1932

Abstract

Diversity-generating retroelements (DGRs) create vast amounts of targeted, functional diversity by facilitating the rapid evolution of ligand-binding protein domains. Thousands of DGRs have been identified in bacteria, archaea, and their respective viruses. They are broadly distributed throughout the microbial world, with enrichment observed in certain taxa and environments. The diversification machinery works through a novel mechanism termed mutagenic retrohoming, whereby nucleotide sequence information is copied from an invariant DNA template repeat (TR) into an RNA intermediate, selectively mutagenized at TR adenines during cDNA synthesis by a DGR-encoded reverse transcriptase, and transferred to a variable repeat (VR) region within a variable-protein gene (54). This unidirectional flow of information leaves TR-DNA sequences unmodified, allowing for repeated rounds of mutagenic retrohoming to optimize variable-protein function. DGR target genes are often modular and can encode one or more of a wide variety of discrete functional domains appended to a diversifiable ligand-binding motif. Bacterial variable proteins often localize to cellsurfaces, although a subset appear to be cytoplasmic, while phage-encoded DGRs commonly diversify tail fiber–associated receptor-binding proteins. Here, we provide a comprehensive review of the mechanism and consequences of accelerated protein evolution by these unique and beneficial genetic elements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-030322-040423
2022-09-08
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-030322-040423.html?itemId=/content/journals/10.1146/annurev-micro-030322-040423&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43:5721–32
    [Google Scholar]
  2. 2.
    Abram ME, Ferris AL, Shao W, Alvord WG, Hughes SH. 2010. Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication. J. Virol. 84:9864–78
    [Google Scholar]
  3. 3.
    Ackermann HW. 1998. Tailed bacteriophages: the order Caudovirales. Adv. Virus Res. 51:135–201
    [Google Scholar]
  4. 4.
    Alayyoubi M, Guo H, Dey S, Golnazarian T, Brooks GA et al. 2013. Structure of the essential diversity-generating retroelement protein bAvd and its functionally important interaction with reverse transcriptase. Structure 21:266–76
    [Google Scholar]
  5. 5.
    Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML et al. 2020. Phage display derived monoclonal antibodies: from bench to bedside. Front. Immunol. 11:1986
    [Google Scholar]
  6. 6.
    Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ et al. 2016. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7:13219
    [Google Scholar]
  7. 7.
    Arambula D, Wong W, Medhekar BA, Guo H, Gingery M et al. 2013. Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. PNAS 110:8212–17
    [Google Scholar]
  8. 8.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–76
    [Google Scholar]
  9. 9.
    Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. 2021. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 12:2608–32
    [Google Scholar]
  10. 10.
    Benler S, Cobian-Guemes AG, McNair K, Hung SH, Levi K et al. 2018. A diversity-generating retroelement encoded by a globally ubiquitous Bacteroides phage. Microbiome 6:191
    [Google Scholar]
  11. 11.
    Blocker FJ, Mohr G, Conlan LH, Qi L, Belfort M, Lambowitz AM. 2005. Domain structure and three-dimensional model of a group II intron-encoded reverse transcriptase. RNA 11:14–28
    [Google Scholar]
  12. 12.
    Bondy-Denomy J, Davidson AR. 2014. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52:235–42
    [Google Scholar]
  13. 13.
    Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ et al. 2015. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523:208–11
    [Google Scholar]
  14. 14.
    Brown GD, Willment JA, Whitehead L. 2018. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 18:374–89
    [Google Scholar]
  15. 15.
    Brussow H, Canchaya C, Hardt WD. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:560–602
    [Google Scholar]
  16. 16.
    Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD. 2021. Massive expansion of human gut bacteriophage diversity. Cell 184:1098–109.e9
    [Google Scholar]
  17. 17.
    Campillo-Balderas JA, Lazcano A, Becerra A. 2015. Viral genome size distribution does not correlate with the antiquity of the host lineages. Front. Ecol. Evol. 3: https://doi.org/10.3389/fevo.2015.00143
    [Crossref] [Google Scholar]
  18. 18.
    Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT et al. 2015. Genomic expansion of domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25:690–701
    [Google Scholar]
  19. 19.
    Chi X, Li Y, Qiu X. 2020. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology 160:233–47
    [Google Scholar]
  20. 20.
    Christensen SM, Eickbush TH. 2005. R2 target-primed reverse transcription: ordered cleavage and polymerization steps by protein subunits asymmetrically bound to the target DNA. Mol. Cell. Biol. 25:6617–28
    [Google Scholar]
  21. 21.
    Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. 2021. Revisiting the rules of life for viruses of microorganisms. Nat. Rev. Microbiol. 19:501–13
    [Google Scholar]
  22. 22.
    Cummings RD, McEver RP. 2009. C-type lectins. Essentials of Glycobiology A Varki, RD Cummings, JD Esko, HH Freeze, P Stanley et al.459–74 New York: Cold Spring Harb.
    [Google Scholar]
  23. 23.
    Dai W, Hodes A, Hui WH, Gingery M, Miller JF, Zhou ZH. 2010. Three-dimensional structure of tropism-switching Bordetella bacteriophage. PNAS 107:4347–52
    [Google Scholar]
  24. 24.
    Derr LK, Strathern JN. 1993. A role for reverse transcripts in gene conversion. Nature 361:170–73
    [Google Scholar]
  25. 25.
    Doulatov S, Hodes A, Dai L, Mandhana N, Liu M et al. 2004. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431:476–81
    [Google Scholar]
  26. 26.
    Duffy S. 2018. Why are RNA virus mutation rates so damn high?. PLOS Biol 16:e3000003
    [Google Scholar]
  27. 27.
    Duffy S, Holmes EC. 2008. Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. J. Virol. 82:957–65
    [Google Scholar]
  28. 28.
    Durrant MG, Li MM, Siranosian BA, Montgomery SB, Bhatt AS. 2020. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe 27:140–53.e9
    [Google Scholar]
  29. 29.
    Erlendsson S, Teilum K. 2020. Binding revisited—avidity in cellular function and signaling. Front. Mol. Biosci. 7:615565
    [Google Scholar]
  30. 30.
    Esnault C, Maestre J, Heidmann T. 2000. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24:363–67
    [Google Scholar]
  31. 31.
    Gong J, Qing Y, Guo X, Warren A. 2014.. “ Candidatus Sonnebornia yantaiensis”, a member of candidate division OD1, as intracellular bacteria of the ciliated protist Paramecium bursaria (Ciliophora, Oligohymenophorea). Syst. Appl. Microbiol. 37:35–41
    [Google Scholar]
  32. 32.
    Griffiths AJF. 2012. Introduction to Genetic Analysis New York: W.H. Freeman
    [Google Scholar]
  33. 33.
    Guo H, Arambula D, Ghosh P, Miller JF. 2014. Diversity-generating retroelements in phage and bacterial genomes. Microbiol. Spectr. 2: https://doi.org/10.1128/microbiolspec.MDNA3-0029-2014
    [Crossref] [Google Scholar]
  34. 34.
    Guo H, Tse LV, Barbalat R, Sivaamnuaiphorn S, Xu M et al. 2008. Diversity-generating retroelement homing regenerates target sequences for repeated rounds of codon rewriting and protein diversification. Mol. Cell 31:813–23
    [Google Scholar]
  35. 35.
    Guo H, Tse LV, Nieh AW, Czornyj E, Williams S et al. 2011. Target site recognition by a diversity-generating retroelement. PLOS Genet 7:e1002414
    [Google Scholar]
  36. 36.
    Halligan DL, Keightley PD. 2009. Spontaneous mutation accumulation studies in evolutionary genetics. Annu. Rev. Ecol. Evol. Systemat. 40:151–72
    [Google Scholar]
  37. 37.
    Handa S, Jiang Y, Tao S, Foreman R, Schinazi RF et al. 2018. Template-assisted synthesis of adenine-mutagenized cDNA by a retroelement protein complex. Nucleic Acids Res 46:9711–25
    [Google Scholar]
  38. 38.
