More than 90% of the cell wall of the filamentous fungus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall–associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting diseases.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ahmadpour D, Geijer C, Tamás MJ, Lindkvist-Petersson K, Hohmann S. 1.  2014. Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochim. Biophys. Acta 1840:51482–91 [Google Scholar]
  2. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K. 2.  et al. 2009. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:72591117–21 [Google Scholar]
  3. Akoumianaki T, Kyrmizi I, Valsecchi I, Gresnigt MS, Samonis G. 3.  et al. 2016. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19:179–90 [Google Scholar]
  4. Altwasser R, Baldin C, Weber J, Guthke R, Kniemeyer O. 4.  et al. 2015. Network modeling reveals cross talk of MAP kinases during adaptation to caspofungin stress in Aspergillus fumigatus. PLOS ONE 10:9e0136932 [Google Scholar]
  5. Alvarez FJ. 5.  2014. The effect of chitin size, shape, source and purification method on immune recognition. Molecules 19:44433–51 [Google Scholar]
  6. Amin S, Thywissen A, Heinekamp T, Saluz HP, Brakhage AA. 6.  2014. Melanin dependent survival of Aspergillus fumigatus conidia in lung epithelial cells. Int. J. Med. Microbiol 3045–6626–36 [Google Scholar]
  7. Bamford NC, Snarr BD, Gravelat FN, Little DJ, Lee MJ. 7.  et al. 2015. Sph3 is a glycoside hydrolase required for the biosynthesis of galactosaminogalactan in Aspergillus fumigatus. J. Biol. Chem. 290:4627438–50 [Google Scholar]
  8. Bayry J, Beaussart A, Dufrêne YF, Sharma M, Bansal K. 8.  et al. 2014. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response. Infect. Immun. 82:83141–53 [Google Scholar]
  9. Beaussart A, El-Kirat-Chatel S, Fontaine T, Latgé J-P, Dufrêne YF. 9.  2015. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus. Nanoscale 7:3614996–5004 [Google Scholar]
  10. Beauvais A, Bozza S, Kniemeyer O, Formosa C, Balloy V. 10.  et al. 2013. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLOS Pathog 9:11e1003716 [Google Scholar]
  11. Beauvais A, Bruneau JM, Mol PC, Buitrago MJ, Legrand R, Latgé JP. 11.  2001. Glucan synthase complex of Aspergillus fumigatus. J. Bacteriol. 183:72273–79 [Google Scholar]
  12. Beauvais A, Perlin DS, Latgé JP. 12.  2007. Role of α(1–3) glucan in Aspergillusfumigatus and other human fungal pathogens. Fungi in the Environment GM Gadd, SC Watkinson, P Dyer 269–88 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  13. Beauvais A, Schmidt C, Guadagnini S, Roux P, Perret E. 13.  et al. 2007. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol. 9:61588–600 [Google Scholar]
  14. Becker KL, Aimanianda V, Wang X, Gresnigt MS, Ammerdorffer A. 14.  et al. 2016. Aspergillus cell wall chitin induces anti- and proinflammatory cytokines in human PBMCS via the Fc-γ receptor/Syk/PI3K pathway. mBio 7:3e01823–15 [Google Scholar]
  15. Becker KL, Gresnigt MS, Smeekens SP, Jacobs CW, Magis-Escurra C. 15.  et al. 2015. Pattern recognition pathways leading to a Th2 cytokine bias in allergic bronchopulmonary aspergillosis patients. Clin. Exp. Allergy 45:2423–37 [Google Scholar]
  16. Bertuzzi M, Schrettl M, Alcazar-Fuoli L, Cairns TC, Muñoz A. 16.  et al. 2014. The Ph-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLOS Pathog 10:10e1004413 Correction. 2015 PLOS Pathog. 11:6e1004943 [Google Scholar]
  17. Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA. 17.  et al. 2009. Restoration of net formation by gene therapy in CGD controls aspergillosis. Blood 114:132619–22 [Google Scholar]
  18. Blander JM, Medzhitov R. 18.  2004. Regulation of phagosome maturation by signals from Toll-like receptors. Science 304:56731014–18 [Google Scholar]
  19. Bonnett CR, Cornish EJ, Harmsen AG, Burritt JB. 19.  2006. Early neutrophil recruitment and aggregation in the murine lung inhibit germination of Aspergillus fumigatus conidia. Infect. Immun. 74:126528–39 [Google Scholar]
