As decomposers or plant pathogens, fungi deploy invasive growth and powerful carbohydrate active enzymes to reduce multicellular plant tissues to humus and simple sugars. Fungi are perhaps also the most important mutualistic symbionts in modern ecosystems, transporting poorly soluble mineral nutrients to plants and thus enhancing the growth of vegetation. However, at their origin over a billion years ago, fungi, like plants and animals, were unicellular marine microbes. Like the other multicellular kingdoms, Fungi evolved increased size, complexity, and metabolic functioning. Interactions of fungi with plants changed terrestrial ecology and geology and modified the Earth's atmosphere. In this review, we discuss the diversification and ecological roles of the fungi over their first 600 million years, from their origin through their colonization of land, drawing on phylogenomic evidence for their relationships and metabolic capabilities and on molecular dating, fossils, and modeling of Earth's paleoclimate.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alleon J, Bernard S, Le Guillou C, Marin-Carbonne J, Pont S. 1.  et al. 2016. Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nat. Commun. 7:11977 [Google Scholar]
  2. Baldauf SL, Palmer JD. 2.  1993. Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. PNAS 90:11558–62 [Google Scholar]
  3. Barghoorn ES, Tyler SA. 3.  1965. Microorganisms from the Gunflint Chert—these structurally preserved Precambrian fossils from Ontario are the most ancient organisms known. Science 147:563–75 [Google Scholar]
  4. Barr DJS. 4.  1984. The classification of Spizellomyces, Gaertneriomyces, Triparticalcar, and Kochiomyces (Spizellomycetales, Chytridiomycetes). Can. J. Bot. 62:1171–201 [Google Scholar]
  5. Barratt RW, Johnson GB, Ogata WN. 5.  1965. Wild-type and mutant stocks of Aspergillus nidulans. Genetics 52:233–46 [Google Scholar]
  6. Bengtson S, Rasmussen B, Ivarsson M, Muhling J, Broman C,. 5a.  2017. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt.. Nat. Ecol. Evol. 1:0141 [Google Scholar]
  7. Benny GL, Smith ME, Kirk PM, Tretter ED, White MM. 6.  2016. Challenges and future perspectives in the systematics of Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina. Biology of Microfungi D Li 65–126 Cham, Switz.: Springer [Google Scholar]
  8. Berner RA. 7.  2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70:5653–64 [Google Scholar]
  9. Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG. 8.  2011. The dawn of symbiosis between plants and fungi. Biol. Lett. 7:574–77 [Google Scholar]
  10. Blamey NJF, Brand U, Parnell J, Spear N, Lecuyer C. 9.  et al. 2016. Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology 44:651–54 [Google Scholar]
  11. Brown MW, Spiegel FW, Silberman JD. 10.  2009. Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol. Biol. Evol. 26:2699–709 [Google Scholar]
  12. Brown SP, Olson B, Jumpponen A. 11.  2015. Fungi and algae co-occur in snow: an issue of shared habitat or algal facilitation of heterotrophs?. Arct. Antarct. Alp. Res. 47:729–49 [Google Scholar]
  13. Burns JA, Paasch A, Narechania A, Kim E. 12.  2015. Comparative genomics of a bacterivorous green alga reveals evolutionary causalities and consequences of phago-mixotrophic mode of nutrition. Genome Biol. Evol. 7:3047–61 [Google Scholar]
  14. Cavalier-Smith T. 13.  1987. The origin of fungi and pseudofungi. Evolutionary Biology of the Fungi ADM Rayner, CM Brasier, D Moore 339–53 New York: Cambridge Univ. Press [Google Scholar]
