1932

Abstract

Biofilms are a widespread multicellular form of bacterial life. The spatial structure and emergent properties of these communities depend on a polymeric extracellular matrix architecture that is orders of magnitude larger than the cells that build it. Using as a model the wrinkly macrocolony biofilms of , which contain amyloid curli fibers and phosphoethanolamine (pEtN)-modified cellulose as matrix components, we summarize here the structure, building, and function of this large-scale matrix architecture. Based on different sigma and other transcription factors as well as second messengers, the underlying regulatory network reflects the fundamental trade-off between growth and survival. It controls matrix production spatially in response to long-range chemical gradients, but it also generates distinct patterns of short-range matrix heterogeneity that are crucial for tissue-like elasticity and macroscopic morphogenesis. Overall, these biofilms confer protection and a potential for homeostasis, thereby reducing maintenance energy, which makes multicellularity an emergent property of life itself.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-031921-055801
2021-10-08
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-031921-055801.html?itemId=/content/journals/10.1146/annurev-micro-031921-055801&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahmad I, Rouf SF, Sun L, Cimdins A, Shafeeq S et al. 2016. BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium. Microb. Cell Fact 15:177
    [Google Scholar]
  2. 2. 
    Altenhoefer A, Oswald S, Sonnenborn U, Enders C, Schulze J et al. 2004. The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol. Med. Microbiol. 40:223–29
    [Google Scholar]
  3. 3. 
    Anderson GG, Goller C, Justice S, Hultgren SJ, Seed PC. 2010. Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis. Infect. Immun. 78:963–75
    [Google Scholar]
  4. 4. 
    Anderson GG, O'Toole GA. 2008. Innate and induced resistance mechanisms of bacterial biofilms. Curr. Top. Microbiol. Immunol. 322:87–107
    [Google Scholar]
  5. 5. 
    Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–7
    [Google Scholar]
  6. 6. 
    Armitano J, Mejean V, Jourlin-Castelli C. 2014. Gram-negative bacteria can also form pellicles. Environ. Microbiol. Rep. 6:534–44
    [Google Scholar]
  7. 7. 
    Barnhart MM, Chapman MR. 2006. Curli biogenesis and function. Annu. Rev. Microbiol. 60:131–47
    [Google Scholar]
  8. 8. 
    Beloin C, Roux A, Ghigo J-M. 2008. Escherichia coli biofilms. Curr. Top. Microbiol. Immunol. 322:249–89
    [Google Scholar]
  9. 9. 
    Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M et al. 2004. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol. Microbiol. 51:659–74
    [Google Scholar]
  10. 10. 
    Bian Z, Brauner A, Li Y, Normark S. 2000. Expression of and cytokine activation by Escherichia coli curli fibres in human sepsis. J. Infect. Dis. 181:602–12
    [Google Scholar]
  11. 11. 
    Bielaszewska M, Mellmann A, Zhang W, Köck R, Fruth A et al. 2011. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect. Dis. 11:671–76
    [Google Scholar]
  12. 12. 
    Boehm A, Kaiser M, Li H, Spangler C, Kasper CA et al. 2010. Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141:107–16
    [Google Scholar]
  13. 13. 
    Bokranz W, Wang X, Tschape H, Römling U. 2005. Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J. Med. Microbiol. 54:1171–82
    [Google Scholar]
  14. 14. 
    Brombacher E, Baratto A, Dorel C, Landini P. 2006. Gene expression regulation by the curli activtor CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion. J. Bacteriol. 188:2027–37
    [Google Scholar]
  15. 15. 
    Browning DF, Busby SJ. 2016. Local and global regulation of transcription initiation in bacteria. Nat. Rev. Microbiol. 14:638–50
    [Google Scholar]
  16. 16. 
    Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS et al. 2009. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat. Chem. Biol. 5:913–19
    [Google Scholar]
  17. 17. 
    Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J et al. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–55
    [Google Scholar]
  18. 18. 