  20. Bozza S, Clavaud C, Giovannini G, Fontaine T, Beauvais A. 20.  et al. 2009. Immune sensing of Aspergillus fumigatus proteins, glycolipids, and polysaccharides and the impact on Th immunity and vaccination. J. Immunol. 183:42407–14 [Google Scholar]
  21. Briard B, Muszkieta L, Latgé J-P, Fontaine T. 21.  2016. Galactosaminogalactan of Aspergillus fumigatus, a bioactive fungal polymer. Mycologia 108:572–80 [Google Scholar]
  22. Bruns S, Kniemeyer O, Hasenberg M, Aimanianda V, Nietzsche S. 22.  et al. 2010. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLOS Pathog 6:4e1000873 [Google Scholar]
  23. Caffrey AK, Lehmann MM, Zickovich JM, Espinosa V, Shepardson KM. 23.  et al. 2015. IL-1α signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge. PLOS Pathog 11:1e1004625 [Google Scholar]
  24. Chabane S, Sarfati J, Ibrahim-Granet O, Du C, Schmidt C. 24.  et al. 2006. Glycosylphosphatidylinositol-anchored Ecm33p influences conidial cell wall biosynthesis in Aspergillus fumigatus. Appl. Environ. Microbiol. 72:53259–67 [Google Scholar]
  25. Chai LYA, Netea MG, Sugui J, Vonk AG, van de Sande WWJ. 25.  et al. 2010. Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology 215:11915–20 [Google Scholar]
  26. Clark HL, Jhingran A, Sun Y, Vareechon C, de Jesus Carrion S. 26.  et al. 2016. Zinc and manganese chelation by neutrophil s100a8/a9 (calprotectin) limits extracellular Aspergillus fumigatus hyphal growth and corneal infection. J. Immunol. Baltim. Md 1950 196:1336–44 [Google Scholar]
  27. Clavaud C, Beauvais A, Barbin L, Munier-Lehmann H, Latgé J-P. 27.  2012. The composition of the culture medium influences the β-1,3-glucan metabolism of Aspergillus fumigatus and the antifungal activity of inhibitors of β-1,3-glucan synthesis. Antimicrob. Agents Chemother. 56:63428–31 [Google Scholar]
  28. Cornish EJ, Hurtgen BJ, McInnerney K, Burritt NL, Taylor RM. 28.  et al. 2008. Reduced nicotinamide adenine dinucleotide phosphate oxidase-independent resistance to Aspergillus fumigatus in alveolar macrophages. J. Immunol. 180:106854–67 [Google Scholar]
  29. Costachel C, Coddeville B, Latgé J-P, Fontaine T. 29.  2005. Glycosylphosphatidylinositol-anchored fungal polysaccharide in Aspergillus fumigatus. J. Biol. Chem. 280:4839835–42 [Google Scholar]
  30. Dambuza IM, Brown GD. 30.  2015. C-type lectins in immunity: recent developments. Curr. Opin. Immunol. 32:21–27 [Google Scholar]
  31. de Bekker C, Bruning O, Jonker MJ, Breit TM, Wösten HAB. 31.  2011. Single cell transcriptomics of neighboring hyphae of Aspergillus niger. Genome Biol 12:8R71 [Google Scholar]
  32. del Fresno C, Soulat D, Roth S, Blazek K, Udalova I. 32.  et al. 2013. Interferon-β production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans. Immunity 38:61176–86 [Google Scholar]
  33. Dichtl K, Helmschrott C, Dirr F, Wagener J. 33.  2012. Deciphering cell wall integrity signalling in Aspergillus fumigatus: identification and functional characterization of cell wall stress sensors and relevant Rho GTPases. Mol. Microbiol. 83:3506–19 [Google Scholar]
  34. Dichtl K, Samantaray S, Aimanianda V, Zhu Z, Prévost M-C. 34.  et al. 2015. Aspergillus fumigatus devoid of cell wall β-1,3-glucan is viable, massively sheds galactomannan and is killed by septum formation inhibitors. Mol. Microbiol. 95:3458–71 [Google Scholar]
  35. Dubourdeau M, Athman R, Balloy V, Huerre M, Chignard M. 34a.  et al. 2006. Aspergillus fumigatus induces innate immune responses in alveolar macrophages through the MAPK pathway independently of TLR2 and TLR4. J. Immunol. 177:63994–4001 [Google Scholar]
  36. Engel J, Schmalhorst PS, Routier FH. 35.  2012. Biosynthesis of the fungal cell wall polysaccharide galactomannan requires intraluminal GDP-mannose. J. Biol. Chem. 287:5344418–24 [Google Scholar]
  37. Espinosa V, Jhingran A, Dutta O, Kasahara S, Donnelly R. 36.  et al. 2014. Inflammatory monocytes orchestrate innate antifungal immunity in the lung. PLOS Pathog 10:2e1003940 [Google Scholar]
  38. 37.  Deleted in proof