  15. Cavalier-Smith T. 14.  2009. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations. J. Eukaryot. Microbiol. 56:26–33 [Google Scholar]
  16. Chang Y, Wang S, Sekimoto S, Aerts AL, Choi C. 15.  et al. 2015. Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol. Evol. 7:1590–601 [Google Scholar]
  17. Comeau AM, Vincent WF, Bernier L, Lovejoy C. 16.  2016. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci. Rep. 6:30120 [Google Scholar]
  18. Corradi N. 17.  2015. Microsporidia: eukaryotic intracellular parasites shaped by gene loss and horizontal gene transfers. Annu. Rev. Microbiol. 69:167–83 [Google Scholar]
  19. Corsaro D, Walochnik J, Venditti D, Steinmann J, Muller KD, Michel R. 18.  2014. Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. Parasitol. Res. 113:1909–18 [Google Scholar]
  20. Dee JM, Mollicone M, Longcore JE, Roberson RW, Berbee ML. 19.  2015. Cytology and molecular phylogenetics of Monoblepharidomycetes provide evidence for multiple independent origins of the hyphal habit in the Fungi. Mycologia 107:710–28 [Google Scholar]
  21. del Campo J, Mallo D, Massana R, de Vargas C, Richards TA, Ruiz-Trillo I. 20.  2015. Diversity and distribution of unicellular opisthokonts along the European coast analysed using high-throughput sequencing. Environ. Microbiol. 17:3195–207 [Google Scholar]
  22. del Campo J, Ruiz-Trillo I. 21.  2013. Environmental survey meta-analysis reveals hidden diversity among unicellular opisthokonts. Mol. Biol. Evol. 30:802–5 [Google Scholar]
  23. Delaux PM, Radhakrishnan GV, Jayaraman D, Cheem J, Malbreil M. 22.  et al. 2015. Algal ancestor of land plants was preadapted for symbiosis. PNAS 112:13390–95 [Google Scholar]
  24. Derelle R, Torruella G, Klimes V, Brinkmann H, Kim E. 23.  et al. 2015. Bacterial proteins pinpoint a single eukaryotic root. PNAS 112:E693–99 [Google Scholar]
  25. Dotzler N, Taylor TN, Krings M. 24.  2007. A prasinophycean alga of the genus Cymatiosphaera in the Early Devonian Rhynie Chert. Rev. Palaeobot. Palynol. 147:106–11 [Google Scholar]
  26. Dotzler N, Walker C, Krings M, Hass H, Kerp H. 25.  et al. 2009. Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie Chert. Mycol. Prog. 8:9–18 [Google Scholar]
  27. Douzery EJP, Snell EA, Bapteste E, Delsuc F, Philippe H. 26.  2004. The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?. PNAS 101:15386–91 [Google Scholar]
  28. Duplessis S, Cuomo CA, Lin Y-C, Aerts A, Tisserant E. 27.  et al. 2011. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. PNAS 108:9166–71 [Google Scholar]
  29. Edwards D, Cherns L, Raven JA. 28.  2015. Could land-based early photosynthesizing ecosystems have bioengineered the planet in mid-Palaeozoic times?. Palaeontology 58:803–37 [Google Scholar]
  30. Edwards D, Morris JL, Richardson JB, Kenrick P. 29.  2014. Cryptospores and cryptophytes reveal hidden diversity in early land floras. New Phytol 202:50–78 [Google Scholar]
  31. Edwards DS, Lyon AG. 30.  1983. Algae from the Rhynie Chert. Bot. J. Linn. Soc. 86:37–55 [Google Scholar]
  32. Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 31.  2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–97 [Google Scholar]
  33. Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ. 32.  et al. 2015. First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytol 205:743–56 [Google Scholar]
  34. Freeman KR, Martin AP, Karki D, Lynch RC, Mitter MS. 33.  et al. 2009. Evidence that chytrids dominate fungal communities in high-elevation soils. PNAS 106:18315–20 [Google Scholar]