    Chorell E, Pinkner JS, Bengtsson C, Edvinsson S, Cusumano CK et al. 2012. Design and synthesis of fluorescent pilicides and curlicides: bioactive tools to study bacterial virulence mechanisms. Chemistry 18:4522–32
    [Google Scholar]
  19. 19. 
    Croxen MA, Finlay BB. 2010. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 8:26–38
    [Google Scholar]
  20. 20. 
    Dalebroux ZD, Swanson MS. 2012. ppGpp: magic beyond RNA polymerase. Nat. Rev. Microbiol. 10:203–12
    [Google Scholar]
  21. 21. 
    Danese PN, Pratt LA, Dove SL, Kolter R. 2000. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol. Microbiol. 37:424–32
    [Google Scholar]
  22. 22. 
    DePas WH, Hufnagel DA, Lee JS, Blanco LP, Bernstein HC et al. 2013. Iron induces bimodal population development by Escherichia coli. PNAS 110:2629–34
    [Google Scholar]
  23. 23. 
    DePas WH, Syed AK, Sifuentes M, Lee JS, Warshaw D et al. 2014. Biofilm formation protects Escherichia coli against killing by Caenorhabditis elegans and Myxococcus xanthus. Appl. Environ. Microbiol. 80:7079–87
    [Google Scholar]
  24. 24. 
    Dong T, Yu R, Schellhorn HE 2011. Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli. Mol. Microbiol. 79:375–86
    [Google Scholar]
  25. 25. 
    Evans ML, Chorell E, Taylor JD, Aden J, Gotheson A et al. 2015. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol. Cell 57:445–55
    [Google Scholar]
  26. 26. 
    Fahrner KA, Berg HC. 2015. Mutations that stimulate flhDC expression in Escherichia coli K-12. J. Bacteriol. 197:3087–96
    [Google Scholar]
  27. 27. 
    Fang X, Gomelsky M. 2010. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol. Microbiol. 76:1295–305
    [Google Scholar]
  28. 28. 
    Ferenci T. 2016. Trade-off mechanisms shaping the diversity of bacteria. Trends Microbiol 24:209–23
    [Google Scholar]
  29. 29. 
    Fink RC, Black EP, Hou Z, Sugawara M, Sadowsky MJ, Diez-Gonzalez F. 2012. Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves. Appl. Environ. Microbiol. 78:1752–64
    [Google Scholar]
  30. 30. 
    Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14:563–75
    [Google Scholar]
  31. 31. 
    Flemming H-C, Wozniak CE. 2007. The EPS matrix: the “house of biofilm cells”. J. Bacteriol. 189:7945–47
    [Google Scholar]
  32. 32. 
    Girgis HS, Liu Y, Ryu WS, Tavazoie S. 2007. A comprehensive genetic characterization of bacterial motility. PLOS Genet 3:e154
    [Google Scholar]
  33. 33. 
    Gourse RL, Chen AY, Gopalkrishnan S, Sanchez-Vazquez P, Myers A, Ross W. 2018. Transcriptional responses to ppGpp and DksA. Annu. Rev. Microbiol. 72:163–84
    [Google Scholar]
  34. 34. 
    Grantcharova N, Peters V, Monteiro C, Zakikhany K, Römling U. 2010. Bistable expression of CsgD in biofilm development of Salmonella enterica serovar Typhimurium. J. Bacteriol. 192:456–66
    [Google Scholar]
  35. 35. 
    Grigorova IR, Phleger NJ, Mutalik VK, Gross CA 2006. Insights into transcriptional regulation and sigma competition from an equilibrium model of RNA polymerase binding to DNA. PNAS 103:5332–37
    [Google Scholar]
  36. 36. 
    Gummesson B, Magnusson LU, Lovmar M, Kvint K, Persson O et al. 2009. Increased RNA polymerase availability directs resources towards growth at the expense of maintenance. EMBO J 28:2209–19
    [Google Scholar]
  37. 37. 
    Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2:95–108
    [Google Scholar]
  38. 38. 
    Hancock V, Dahl M, Klemm D. 2010. Probiotic Escherichia coli Nissle 1917 outcompetes intestinal pathogens during biofilm formation. J. Med. Microbiol. 59:392–99
    [Google Scholar]
  39. 39. 