  39. Firon A, Beauvais A, Latgé J-P, Couvé E, Grosjean-Cournoyer M-C, D'Enfert C. 38.  2002. Characterization of essential genes by parasexual genetics in the human fungal pathogen Aspergillus fumigatus: impact of genomic rearrangements associated with electroporation of DNA. Genetics 161:31077–87 [Google Scholar]
  40. Fontaine T, Beauvais A, Loussert C, Thevenard B, Fulgsang CC. 39.  et al. 2010. Cell wall α1–3glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. Fungal Genet. Biol. 47:8707–12 [Google Scholar]
  41. Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ. 40.  et al. 2011. Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLOS Pathog 7:11e1002372 [Google Scholar]
  42. Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre M. 41.  et al. 2000. Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J. Biol. Chem. 275:3627594–607 [Google Scholar]
  43. Gastebois A, Fontaine T, Latgé J-P, Mouyna I. 42.  2010. β(1–3)glucanosyltransferase gel4p is essential for Aspergillus fumigatus. Eukaryot. Cell 9:81294–98 [Google Scholar]
  44. Gazendam RP, van Hamme JL, Tool ATJ, Hoogenboezem M, van den Berg JM. 43.  et al. 2016. Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects. J. Immunol. 196:31272–83 [Google Scholar]
  45. Gersuk GM, Underhill DM, Zhu L, Marr KA. 44.  2006. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J. Immunol. Baltim. 176:63717–24 [Google Scholar]
  46. Gravelat FN, Beauvais A, Liu H, Lee MJ, Snarr BD. 45.  et al. 2013. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLOS Pathog 9:8e1003575 [Google Scholar]
  47. Gresnigt MS, Bozza S, Becker KL, Joosten LAB, Abdollahi-Roodsaz S. 46.  et al. 2014. A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of interleukin-1 receptor antagonist. PLOS Pathog 10:3e1003936 [Google Scholar]
  48. Grimm MJ, Vethanayagam RR, Almyroudis NG, Dennis CG, Khan ANH. 47.  et al. 2013. Monocyte- and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice. J. Immunol. 190:84175–84 [Google Scholar]
  49. Hall RA, Gow NAR. 48.  2013. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol. Microbiol. 90:61147–61 [Google Scholar]
  50. Heinekamp T, Thywißen A, Macheleidt J, Keller S, Valiante V, Brakhage AA. 49.  2012. Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front. Microbiol. 3:440 [Google Scholar]
  51. Henry C, Fontaine T, Heddergott C, Robinet P, Aimanianda V. 50.  et al. 2016. Mannan biosynthesis in Aspergillus fumigatus is not controlled by orthologs of the yeast mannan polymerase I and II. Cell Microbiol 18:1881–91 [Google Scholar]
  52. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B. 51.  et al. 2015. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol. Med. 7:3240–58 [Google Scholar]
  53. Herre J, Willment JA, Gordon S, Brown GD. 52.  2004. The role of Dectin-1 in antifungal immunity. Crit. Rev. Immunol. 24:3193–203 [Google Scholar]
  54. Hohl TM, Rivera A, Lipuma L, Gallegos A, Shi C. 53.  et al. 2009. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6:5470–81 [Google Scholar]
  55. Hohl TM, Van Epps HL, Rivera A, Morgan LA, Chen PL. 54.  et al. 2005. Aspergillus fumigatus triggers inflammatory responses by stage-specific β-glucan display. PLOS Pathog 1:3e30 [Google Scholar]
  56. Ibrahim-Granet O, Philippe B, Boleti H, Boisvieux-Ulrich E, Grenet D. 55.  et al. 2003. Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect. Immun. 71:2891–903 [Google Scholar]
  57. Ifrim DC, Quintin J, Netea MG, van de Veerdonk FL. 56.  2015. Antifungal innate immunity: recognition and inflammatory networks. Semin. Immunopathol. 37:2107–16 [Google Scholar]
  58. Jahn B, Boukhallouk F, Lotz J, Langfelder K, Wanner G, Brakhage AA. 57.  2000. Interaction of human phagocytes with pigmentless Aspergillus conidia. Infect. Immun. 68:63736–39 [Google Scholar]
  59. Jaillon S, Peri G, Delneste Y, Frémaux I, Doni A. 58.  et al. 2007. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. J. Exp. Med. 204:4793–804 [Google Scholar]
  60. Jhingran A, Kasahara S, Shepardson KM, Junecko BAF, Heung LJ. 59.  et al. 2015. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLOS Pathog 11:1e1004589 [Google Scholar]