  35. Freeman KR, Pescador MY, Reed SC, Costello EK, Robeson MS, Schmidt SK. 34.  2009. Soil CO2 flux and photoautotrophic community composition in high-elevation, ‘barren’ soil. Environ. Microbiol. 11:674–86 [Google Scholar]
  36. Fuller MS, Jaworski A. 35.  1987. Zoosporic Fungi in Teaching and Research Athens, GA: Southeastern
  37. German TN, Podkovyrov VN. 36.  2011. The role of cyanobacteria in the assemblage of the Lakhanda Microbiota. Paleontol. J. 45:320–32 [Google Scholar]
  38. Glasspool IJ, Scott AC, Waltham D, Pronina N, Shao LY. 37.  2015. The impact of fire on the Late Paleozoic Earth system. Front. Plant Sci. 6:756 [Google Scholar]
  39. Gleason FH, Crawford JW, Neuhauser S, Handerson LE, Lilje O. 38.  2012. Resource seeking strategies of zoosporic true fungi in heterogeneous soil habitats at the microscale level. Soil Biol. Biochem. 45:79–88 [Google Scholar]
  40. Gleason FH, Marano AV, Digby AL, Al-Shugairan N, Lilje O. 39.  et al. 2011. Patterns of utilization of different carbon sources by Chytridiomycota. Hydrobiologia 659:55–64 [Google Scholar]
  41. Glenner H, Thomsen PF, Hebsgaard MB, Sorensen MV, Willerslev E. 40.  2006. The origin of insects. Science 314:1883–84 [Google Scholar]
  42. Grossart HP, Wurzbacher C, James TY, Kagami M. 41.  2016. Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol 19:28–38 [Google Scholar]
  43. Gull K, Trinci APJ. 42.  1975. Septal ultrastructure in Basidiobolus ranarum. Sabouraudia 13:49–51 [Google Scholar]
  44. Haag KL, James TY, Pombert J-F, Larsson R, Schaer TMM. 43.  et al. 2015. Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites. PNAS 111:15480–85 Correction. PNAS 112:E1162 [Google Scholar]
  45. Hassett BT, Gradinger R. 44.  2016. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18:2001–9 [Google Scholar]
  46. Heath IB. 45.  1995. Integration and regulation of hyphal tip growth. Can. J. Bot. 73:S131–39 [Google Scholar]
  47. Heath IB, Steinberg G. 46.  1999. Mechanisms of hyphal tip growth: tube dwelling amebae revisited. Fungal Genet. Biol. 28:79–93 [Google Scholar]
  48. Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA. 47.  et al. 2004. The role of fungi in weathering. Front. Ecol. Environ. 2:258–64 [Google Scholar]
  49. Humber RA. 48.  2016. Entomophthoromycota: a new overview of some of the oldest terrestrial fungi. Biology of Microfungi D Li 127–45 Cham, Switz.: Springer [Google Scholar]
  50. James TY, Berbee ML. 49.  2012. No jacket required—new fungal lineage defies dress code. BioEssays 34:94–102 [Google Scholar]
  51. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V. 50.  et al. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–22 [Google Scholar]
  52. James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D. 51.  et al. 2006. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–71 [Google Scholar]
  53. James TY, Pelin A, Bonen L, Ahrendt S, Sain D. 52.  et al. 2013. Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr. Biol. 23:1548–53 [Google Scholar]
  54. James TY, Porter TM, Martin WW. 53.  2014. Blastocladiomycota. Systemics and Evolution: Part A DJ McLaughlin, JW Spatafora 177–207 The Mycota. , Vol. 7A Berlin: Springer Verlag [Google Scholar]
  55. Javaux EJ, Knoll AH, Walter MR. 54.  2001. Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69 [Google Scholar]
  56. Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D. 55.  et al. 2011. Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–3 [Google Scholar]
  57. Jones MDM, Richards TA, Hawksworth DL, Bass D. 56.  2011. Validation and justification of the phylum name Cryptomycota phyl. nov. IMA Fungus 2:173–75 [Google Scholar]