    Hengge R. 2009. Principles of cyclic-di-GMP signaling. Nat. Rev. Microbiol. 7:263–73
    [Google Scholar]
  40. 40. 
    Hengge R 2010. Role of c-di-GMP in the regulatory networks of Escherichia coli. The Second Messenger Cyclic-di-GMP AJ Wolfe, KL Visick 230–52 Washington, DC: ASM
    [Google Scholar]
  41. 41. 
    Hengge R. 2011. Stationary-phase gene regulation in Escherichia coli. EcoSal Plus 4:2 https://doi.org/10.1128/ecosalplus.5.6.3
    [Crossref] [Google Scholar]
  42. 42. 
    Hengge R 2011. The general stress response in Gram-negative bacteria. Bacterial Stress Responses G Storz, R Hengge 251–89 Washington, DC: ASM
    [Google Scholar]
  43. 43. 
    Hengge R. 2016. Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins. Phil. Trans. R. Soc. B 371:20150498
    [Google Scholar]
  44. 44. 
    Hengge R. 2019. Targeting bacterial biofilms by the green tea polyphenol EGCG. Molecules 24:E2403
    [Google Scholar]
  45. 45. 
    Hengge R. 2020. Linking bacterial growth, survival and multicellularity—small signaling molecules as triggers and drivers. Curr. Opin. Microbiol. 55:57–66
    [Google Scholar]
  46. 46. 
    Hengge R, Galperin MY, Ghigo J-M, Gomelsky L, Green J et al. 2016. Systematic nomenclature for GGDEF and EAL domain-containing c-di-GMP turnover proteins of Escherichia coli. J. Bacteriol. 198:7–11
    [Google Scholar]
  47. 47. 
    Hengge R, Häussler S, Pruteanu M, Stülke J, Tschowri N, Turgay K. 2019. Recent advances and current trends in nucleotide second messenger signaling in bacteria. J. Mol. Biol. 431:908–27
    [Google Scholar]
  48. 48. 
    Herbst S, Lorkowski M, Sarenko O, Nguyen TKL, Jaenicke T, Hengge R. 2018. Transmembrane redox control and proteolysis PdeC, a novel type of c-di-GMP phosphodiesterase. EMBO J 37:e97825
    [Google Scholar]
  49. 49. 
    Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. 2015. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol. Rev. 39:649–69
    [Google Scholar]
  50. 50. 
    Hollenbeck EC, Antonoplis A, Chai C, Thongsomboon W, Fuller GG, Cegelski L 2018. Phosphoethanolamine cellulose enhances curli-mediated adhesion of uropathogenic Escherichia coli to bladder epithelial cells. PNAS 115:10106–11
    [Google Scholar]
  51. 51. 
    Holmqvist E, Reimegard J, Sterk M, Grantcharova N, Römling U, Wagner EGH. 2010. Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. EMBO J 29:1840–50
    [Google Scholar]
  52. 52. 
    Hung CS, Zhou Y, Pinkner JS, Dodson KW, Crowley JR et al. 2013. Escherichia coli biofilms have an organized and complex extracellular matrix structure. mBio 4:e00645-13
    [Google Scholar]
  53. 53. 
    Irving SE, Corrigan RM. 2018. Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria. Microbiology 164:268–76
    [Google Scholar]
  54. 54. 
    Jacobsen SM, Stickler DJ, Mobley HL, Shirtliff ME. 2008. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 21:26–59
    [Google Scholar]
  55. 55. 
    Jeter C, Matthysse AG. 2005. Characterization of the binding of diarrheagenic strains of E. coli to plant surfaces and the role of curli in the interaction of the bacteria with alfalfa sprouts. Mol. Plant Microbe Interact. 18:1235–42
    [Google Scholar]
  56. 56. 
    Kai-Larsen Y, Lüthje P, Chromek M, Peters V, Wang X et al. 2010. Uropathogenic E. coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLOS Pathog 6:e1001010
    [Google Scholar]
  57. 57. 