    Handa S, Paul BG, Miller JF, Valentine DL, Ghosh P. 2016. Conservation of the C-type lectin fold for accommodating massive sequence variation in archaeal diversity-generating retroelements. BMC Struct. Biol. 16:13
    [Google Scholar]
  39. 39.
    Handa S, Reyna A, Wiryaman T, Ghosh P. 2021. Determinants of adenine-mutagenesis in diversity-generating retroelements. Nucleic Acids Res 49:1033–45
    [Google Scholar]
  40. 40.
    Hausner G, Hafez M, Edgell DR. 2014. Bacterial group I introns: mobile RNA catalysts. Mob. DNA 5:8
    [Google Scholar]
  41. 41.
    Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ et al. 2016. A new view of the tree of life. Nat. Microbiol. 1:16048
    [Google Scholar]
  42. 42.
    Ives AR, Garland T Jr. 2010. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59:9–26
    [Google Scholar]
  43. 43.
    Jahn CL, Klobutcher LA. 2002. Genome remodeling in ciliated protozoa. Annu. Rev. Microbiol. 56:489–520
    [Google Scholar]
  44. 44.
    Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. 2022. Phage display and other peptide display technologies. FEMS Microbiol. Rev. 46:2fuab052
    [Google Scholar]
  45. 45.
    Juhala RJ, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW. 2000. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299:27–51
    [Google Scholar]
  46. 46.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Google Scholar]
  47. 47.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10:845–58
    [Google Scholar]
  48. 48.
    Kolenbrander PE, Palmer RJ Jr., Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. 2006. Bacterial interactions and successions during plaque development. Periodontol. 2000 42:47–79
    [Google Scholar]
  49. 49.
    Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. 1982. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–57
    [Google Scholar]
  50. 50.
    Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. 2007. Interspecies interactions within oral microbial communities. Microbiol. Mol. Biol. Rev. 71:653–70
    [Google Scholar]
  51. 51.
    Lautner M, Schunder E, Herrmann V, Heuner K. 2013. Regulation, integrase-dependent excision, and horizontal transfer of genomic islands in Legionella pneumophila. J. Bacteriol. 195:1583–97
    [Google Scholar]
  52. 52.
    Le Coq J, Ghosh P 2011. Conservation of the C-type lectin fold for massive sequence variation in a Treponema diversity-generating retroelement. PNAS 108:14649–53
    [Google Scholar]
  53. 53.
    Li J, Helmerhorst EJ, Leone CW, Troxler RF, Yaskell T et al. 2004. Identification of early microbial colonizers in human dental biofilm. J. Appl. Microbiol. 97:1311–18
    [Google Scholar]
  54. 54.
    Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA et al. 2002. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295:2091–94
    [Google Scholar]
  55. 55.
    Liu M, Gingery M, Doulatov SR, Liu Y, Hodes A et al. 2004. Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism-switching cassettes. J. Bacteriol. 186:1503–17
    [Google Scholar]
  56. 56.
    Lobb B, Tremblay BJ, Moreno-Hagelsieb G, Doxey AC. 2020. An assessment of genome annotation coverage across the bacterial tree of life. Microb. Genom. 6:e000341
    [Google Scholar]
  57. 57.
    Loewe L, Hill WG. 2010. The population genetics of mutations: good, bad and indifferent. Philos. Trans. R. Soc. Lond. B 365:1153–67
    [Google Scholar]
  58. 58.
    Luan DD, Korman MH, Jakubczak JL, Eickbush TH. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605
    [Google Scholar]
  59. 59.
    Ma L, Dewan KK, Taylor-Mulneix DL, Wagner SM, Linz B et al. 2021. Pertactin contributes to shedding and transmission of Bordetella bronchiseptica. PLOS Pathog 17:e1009735
    [Google Scholar]
  60. 60.
    Malik HS, Burke WD, Eickbush TH. 1999. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 16:793–805
    [Google Scholar]
  61. 61.