  58. Karatygin IV, Snigirevskaya NS, Demchenko KN. 57.  2006. Species of the genus Glomites as plant mycobionts in Early Devonian ecosystems. Paleontol. J. 40:572–79 [Google Scholar]
  59. Karling JS. 58.  1939. A new fungus with anteriorly uniciliate zoospores:. Hyphochytrium catenoides. Am. J. Bot. 26:512–19 [Google Scholar]
  60. Karling JS. 59.  1977. Chytridiomycetarum Iconographia Monticello, NY: Lubrecht & Cramer
  61. Karpov SA, Mikhailov KV, Mirzaeva GS, Mirabdullaev IM, Mamkaeva KA. 60.  et al. 2013. Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi. Protist 164:195–205 [Google Scholar]
  62. Keeling PJ, Corradi N. 61.  2011. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Virulence 2:67–70 [Google Scholar]
  63. Kenrick P, Strullu-Derrien C. 62.  2014. The origin and early evolution of roots. Plant Physiol 166:570–80 [Google Scholar]
  64. Kidston R, Lang WH. 63.  1921. On old red sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire: V. The Thallophyta occurring in the peat-bed; the succession of accumulation and preservation of the plants throughout a vertical section of the bed, and the conditions of accumulation and preservation of the deposit. Trans. R. Soc. Edinb. 52:855–902 [Google Scholar]
  65. Knauth LP, Kennedy MJ. 64.  2009. The late Precambrian greening of the Earth. Nature 460:728–32 [Google Scholar]
  66. Krings M, Kerp H, Hass H, Taylor TN, Dotzler N. 65.  2007. A filamentous cyanobacterium showing structured colonial growth from the Early Devonian Rhynie Chert. Rev. Palaeobot. Palynol. 146:265–76 [Google Scholar]
  67. Krings M, Taylor TN. 66.  2014. An unusual fossil microfungus with suggested affinities to the Chytridiomycota from the Lower Devonian Rhynie Chert. Nova Hedwigia 99:403–12 [Google Scholar]
  68. Krings M, Taylor TN. 67.  2015. Mantled fungal reproductive units in land plant tissue from the Lower Devonian Rhynie Chert. Bull. Geosci. 90:1–6 [Google Scholar]
  69. Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ. 68.  2007. An alternative mode of early land plant colonization by putative endomycorrhizal fungi. Plant Signal. Behav. 2:125–26 [Google Scholar]
  70. Kump LR. 69.  2014. Hypothesized link between Neoproterozoic greening of the land surface and the establishment of an oxygen-rich atmosphere. PNAS 111:14062–65 [Google Scholar]
  71. Kutstatcher E, Dotzler N, Taylor T, Krings M. 70.  2014. Microalgae from the Lower Devonian Rhynie Chert: a new Cymatiosphaera. Zitteliana A 54:165–69 [Google Scholar]
  72. Lang BF, O'Kelly C, Nerad T, Gray MW, Burger G. 71.  2002. The closest unicellular relatives of animals. Curr. Biol. 12:1773–78 [Google Scholar]
  73. Lenton TM, Crouch M, Johnson M, Pires N, Dolan L. 72.  2012. First plants cooled the Ordovician. Nat. Geosci. 5:86–89 [Google Scholar]
  74. Letcher PM, Lopez S, Schmieder R, Lee PA, Behnke C. 73.  et al. 2013. Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the cryptomycota isolated from an outdoor algal pond used for the production of biofuel. PLOS ONE 8:e56232 [Google Scholar]
  75. Letcher PM, Powell MJ, Barr DJS, Churchill PF, Wakefield WS, Picard KT. 74.  2008. Rhizophlyctidales—a new order in Chytridiomycota. Mycol. Res. 112:1031–48 [Google Scholar]
  76. Liang Y, Toth K, Cao YR, Tanaka K, Espinoza C, Stacey G. 75.  2014. Lipochitooligosaccharide recognition: an ancient story. New Phytol 204:289–96 [Google Scholar]
  77. Little C. 76.  1983. The Colonisation of Land: Origins and Adaptations of Terrestrial Animals Cambridge: Cambridge Univ. Press300 pp.