  61. Jia X-M, Tang B, Zhu L-L, Liu Y-H, Zhao X-Q. 60.  et al. 2014. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J. Exp. Med. 211:112307–21 [Google Scholar]
  62. Jiménez-Ortigosa C, Aimanianda V, Muszkieta L, Mouyna I, Alsteens D. 61.  et al. 2012. Chitin synthases with a myosin motor-like domain control the resistance of Aspergillus fumigatus to echinocandins. Antimicrob. Agents Chemother. 56:126121–31 [Google Scholar]
  63. Juvvadi PR, Lamoth F, Steinbach WJ. 62.  2014. Calcineurin as a multifunctional regulator: unraveling novel functions in fungal stress responses, hyphal growth, drug resistance, and pathogenesis. Fungal Biol. Rev. 28:2–356–69 [Google Scholar]
  64. Kerr SC, Fischer GJ, Sinha M, McCabe O, Palmer JM. 63.  et al. 2016. Flea expression in Aspergillus fumigatus is recognized by fucosylated structures on mucins and macrophages to prevent lung infection. PLOS Pathog 12:4e1005555 [Google Scholar]
  65. Komachi Y, Hatakeyama S, Motomatsu H, Futagami T, Kizjakina K. 64.  et al. 2013. Gfsa encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus. Mol. Microbiol. 90:51054–73 [Google Scholar]
  66. Kyrmizi I, Gresnigt MS, Akoumianaki T, Samonis G, Sidiropoulos P. 65.  et al. 2013. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting Dectin-1/Syk kinase signaling. J. Immunol. 191:31287–99 [Google Scholar]
  67. Lamarre C, Beau R, Balloy V, Fontaine T, Wong Sak Hoi J. 66.  et al. 2009. Galactofuranose attenuates cellular adhesion of Aspergillus fumigatus. Cell Microbiol 11:111612–23 [Google Scholar]
  68. Langfelder K, Jahn B, Gehringer H, Schmidt A, Wanner G, Brakhage AA. 67.  1998. Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med. Microbiol. Immunol 187279–89 [Google Scholar]
  69. Latgé J-P. 68.  2010. Tasting the fungal cell wall. Cell Microbiol 12:7863–72 [Google Scholar]
  70. Latgé J-P, Beauvais A. 69.  2014. Functional duality of the cell wall. Curr. Opin. Microbiol. 20:111–17 [Google Scholar]
  71. Latgé JP, Kobayashi H, Debeaupuis JP, Diaquin M, Sarfati J. 70.  et al. 1994. Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect. Immun. 62:125424–33 [Google Scholar]
  72. Leal SM Jr., Roy S, Vareechon C, de Jesus Carrion S, Clark H. 71.  et al. 2013. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillusfumigatus and Fusarium oxysporum. PLOS Pathog. 9:7e1003436 [Google Scholar]
  73. Lee MJ, Liu H, Barker BM, Snarr BD, Gravelat FN. 72.  et al. 2015. The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLOS Pathog 11:10e1005187 [Google Scholar]
  74. Levitz SM, Huang H, Ostroff GR, Specht CA. 73.  2015. Exploiting fungal cell wall components in vaccines. Semin. Immunopathol. 37:2199–207 [Google Scholar]
  75. Loussert C, Schmitt C, Prevost M-C, Balloy V, Fadel E. 74.  et al. 2010. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol. 12:3405–10 [Google Scholar]
  76. Mansour MK, Tam JM, Khan NS, Seward M, Davids PJ. 75.  et al. 2013. Dectin-1 activation controls maturation of β-1,3-glucan-containing phagosomes. J. Biol. Chem. 288:2216043–54 [Google Scholar]
  77. Mehrad B, Wiekowski M, Morrison BE, Chen S-C, Coronel EC. 76.  et al. 2002. Transient lung-specific expression of the chemokine KC improves outcome in invasive aspergillosis. Am. J. Respir. Crit. Care Med. 166:91263–68 [Google Scholar]
  78. Merkow L, Pardo M, Epstein SM, Verney E, Sidransky H. 77.  1968. Lysosomal stability during phagocytosis of Aspergillus flavus spores by alveolar macrophages of cortisone-treated mice. Science 160:382379–81 [Google Scholar]
  79. Mircescu MM, Lipuma L, van Rooijen N, Pamer EG, Hohl TM. 78.  2009. Essential role for neutrophils but not alveolar macrophages at early time points following Aspergillus fumigatus infection. J. Infect. Dis. 200:4647–56 [Google Scholar]
  80. Mouyna I, Aimanianda V, Hartl L, Prevost M-C, Latgé J-P. 79.  2016. GH16 and GH81 family β-(1,3)-glucanases in Aspergillus fumigatus are essential for conidial cell wall morphogenesis. Cell. Microbiol. 18:1285–93 [Google Scholar]