    Maniloff J, Ackermann HW. 1998. Taxonomy of bacterial viruses: establishment of tailed virus genera and the order Caudovirales. Arch. Virol. 143:2051–63
    [Google Scholar]
  62. 62.
    Mark Welch JL, Ramirez-Puebla ST, Borisy GG 2020. Oral microbiome geography: micron-scale habitat and niche. Cell Host Microbe 28:160–68
    [Google Scholar]
  63. 63.
    Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG 2016. Biogeography of a human oral microbiome at the micron scale. PNAS 113:E791–800
    [Google Scholar]
  64. 64.
    Matsuda F, Ishii K, Bourvagnet P, Kuma K, Hayashida H et al. 1998. The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J. Exp. Med. 188:2151–62
    [Google Scholar]
  65. 65.
    Mazel D. 2006. Integrons: agents of bacterial evolution. Nat. Rev. Microbiol. 4:608–20
    [Google Scholar]
  66. 66.
    McMahon SA, Miller JL, Lawton JA, Kerkow DE, Hodes A et al. 2005. The C-type lectin fold as an evolutionary solution for massive sequence variation. Nat. Struct. Mol. Biol. 12:886–92
    [Google Scholar]
  67. 67.
    Melvin JA, Scheller EV, Miller JF, Cotter PA. 2014. Bordetella pertussis pathogenesis: current and future challenges. Nat. Rev. Microbiol. 12:274–88
    [Google Scholar]
  68. 68.
    Miller JL, Le Coq J, Hodes A, Barbalat R, Miller JF, Ghosh P 2008. Selective ligand recognition by a diversity-generating retroelement variable protein. PLOS Biol 6:e131
    [Google Scholar]
  69. 69.
    Minot S, Grunberg S, Wu GD, Lewis JD, Bushman FD. 2012. Hypervariable loci in the human gut virome. PNAS 109:3962–66
    [Google Scholar]
  70. 70.
    Moxon R, Bayliss C, Hood D. 2006. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40:307–33
    [Google Scholar]
  71. 71.
    Muller F, Tobler H. 2000. Chromatin diminution in the parasitic nematodes Ascaris suum and Parascaris univalens. Int. J. Parasitol. 30:391–99
    [Google Scholar]
  72. 72.
    Murphy K, Weaver C, Janeway C. 2017. Janeway's Immunobiology New York: Garland Sci.
    [Google Scholar]
  73. 73.
    Naorem SS, Han J, Wang S, Lee WR, Heng X et al. 2017. DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA. PNAS 114:E10187–95
    [Google Scholar]
  74. 74.
    Nayfach S, Paez-Espino D, Call L, Low SJ, Sberro H et al. 2021. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6:960–70
    [Google Scholar]
  75. 75.
    Nelson WC, Stegen JC. 2015. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front. Microbiol. 6:713
    [Google Scholar]
  76. 76.
    Nimkulrat S, Lee H, Doak TG, Ye Y. 2016. Genomic and metagenomic analysis of diversity-generating retroelements associated with Treponema denticola. Front. Microbiol. 7:852
    [Google Scholar]
  77. 77.
    Nishijima S, Suda W, Oshima K, Kim SW, Hirose Y et al. 2016. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res 23:125–33
    [Google Scholar]
  78. 78.
    Palmer RJ Jr., Gordon SM, Cisar JO, Kolenbrander PE. 2003. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J. Bacteriol. 185:3400–9
    [Google Scholar]
  79. 79.
    Papavasiliou FN, Schatz DG. 2002. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109:SupplS35–44
    [Google Scholar]
  80. 80.
    Paul BG, Bagby SC, Czornyj E, Arambula D, Handa S et al. 2015. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat. Commun. 6:6585
    [Google Scholar]
  81. 81.
    Paul BG, Burstein D, Castelle CJ, Handa S, Arambula D et al. 2017. Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea. Nat. Microbiol. 2:17045
    [Google Scholar]
  82. 82.
    Paul BG, Eren AM. 2022. Eco-evolutionary significance of domesticated retroelements in microbial genomes. Mobile DNA 13:6
    [Google Scholar]
  83. 83.