  78. Little C. 77.  1990. The Terrestrial Invasion: An Ecophysiological Approach to the Origins of Land Animals Cambridge: Cambridge Univ. Press
  79. Liu Y, Steenkamp ET, Brinkmann H, Forget L, Philippe H, Lang BF. 78.  2009. Phylogenomic analyses predict sistergroup relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support. BMC Evol. Biol. 9:272 [Google Scholar]
  80. Livermore JA, Mattes TE. 79.  2013. Phylogenetic detection of novel Cryptomycota in an Iowa (United States) aquifer and from previously collected marine and freshwater targeted high-throughput sequencing sets. Environ. Microbiol. 15:2333–41 [Google Scholar]
  81. Lozano-Fernandez J, Carton R, Tanner AR, Puttick MN, Blaxter M. 80.  et al. 2016. A molecular palaeobiological exploration of arthropod terrestrialization. Philos. Trans. R. Soc. B 371:20150133 [Google Scholar]
  82. Magallón S, Hilu KW, Quandt D. 81.  2013. Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am. J. Bot. 100:556–73 [Google Scholar]
  83. Marshall WL, Berbee ML. 82.  2013. Comparative morphology and genealogical delimitation of cryptic species of sympatric isolates of Sphaeroforma (Ichthyosporea, Opisthokonta). Protist 164:287–311 [Google Scholar]
  84. Martín-Closas C. 83.  2003. The fossil record and evolution of freshwater plants: a review. Geol. Acta 1:315–38 [Google Scholar]
  85. Mikhailov KV, Simdyanov TG, Aleoshin VV. 84.  2017. Genomic survey of a hyperparasitic microsporidian Amphiamblys sp. (Metchnikovellidae). Genome Biol. Evol. 9:454–467 [Google Scholar]
  86. Mikkelsen MD, Harholt J, Ulvskov P, Johansen IE, Fangel JU. 85.  et al. 2014. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. Ann. Bot. 114:1217–36 [Google Scholar]
  87. Mitchell RL, Cuadros J, Duckett JG, Pressel S, Mavris C. 86.  et al. 2016. Mineral weathering and soil development in the earliest land plant ecosystems. Geology 44:1007–10 [Google Scholar]
  88. Mitsuhashi J. 87.  2002. Invertebrate Tissue Culture Methods New York: Springer
  89. Morehouse EA, James TY, Ganley ARD, Vilgalys R, Berger L. 88.  et al. 2003. Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Mol. Ecol. 12:395–403 [Google Scholar]
  90. Morris JL, Leake JR, Stein WE, Berry CM, Marshall JEA. 89.  et al. 2015. Investigating Devonian trees as geo-engineers of past climates: linking palaeosols to palaeobotany and experimental geobiology. Palaeontology 58:787–801 [Google Scholar]
  91. Narisawa K, Tokumasu S, Hashiba T. 90.  1998. Suppression of clubroot formation in Chinese cabbage by the root endophytic fungus, Heteroconium chaetospira. Plant Pathol 47:206–10 [Google Scholar]
  92. Osorio NW, Habte M. 91.  2013. Synergistic effect of a phosphate-solubilizing fungus and an arbuscular mycorrhizal fungus on leucaena seedlings in an Oxisol fertilized with rock phosphate. Botany 91:274–81 [Google Scholar]
  93. Paps J, Medina-Chacon LA, Marshall W, Suga H, Ruiz-Trillo I. 92.  2013. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. Protist 164:2–12 [Google Scholar]
  94. Parfrey LW, Lahr DJG, Knoll AH, Katz LA. 93.  2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. PNAS 108:13624–29 [Google Scholar]
  95. Patterson DJ. 94.  1983. On the organization of the naked filose ameba, Nuclearia moebiusi Frenzel, 1897 (Sarcodina, Filosea) and its implications. J. Protozool. 30:301–7 [Google Scholar]
  96. Patterson DJ, Nygaard K, Steinberg G, Turley CM. 95.  1993. Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. J. Mar. Biol. Assoc. U.K. 73:67–95 [Google Scholar]
  97. Payne SH, Loomis WF. 96.  2006. Retention and loss of amino acid biosynthetic pathways based on analysis of whole-genome sequences. Eukaryot. Cell 5:272–76 [Google Scholar]