    Kintz E, Byrne L, Jenkins C, McCarthy N, Vivancos R, Hunter P. 2019. Outbreaks of Shiga toxin-producing Escherichia coli linked to sprouted seeds, salad, and leafy greens: a systematic review. J. Food Prot. 82:111950–58
    [Google Scholar]
  58. 58. 
    Klauck G, Serra DO, Possling A, Hengge R. 2018. Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm. Open Biol 8:180066
    [Google Scholar]
  59. 59. 
    Klein RD, Shu Q, Cusumano CK, Nagamatsu K, Gualberto NC et al. 2018. Structure-function analysis of the curli accessory protein CsgE defines surfaces essential for coordinating amyloid fiber formation. mBio 9:e01349-18
    [Google Scholar]
  60. 60. 
    Krasteva PV, Bernal-Bayard J, Travier L, Martin FA, Kaminski PA et al. 2017. Insights into the structure and assembly of a bacterial cellulose secretion system. Nat. Commun. 8:2065
    [Google Scholar]
  61. 61. 
    Lange R, Fischer D, Hengge-Aronis R. 1995. Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the σS subunit of RNA-polymerase in Escherichia coli. J. Bacteriol. 177:4676–80
    [Google Scholar]
  62. 62. 
    Lemke JJ, Durfee T, Gourse RL. 2009. DksA and ppGpp directly regulate transcription of the Escherichia coli flagellar cascade. Mol. Microbiol. 74:1368–79
    [Google Scholar]
  63. 63. 
    Lim JY, Pinkner JS, Cegelski L. 2014. Community behaviour and amyloid-associated phenotypes among a panel of uropathogenic E. coli. Biochem. Biophys. Res. Comm. 443:345–50
    [Google Scholar]
  64. 64. 
    Lindenberg S, Klauck G, Pesavento C, Klauck E, Hengge R. 2013. The EAL domain phosphodiesterase YciR acts as a trigger enzyme in a c-di-GMP signaling cascade in E. coli biofilm control. EMBO J 32:2001–14
    [Google Scholar]
  65. 65. 
    Madsen JS, Burmolle M, Hansen LH, Sorensen SJ. 2012. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 65:183–95
    [Google Scholar]
  66. 66. 
    Majdalani N, Hernandez D, Gottesman S. 2002. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol. Microbiol 46:813–26
    [Google Scholar]
  67. 67. 
    Malpica R, Sandoval GR, Rodriguez C, Franco B, Georgellis D. 2006. Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid. Redox Signal. 8:781–95
    [Google Scholar]
  68. 68. 
    Mandin P, Gottesman S. 2010. Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J 29:3094–104
    [Google Scholar]
  69. 69. 
    Matthysse AG, Deora R, Mishra M, Torres AG. 2008. Polysaccharides cellulose, poly-β-1,6-N-acetyl-d-glucosamine, and colanic acid are required for optimal binding of Escherichia coli O157:H7 strains to alfalfa sprouts and K-12 strains to plastic but not for binding to epithelial cells. Appl. Environ. Microbiol. 74:2384–90
    [Google Scholar]
  70. 70. 
    McCrate OA, Zhou X, Reichhardt C, Cegelski L. 2013. Sum of the parts: composition and architecture of the bacterial extracellular matrix. J. Mol. Biol. 425:4286–94
    [Google Scholar]
  71. 71. 
    Merritt JH, Kadouri DE, O'Toole GA. 2006. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. 2006 1B.1.1–17 https://doi.org/10.1002/9780471729259.mc01b01s00
    [Crossref] [Google Scholar]
  72. 72. 
    Mika F, Busse S, Possling A, Berkholz J, Tschowri N et al. 2012. Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli. Mol. Microbiol. 84:51–65
    [Google Scholar]
  73. 73. 
    Mika F, Hengge R. 2005. A two-component phosphotransfer network involving ArcB, ArcA and RssB coordinates synthesis and proteolysis of σS in E. coli. Genes Dev 19:2770–81
    [Google Scholar]
  74. 74. 
