porter TM, Martin WW 2014. Blastocladiomycota. Systematics and Evolution: Part A DJ McLaughlin, JW Spatafora 177–207 Berlin: Springer
    [Google Scholar]
  54. 54. 
    Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D et al. 2011. Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:7350200–34
    [Google Scholar]
  55. 55. 
    Karpov SA, Mamkaeva MA, Aleoshin VV, Nassonova E, Lilje O, Gleason FH 2014. Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front. Microbiol. 5:112
    [Google Scholar]
  56. 56. 
    Karpov SA, Mikhailov KV, Mirzaeva GS, Mirabdullaev IM, Mamkaeva KA et al. 2013. Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi. Protist 164:195–205
    [Google Scholar]
  57. 57. 
    Kirk PM, Cannon PF, Minter DW, Stalpers JA 2008. Dictionary of the Fungi Wallingford, UK: CAB Int. , 10th ed..
    [Google Scholar]
  58. 58. 
    Kohler A, Kuo A, Nagy LG, Morin E, Barry KW et al. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47:4410–15
    [Google Scholar]
  59. 59. 
    Kominek J, Doering DT, Opulente DA, Shen XX, Zhou XF et al. 2019. Eukaryotic acquisition of a bacterial operon. Cell 176:61356–66
    [Google Scholar]
  60. 60. 
    Kuramae EE, Robert V, Snel B, Weiss M, Boekhout T 2006. Phylogenomics reveal a robust fungal tree of life. FEMS Yeast Res 6:81213–20
    [Google Scholar]
  61. 61. 
    Kurtzman C, Fell JW, Boekhout T 2011. The Yeasts: A Taxonomic Study London: Elsevier2363 pp.
    [Google Scholar]
  62. 62. 
    Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA et al. 2017. The case for adopting the “species complex” nomenclature for the etiologic agents of cryptococcosis. mSphere 2:1e00357–16
    [Google Scholar]
  63. 63. 
    Lazarus KL, Benny GL, Ho H-M, Smith ME 2017. Phylogenetic systematics of Syncephalis (Zoopagales, Zoopagomycotina), a genus of ubiquitous mycoparasites. Mycologia 109:2333–49
    [Google Scholar]
  64. 64. 
    Levy R, Borenstein E. 2012. Reverse ecology: from systems to environments and back. Adv. Exp. Med. Biol. 751:329–45
    [Google Scholar]
  65. 65. 
    Libkind D, Hittinger CT, Valerio E, Goncalves C, Dover J et al. 2011. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. PNAS 108:3514539–44
    [Google Scholar]
  66. 66. 
    Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS 2010. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 4:101225–35
    [Google Scholar]
  67. 67. 
    Liu L, Yu L, Pearl DK, Edwards SV 2009. Estimating species phylogenies using coalescence times among sequences. Syst. Biol. 58:5468–77
    [Google Scholar]
  68. 68. 
    Liu Y, Steenkamp ET, Brinkmann H, Forget L, Philippe H, Lang BF 2009. Phylogenomic analyses predict sistergroup relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support. BMC Evol. Biol. 9:11
    [Google Scholar]
  69. 69. 
    Lücking R, Hawksworth DL. 2018. Formal description of sequence-based voucherless Fungi: promises and pitfalls, and how to resolve them. IMA Fungus 9:1143–66
    [Google Scholar]
  70. 70. 
    Lücking R, Huhndorf S, Pfister DH, Plata ER, Lumbsch HT 2009. Fungi evolved right on track. Mycologia 101:6810–22
    [Google Scholar]
  71. 71. 
    Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J et al. 2018. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 9:15451
    [Google Scholar]
  72. 72. 
    Mao H, Wang H. 2019. Resolution of deep divergence of club fungi (phylum Basidiomycota). Synth. Syst. Biotechnol. 4:4225–31
    [Google Scholar]
  73. 73. 
    Mar Rodríguez M, Pérez D, Javier Chaves F, Esteve E, Marin-Garcia P et al. 2015. Obesity changes the human gut mycobiome. Sci. Rep. 5:114600
    [Google Scholar]
  74. 74. 
    Marcet-Houben M, Gabaldón T. 2015. Beyond the whole-genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the baker's yeast lineage. PLOS Biol 13:8e1002220
    [Google Scholar]
  75. 75. 
    Miadlikowska J, Kauff F, Högnabba F, Oliver JC, Molnár K et al. 2014. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol. Phylogenet. Evol. 79:132–68
    [Google Scholar]
  76. 76. 