  81. Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA. 80.  et al. 2000. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J. Biol. Chem. 275:2014882–89 [Google Scholar]
  82. Mouyna I, Hartl L, Latgé J-P. 81.  2013. β-1,3-glucan modifying enzymes in Aspergillus fumigatus. Front. Microbiol. 4:81 [Google Scholar]
  83. Mouyna I, Morelle W, Vai M, Monod M, Léchenne B. 82.  et al. 2005. Deletion of GEL2 encoding for a β(1–3)glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus. Mol. Microbiol. 56:61675–88 [Google Scholar]
  84. Muszkieta L, Aimanianda V, Mellado E, Gribaldo S, Alcàzar-Fuoli L. 83.  et al. 2014. Deciphering the role of the chitin synthase families 1 and 2 in the in vivo and in vitro growth of Aspergillus fumigatus by multiple gene targeting deletion. Cell Microbiol 16:121784–805 [Google Scholar]
  85. Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC. 84.  et al. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12:2223–32 [Google Scholar]
  86. Rambach G, Blum G, Latgé J-P, Fontaine T, Heinekamp T. 85.  et al. 2015. Identification of Aspergillus fumigatus surface components that mediate interaction of conidia and hyphae with human platelets. J. Infect. Dis. 212:71140–49 [Google Scholar]
  87. Reedy J, Wuethrich MA, Latgé JP, Vyas J. 86.  2016. Dectin-2 is a receptor for galactomannan. Presented at Advances Against Aspergillosis, 7th, Manchester, UK (Abstr.)
  88. Robinet P, Baychelier F, Fontaine T, Picard C, Debré P. 87.  et al. 2014. A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells. J. Immunol. 192:115332–42 [Google Scholar]
  89. Romani L. 88.  2011. Immunity to fungal infections. Nat. Rev. Immunol. 11:4275–88 [Google Scholar]
  90. Samantaray S, Neubauer M, Helmschrott C, Wagener J. 89.  2013. Role of the guanine nucleotide exchange factor Rom2 in cell wall integrity maintenance of Aspergillus fumigatus. Eukaryot. Cell 12:2288–98 [Google Scholar]
  91. Samar D, Kieler JB, Klutts JS. 90.  2015. Identification and deletion of Tft1, a predicted glycosyltransferase necessary for cell wall β-1,3;1,4-glucan synthesis in Aspergillus fumigatus. PLOS ONE 10:2e0117336 [Google Scholar]
  92. Shah A, Kannambath S, Herbst S, Rogers A, Soresi S. 91.  et al. 2016. Calcineurin orchestrates lateral transfer of Aspergillus fumigatus during macrophage cell death. Am. J. Respir. Crit. Care Med. 194:91127–39 [Google Scholar]
  93. Shepardson KM, Ngo LY, Aimanianda V, Latgé J-P, Barker BM. 92.  et al. 2013. Hypoxia enhances innate immune activation to Aspergillus fumigatus through cell wall modulation. Microbes Infect. Inst. Pasteur. 15:4259–69 [Google Scholar]
  94. Steele C, Rapaka RR, Metz A, Pop SM, Williams DL. 93.  et al. 2005. The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLOS Pathog 1:4e42 [Google Scholar]
  95. Tkalcevic J, Novelli M, Phylactides M, Iredale JP, Segal AW, Roes J. 94.  2000. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity 12:2201–10 [Google Scholar]
  96. Tsai HF, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ. 95.  1998. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J. Bacteriol. 180:123031–38 [Google Scholar]
  97. Underhill DM, Pearlman E. 96.  2015. Immune interactions with pathogenic and commensal fungi: a two-way street. Immunity 43:5845–58 [Google Scholar]
  98. Valiante V, Macheleidt J, Föge M, Brakhage AA. 97.  2015. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front. Microbiol. 6:325 [Google Scholar]
  99. Wagener J, Malireddi RKS, Lenardon MD, Köberle M, Vautier S. 98.  et al. 2014. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLOS Pathog 10:4e1004050 [Google Scholar]
  100. Wiesner DL, Specht CA, Lee CK, Smith KD, Mukaremera L. 99.  et al. 2015. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLOS Pathog 11:3e1004701 [Google Scholar]
  101. Zarember KA, Sugui JA, Chang YC, Kwon-Chung KJ, Gallin JI. 100.  2007. Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion. J. Immunol. 178:106367–73 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error