  98. Picard KT, Letcher PM, Powell MJ. 97.  2009. Rhizidium phycophilum, a new species in Chytridiales. Mycologia 101:696–706 [Google Scholar]
  99. Porada P, Lenton TM, Pohl A, Weber B, Mander L. 98.  et al. 2016. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nat. Commun. 7:12113 [Google Scholar]
  100. Quirk J, Beerling DJ, Banwart SA, Kakonyi G, Romero-Gonzalez ME, Leake JR. 99.  2012. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering. Biol. Lett. 8:1006–11 [Google Scholar]
  101. Quirk J, Leake JR, Johnson DA, Taylor LL, Saccone L, Beerling DJ. 100.  2015. Constraining the role of early land plants in Palaeozoic weathering and global cooling. Proc. R. Soc. B 282:20151115 [Google Scholar]
  102. Redecker D, Kodner R, Graham LE. 101.  2000. Glomalean fungi from the Ordovician. Science 289:1920–21 [Google Scholar]
  103. Reinhard CT, Planavsky NJ, Olson SL, Lyons TW, Erwin DH. 102.  2016. Earth's oxygen cycle and the evolution of animal life. PNAS 113:8933–38 [Google Scholar]
  104. Remy W, Taylor TN, Hass H. 103.  1994. Early Devonian fungi: a blastocladalean fungus with sexual reproduction. Am. J. Bot. 81:690–702 [Google Scholar]
  105. Remy W, Taylor TN, Hass H, Kerp H. 104.  1994. Four hundred-million-year-old vesicular arbuscular mycorrhizae. PNAS 91:11841–43 [Google Scholar]
  106. Richards TA, Leonard G, Mahe F, del Campov J, Romac S. 105.  et al. 2015. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc. R. Soc. B 282:20152243 [Google Scholar]
  107. Robertson JA. 106.  1976. Blastocladiopsis elegans, a new member of Blastocladiales. Can. J. Bot. 54:611–15 [Google Scholar]
  108. Robson G. 107.  1999. Hyphal cell biology. Molecular Fungal Biology O Schwiezer 164–84 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  109. Ruiz-Trillo I, Burger G, Holland PWH, King N, Lang BF. 108.  et al. 2007. The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 23:113–18 [Google Scholar]
  110. Ryder LS, Talbot NJ. 109.  2015. Regulation of appressorium development in pathogenic fungi. Curr. Opin. Plant Biol. 26:8–13 [Google Scholar]
  111. Sanchez-Baracaldo P. 110.  2015. Origin of marine planktonic cyanobacteria. Sci. Rep. 5:17418 [Google Scholar]
  112. Scourfield DJ. 111.  1940. Two new and nearly complete specimens of young stages of the Devonian fossil crustacean Lepidocaris rhyniensis. Proc. Linn. Soc. Lond. 152:290–98 [Google Scholar]
  113. Sekimoto S, Rochon D, Long JE, Dee JM, Berbee ML. 112.  2011. A multigene phylogeny of Olpidium and its implications for early fungal evolution. BMC Evol. Biol. 11:331 [Google Scholar]
  114. Smith MR. 112a.  2016. Cord-forming Palaeozoic fungi in terrestrial assemblages. Bot. J. Linn. Soc. 180:452–60 [Google Scholar]
  115. Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D. 113.  et al. 2016. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351:1192–95 [Google Scholar]
  116. Somkuti GA, Babel FJ. 114.  1968. Acid protease synthesis by Mucor pusillus in chemically defined media. J. Bacteriol. 95:1415–18 [Google Scholar]
  117. Sorensen I, Pettolino FA, Bacic A, Ralph J, Lu FC. 115.  et al. 2011. The charophycean green algae provide insights into the early origins of plant cell walls. Plant J 68:201–11 [Google Scholar]
  118. Sparrow FK. 116.  1960. Aquatic Phycomycetes Ann Arbor, MI: Univ. Mich. Press
  119. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME. 117.  et al. 2016. A phylum-level classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–46 [Google Scholar]
  120. Steenkamp ET, Wright J, Baldauf SL. 118.  2006. The protistan origins of animals and fungi. Mol. Biol. Evol. 23:93–106 [Google Scholar]