    Murphy CL, Youssef NH, Hanafy RA, Couger MB, Stajich JE et al. 2019. Horizontal gene transfer as an indispensable driver for evolution of Neocallimastigomycota into a distinct gut-dwelling fungal lineage. Appl. Environ. Microbiol. 85:15e00988–19
    [Google Scholar]
  77. 77. 
    Naranjo-Ortiz MA, Gabaldón T. 2019. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol. Rev. 94:62101–37
    [Google Scholar]
  78. 78. 
    Nguyen TA, Cissé OH, Yun Wong J, Zheng P, Hewitt D et al. 2017. Innovation and constraint leading to complex multicellularity in the Ascomycota. Nat. Commun. 8:114444
    [Google Scholar]
  79. 79. 
    Nguyen TA, Greig J, Khan A, Goh C, Jedd G 2018. Evolutionary novelty in gravity sensing through horizontal gene transfer and high-order protein assembly. PLOS Biol 16:4e2004920
    [Google Scholar]
  80. 80. 
    Opulente DA, Rollinson EJ, Bernick-Roehr C, Hulfachor AB, Rokas A et al. 2018. Factors driving metabolic diversity in the budding yeast subphylum. BMC Biol 16:126
    [Google Scholar]
  81. 81. 
    Padamsee M, Kumar TKA, Riley R, Binder M, Boyd A et al. 2012. The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet. Biol. 49:3217–26
    [Google Scholar]
  82. 82. 
    Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M et al. 2011. Resolving difficult phylogenetic questions: why more sequences are not enough. PLOS Biol 9:3e1000602
    [Google Scholar]
  83. 83. 
    Powell MJ, Letcher PM, James TY 2017. Ultrastructural characterization of the host parasite interface between Allomyces anomalus (Blastocladiomycota) and Rozella allomycis (Cryptomycota). Fungal Biol 121:6–7561–72
    [Google Scholar]
  84. 84. 
    Prasanna AN, Gerber D, Kijpornyongpan T, Aime MC, Doyle VP, Nagy LG 2020. Model choice, missing data, and taxon sampling impact phylogenomic inference of deep Basidiomycota relationships. Syst. Biol. 69:117–37
    [Google Scholar]
  85. 85. 
    Quandt CA, Beaudet D, Corsaro D, Walochnik J, Michel R et al. 2017. The genome of an intranuclear parasite, Paramicrosporidium saccamoebae, reveals alternative adaptations to obligate intracellular parasitism. eLife 6:19
    [Google Scholar]
  86. 86. 
    Reynolds NK, Benny GL, Ho H-M, Hou Y-H, Crous PW, Smith ME 2019. Phylogenetic and morphological analyses of the mycoparasitic genus Piptocephalis. . Mycologia 111:154–68
    [Google Scholar]
  87. 87. 
    Richards TA, Leonard G, Mahe F, del Campov J, Romac S et al. 2015. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc. R. Soc. B 282:181920152243
    [Google Scholar]
  88. 88. 
    Richards TA, Leonard G, Wideman JG 2017. What defines the “Kingdom” Fungi. Microbiol. Spectr. 5:3FUNK–0044-2017
    [Google Scholar]
  89. 89. 
    Richards TA, Talbot NJ. 2013. Horizontal gene transfer in osmotrophs: playing with public goods. Nat. Rev. Microbiol. 11:10720–27
    [Google Scholar]
  90. 90. 
    Richards TA, Talbot NJ. 2018. Osmotrophy. Curr. Biol. 28:20R1179–80
    [Google Scholar]
  91. 91. 
    Ricklefs RE. 2007. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 22:11601–10
    [Google Scholar]
  92. 92. 
    Riley R, Haridas S, Wolfe KH, Lopes MR, Hittinger CT et al. 2016. Comparative genomics of biotechnologically important yeasts. PNAS 113:359882–87
    [Google Scholar]
  93. 93. 
    Rokas A, Holland PW. 2000. Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 15:11454–59
    [Google Scholar]
  94. 94. 
    Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH 2020. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat. Prod. Rep. press
    [Google Scholar]
  95. 95. 
    Rokas A, Williams BL, King N, Carroll SB 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804
    [Google Scholar]
  96. 96. 
    Rokas A, Wisecaver JH, Lind AL 2018. The birth, evolution and death of metabolic gene clusters in fungi. Nat. Rev. Microbiol. 16:12731–44
    [Google Scholar]
  97. 97. 
    Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet G-A et al. 2011. Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–79
    [Google Scholar]
  98. 98. 
    Ruiz-Herrera J, Ortiz-Castellanos L. 2019. Cell wall glucans of fungi: a review. Cell Surf 5:100022
    [Google Scholar]
  99. 99. 
    Ryberg M, Nilsson RH. 2018. New light on names and naming of dark taxa. MycoKeys 30:31–39
    [Google Scholar]
  100. 100. 
    Salichos L, Rokas A. 2013. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497:7449327–31
    [Google Scholar]
  101. 101. 
    Samarasinghe H, You M, Jenkinson TS, Xu J, James TY 2020. Hybridization facilitates adaptive evolution in two major fungal pathogens. Genes 11:1101
    [Google Scholar]
  102. 102. 
    Schadt CW, Martin AP, Lipson DA, Schmidt SK 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:56381359–61
    [Google Scholar]
  103. 103. 
    Seifert KA. 2017. When should we describe species. IMA Fungus 8:237–39
    [Google Scholar]
  104. 104. 
    Sekimoto S, Rochon D, Long JE, Dee JM, Berbee ML 2011. A multigene phylogeny of Olpidium and its implications for early fungal evolution. BMC Evol. Biol. 11:331
    [Google Scholar]
  105. 105. 
    Sepúlveda VE, Márquez R, Turissini DA, Goldman WE, Matute DR 2017. Genome sequences reveal cryptic speciation in the human pathogen Histoplasma capsulatum. . mBio 8:6e01339–17
    [Google Scholar]
  106. 106. 
    Seto K, Van Den Wyngaert S, Degawa Y, Kagami M 2020. Taxonomic revision of the genus Zygorhizidium: Zygorhizidiales and Zygophlyctidales ord. nov. (Chytridiomycetes, Chytridiomycota). Fungal Syst. Evol. 5:117–38
    [Google Scholar]
  107. 107. 
    Shen X-X, Hittinger CT, Rokas A 2017. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat. Ecol. Evol. 1:5126
    [Google Scholar]
  108. 108. 
    Shen X-X, Opulente DA, Kominek J, Zhou X, Steenwyk JL et al. 2018. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175:61533–45.e20
    [Google Scholar]
  109. 109. 
    Shen XX, Zhou XF, Kominek J, Kurtzman CP, Hittinger CT, Rokas A 2016. Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data. G3 6:123927–39
    [Google Scholar]
  110. 110. 
    Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME et al. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:51028–46
    [Google Scholar]
  111. 111. 
    Springer MS, Gatesy J. 2016. The gene tree delusion. Mol. Phylogenet. Evol. 94:Part A1–33
    [Google Scholar]
  112. 112. 
    Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY et al. 2009. The Fungi. Curr. Biol. 19:18R840–45
    [Google Scholar]
  113. 113. 
    Steenkamp ET, Wingfield MJ, McTaggart AR, Wingfield BD 2018. Fungal species and their boundaries matter—definitions, mechanisms and practical implications. Fungal Biol. Rev. 32:2104–16
    [Google Scholar]
  114. 114. 
    Steenwyk JL, Shen X-X, Lind AL, Goldman GH, Rokas A 2019. A robust phylogenomic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium. . mBio 10:4e00925–19
    [Google Scholar]
  115. 115. 
    Stukenbrock EH. 2016. The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology 106:2104–12
    [Google Scholar]
  116. 116. 
    Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T et al. 2015. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43
    [Google Scholar]
  117. 117. 
    Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS et al. 2014. Global diversity and geography of soil fungi. Science 346:62131078
    [Google Scholar]
  118. 118. 
    Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M et al. 2018. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:1135–59
    [Google Scholar]
  119. 119. 
    Tibayrenc M, Ayala FJ. 2014. Cryptosporidium,. Giardia , Cryptococcus, Pneumocystis genetic variability: cryptic biological species or clonal near-clades. PLOS Pathog 10:4e1003908
    [Google Scholar]
  120. 120. 
    Torruella G, de Mendoza A, Grau-Bové X, Antó M, Chaplin MA et al. 2015. Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi. Curr. Biol. 25:182404–10
    [Google Scholar]
  121. 121. 
    Torruella G, Grau-Bové X, Moreira D, Karpov SA, Burns JA et al. 2018. Global transcriptome analysis of the aphelid Paraphelidium tribonemae supports the phagotrophic origin of fungi. Commun. Biol. 1:1231
    [Google Scholar]
  122. 122. 