    Potapov V, Ong JL. 2017. Examining sources of error in PCR by single-molecule sequencing. PLOS ONE 12:e0169774
    [Google Scholar]
  84. 84.
    Rapid amplification of 5′ complementary DNA ends (5′ RACE) 2005. Nat. Methods 2:629–30
    [Google Scholar]
  85. 85.
    Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS. 2003. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11:94–100
    [Google Scholar]
  86. 86.
    Roux S, Paul BG, Bagby SC, Nayfach S, Allen MA et al. 2021. Ecology and molecular targets of hypermutation in the global microbiome. Nat. Commun. 12:3076
    [Google Scholar]
  87. 87.
    Schillinger T, Lisfi M, Chi J, Cullum J, Zingler N. 2012. Analysis of a comprehensive dataset of diversity generating retroelements generated by the program DiGReF. BMC Genom. 13:430
    [Google Scholar]
  88. 88.
    Schultz SJ, Champoux JJ. 2008. RNase H activity: structure, specificity, and function in reverse transcription. Virus Res 134:86–103
    [Google Scholar]
  89. 89.
    Sharifi F, Ye Y. 2019. MyDGR: a server for identification and characterization of diversity-generating retroelements. Nucleic Acids Res 47:W289–94
    [Google Scholar]
  90. 90.
    Stokes HW, Gillings MR. 2011. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol. Rev. 35:790–819
    [Google Scholar]
  91. 91.
    Svensson EI, Berger D. 2019. The role of mutation bias in adaptive evolution. Trends Ecol. Evol. 34:422–34
    [Google Scholar]
  92. 92.
    Taylor VL, Fitzpatrick AD, Islam Z, Maxwell KL. 2019. The diverse impacts of phage morons on bacterial fitness and virulence. Adv. Virus Res. 103:1–31
    [Google Scholar]
  93. 93.
    Toro N, Nisa-Martinez R. 2014. Comprehensive phylogenetic analysis of bacterial reverse transcriptases. PLOS ONE 9:e114083
    [Google Scholar]
  94. 94.
    Trzilova D, Tamayo R. 2021. Site-specific recombination—how simple DNA inversions produce complex phenotypic heterogeneity in bacterial populations. Trends Genet 37:59–72
    [Google Scholar]
  95. 95.
    Vallota-Eastman A, Arrington EC, Meeken S, Roux S, Dasari K et al. 2020. Role of diversity-generating retroelements for regulatory pathway tuning in cyanobacteria. BMC Genom 21:664
    [Google Scholar]
  96. 96.
    Weis WI, Taylor ME, Drickamer K. 1998. The C-type lectin superfamily in the immune system. Immunol. Rev. 163:19–34
    [Google Scholar]
  97. 97.
    Wu L, Gingery M, Abebe M, Arambula D, Czornyj E et al. 2018. Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey. Nucleic Acids Res 46:11–24
    [Google Scholar]
  98. 98.
    Yan F, Yu X, Duan Z, Lu J, Jia B et al. 2019. Discovery and characterization of the evolution, variation and functions of diversity-generating retroelements using thousands of genomes and metagenomes. BMC Genom 20:595
    [Google Scholar]
  99. 99.
    Ye Y. 2014. Identification of diversity-generating retroelements in human microbiomes. Int. J. Mol. Sci. 15:14234–46
    [Google Scholar]
  100. 100.
    Zhang X, Guo H, Jin L, Czornyj E, Hodes A et al. 2013. A new topology of the HK97-like fold revealed in Bordetella bacteriophage by cryoEM at 3.5 Å resolution. eLife 2:e01299
    [Google Scholar]
  101. 101.
    Zimmerly S, Guo H, Eskes R, Yang J, Perlman PS, Lambowitz AM. 1995. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83:529–38
    [Google Scholar]
  102. 102.
    Zimmerly S, Guo H, Perlman PS, Lambowitz AM. 1995. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82:545–54
    [Google Scholar]
/content/journals/10.1146/annurev-micro-030322-040423
Loading
/content/journals/10.1146/annurev-micro-030322-040423
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error