  121. Strullu-Derrien C, Goral T, Longcore J, Olesen J, Kenrick P, Edgecombe G. 119.  2016. A new chytridiomycete fungus intermixed with crustacean resting eggs in a 407-million-year-old continental freshwater environment. PLOS ONE 11:e0167301 [Google Scholar]
  122. Strullu-Derrien C, Kenrick P, Pressel S, Duckett JG, Rioult JP, Strullu DG. 120.  2014. Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant-fungus symbioses. New Phytol 203:964–79 [Google Scholar]
  123. Strullu-Derrien C, Wawrzyniak Z, Goral T, Kenrick P. 121.  2015. Fungal colonization of the rooting system of the early land plant Asteroxylon mackiei from the 407-Myr-old Rhynie Chert (Scotland, UK). Bot. J. Linn. Soc. 179:201–13 [Google Scholar]
  124. Tanabe Y, Saikawa M, Watanabe MM, Sugiyama J. 122.  2004. Molecular phylogeny of Zygomycota based on EF-1 alpha and RPB1 sequences: limitations and utility of alternative markers to rDNA. Mol. Phylogen. Evol. 30:438–49 [Google Scholar]
  125. Tappan HN. 123.  1980. The Paleobiology of Plant Protists San Francisco: W.H. Freeman
  126. Taylor LL, Banwart SA, Valdes PJ, Leake JR, Beerling DJ. 124.  2012. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach. Philos. Trans. R. Soc. B 367:565–82 [Google Scholar]
  127. Taylor T, Krings M, Taylor E. 125.  2015. Fossil Fungi Burlington, MA: Elsevier
  128. Taylor TN, Hass H, Remy W. 126.  1992. Devonian fungi: interactions with the green alga Palaeonitella. Mycologia 84:901–10 [Google Scholar]
  129. Taylor TN, Remy W, Hass H. 127.  1992. Fungi from the Lower Devonian Rhynie Chert: Chytridiomycetes. Am. J. Bot. 79:1233–41 [Google Scholar]
  130. Taylor TN, Remy W, Hass H. 128.  1994. Allomyces in the Devonian. Nature 367:601 [Google Scholar]
  131. Taylor TN, Remy W, Hass H, Kerp H. 129.  1995. Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87:560–73 [Google Scholar]
  132. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A. 130.  et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. PNAS 110:20117–22 [Google Scholar]
  133. Torruella G, de Mendoza A, Grau-Bove X, Anto M, Chaplin MA. 131.  et al. 2015. Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi. Curr. Biol. 25:2404–10 [Google Scholar]
  134. Trewin NH, Rice CM. 132.  2004. The Rhynie Hot-Spring System: Geology, Biota and Mineralisation; preface. Trans. R. Soc. Edinb. Earth Sci. 94:283–84 [Google Scholar]
  135. Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Strietwolf-Engel R. 133.  et al. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72 [Google Scholar]
  136. Vargas MM, Aronson JM, Roberson RW. 134.  1993. The cytoplasmic organization of hyphal tip cells in the fungus Allomyces macrogynus. Protoplasma 176:43–52 [Google Scholar]
  137. Vierheilig H, Schweiger P, Brundrett M. 135.  2005. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol. Plant. 125:393–404 [Google Scholar]
  138. Wainright PO, Hinkle G, Sogin ML, Stickel SK. 136.  1993. Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science 260:340–42 [Google Scholar]
  139. Wang B, Yeun LH, Xue JY, Liu Y, Ane JM, Qiu YL. 137.  2010. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–25 [Google Scholar]
  140. Wellman CH, Strother PK. 138.  2015. The terrestrial biota prior to the origin of land plants (embryophytes): a review of the evidence. Palaeontology 58:601–27 [Google Scholar]
  141. Worley AC, Raper KB, Hohl M. 139.  1979. Fonticula alba—new cellular slime-mold (acrasiomycetes). Mycologia 71:746–60 [Google Scholar]
  142. Young GM. 140.  2013. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geosci. Front. 4:247–61 [Google Scholar]
  143. Zettler LAA, Nerad TA, O'Kelly CJ, Sogin ML. 141.  2001. The nucleariid amoebae: more protists at the animal-fungal boundary. J. Eukaryot. Microbiol. 48:293–97 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error