    Unruh SA, Pires JC, Zettler L, Erba L, Grigoriev I et al. 2019. Shallow genome sequencing for phylogenomics of mycorrhizal fungi from endangered orchids. bioRxiv 862763
  123. 123. 
    van Hannen EJ, Mooij WM, van Agterveld MP, Gons HJ, Laanbroek HJ 1999. Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 65:62478–84
    [Google Scholar]
  124. 124. 
    Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JPW 2002. Extensive fungal diversity in plant roots. Science 295:55622051
    [Google Scholar]
  125. 125. 
    Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M et al. 2019. Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 3:4668–78
    [Google Scholar]
  126. 126. 
    Větrovský T, Kolařík M, Žifčáková L, Zelenka T, Baldrian P 2016. The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Mol. Ecol. Resour. 16:2388–401
    [Google Scholar]
  127. 127. 
    Wang H, Xu Z, Gao L, Hao B 2009. A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol. Biol. 9:1195
    [Google Scholar]
  128. 128. 
    Wang Q-M, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD et al. 2015. Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud. Mycol. 81:149–89
    [Google Scholar]
  129. 129. 
    Wang Y, Youssef NH, Couger MB, Hanafy RA, Elshahed MS, Stajich JE 2019. Molecular dating of the emergence of anaerobic rumen fungi and the impact of laterally acquired genes. mSystems 4:4e00247–19
    [Google Scholar]
  130. 130. 
    White TJ, Bruns T, Lee S, Taylor JW 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications MA Innis, DH Gelfand, JJ Sninsky, TJ White 315–22 New York: Academic
    [Google Scholar]
  131. 131. 
    Wisecaver JH, Alexander WG, King SB, Hittinger CT, Rokas A 2016. Dynamic evolution of nitric oxide detoxifying flavohemoglobins, a family of single-protein metabolic modules in bacteria and eukaryotes. Mol. Biol. Evol. 33:81979–87
    [Google Scholar]
  132. 132. 
    Wisecaver JH, Rokas A. 2015. Fungal metabolic gene clusters—caravans traveling across genomes and environments. Front. Microbiol. 6:161
    [Google Scholar]
  133. 133. 
    Wisecaver JH, Slot JC, Rokas A 2014. The evolution of fungal metabolic pathways. PLOS Genet 10:12e1004816
    [Google Scholar]
  134. 134. 
    Woyke T, Doud DFR, Schulz F 2017. The trajectory of microbial single-cell sequencing. Nat. Methods 14:111045–54
    [Google Scholar]
  135. 135. 
    Wu G, Feng B, Xu J, Zhu X-T, Li Y-C et al. 2014. Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Divers 69:193–115
    [Google Scholar]
  136. 136. 
    Yarza P, Yilmaz P, Panzer K, Glöckner FO, Reich M 2017. A phylogenetic framework for the kingdom Fungi based on 18S rRNA gene sequences. Mar. Genom. 36:33–39
    [Google Scholar]
  137. 137. 
    Yu Y, Degnan JH, Nakhleh L 2012. The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection. PLOS Genet 8:4e1002660
    [Google Scholar]
  138. 138. 
    Zamora JC, Svensson M, Kirschner R, Olariaga I, Ryman S et al. 2018. Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus 9:1167–75
    [Google Scholar]
  139. 139. 
    Zhang N, Luo J, Bhattacharya D 2017. Advances in fungal phylogenomics and their impact on fungal systematics. Fungal Phylogenetics and Phylogenomics, Vol. 100 JP Townsend, Z Wang 309–28 San Diego: Elsevier
    [Google Scholar]
  140. 140. 
    Zhang S, Zhang Y-J, Li Z-L 2019. Complete mitogenome of the entomopathogenic fungus Sporothrix insectorum RCEF 264 and comparative mitogenomics in Ophiostomatales. Appl. Microbiol. . Biotechnol 103:145797–809
    [Google Scholar]
  141. 141. 
    Zhao R-L, Li G-J, Sánchez-Ramírez S, Stata M, Yang Z-L et al. 2017. A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. Fungal Divers 84:143–74
    [Google Scholar]
  142. 142. 
    Zhou X, Lutteropp S, Czech L, Stamatakis A, von Looz M, Rokas A 2020. Quartet-based computations of internode certainty provide robust measures of phylogenetic incongruence. Syst. Biol. 69:308–24
    [Google Scholar]
/content/journals/10.1146/annurev-micro-022020-051835
Loading
/content/journals/10.1146/annurev-micro-022020-051835
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error