    Mika F, Hengge R. 2014. Small RNAs in the control of RpoS, CsgD and biofilm architecture of Escherichia coli. RNA Biol 11:494–507
    [Google Scholar]
  75. 75. 
    Miller AL, Pasternak JA, Medeiros NJ, Nicastro LK, Tursi SA et al. 2020. In vivo synthesis of bacterial amyloid curli contributes to joint inflammation during S. typhimurium infection. PLOS Pathog 16:e1008591
    [Google Scholar]
  76. 76. 
    Monteiro C, Saxena I, Wang X, Kader A, Bokranz W et al. 2009. Characterization of cellulose production in Escherichia coli Nissle 1917 and its biological consequences. Environ. Microbiol. 11:1105–16
    [Google Scholar]
  77. 77. 
    Moreira S, Brown A, Ha R, Iserhoff K, Yim M et al. 2012. Persistence of Escherichia coli in freshwater periphyton: biofilm-forming capacity as a selective advantage. FEMS Microbiol. Ecol. 79:608–18
    [Google Scholar]
  78. 78. 
    Morgan JL, McNamara JT, Zimmer J. 2014. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat. Struct. Mol. Biol. 21:489–96
    [Google Scholar]
  79. 79. 
    Morgan JLW, Strumillo J, Zimmer J. 2013. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–86
    [Google Scholar]
  80. 80. 
    Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC et al. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–97
    [Google Scholar]
  81. 81. 
    Nenninger AA, Robinson LS, Hammer ND, Epstein EA, Badtke MP et al. 2011. CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation. Mol. Microbiol. 81:486–99
    [Google Scholar]
  82. 82. 
    Nenninger AA, Robinson LS, Hultgren SJ 2009. Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. PNAS 106:900–5
    [Google Scholar]
  83. 83. 
    Olsén A, Jonsson A, Normark S. 1989. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–55
    [Google Scholar]
  84. 84. 
    Österberg S, Del Peso-Santos T, Shingler V. 2011. Regulation of alternative sigma factor use. Annu. Rev. Microbiol. 65:37–55
    [Google Scholar]
  85. 85. 
    Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. 2010. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol. Cell 38:128–39
    [Google Scholar]
  86. 86. 
    Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N et al. 2008. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 22:2434–46
    [Google Scholar]
  87. 87. 
    Pesavento C, Hengge R. 2012. The global repressor FliZ antagonizes gene expression by σS-containing RNA polymerase due to overlapping DNA binding specificity. Nucleic Acids Res 40:4783–93
    [Google Scholar]
  88. 88. 
    Pfiffer V, Sarenko O, Possling A, Hengge R. 2019. Genetic dissection of Escherichia coli’s master digua-nylate cyclase DgcE: role of the N-terminal MASE1 domain and direct signal input from a GTPase partner system. PLOS Genet 15:e1008059
    [Google Scholar]
  89. 89. 
    Pontes MH, Lee EJ, Choi J, Groisman EA. 2015. Salmonella promotes virulence by repressing cellulose production. PNAS 112:5183–88
    [Google Scholar]
  90. 90. 
    Potrykus K, Cashel M. 2018. Growth at best and worst of times. Nat. Microbiol. 3:862–63
    [Google Scholar]
  91. 91. 
    Potrykus K, Murphy H, Philippe N, Cashel M. 2011. ppGpp is the major source of growth rate control in E. coli. Environ. Microbiol. 13:563–75
    [Google Scholar]
  92. 92. 
    Povolotsky TL, Hengge R. 2016. Genome-based comparison of c-di-GMP signaling in commensal and pathogenic Escherichia coli. J. Bacteriol. 198:111–26
    [Google Scholar]
  93. 93. 
    Pratt LA, Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30:285–93
    [Google Scholar]
  94. 94. 
    Pruteanu M, Hernández Lobato JI, Stach T, Hengge R 2020. Common plant flavonoids prevent the assembly of amyloid curli fibres and can interfere with bacterial biofilm formation. Environ. Microbiol. 22:125280–99
    [Google Scholar]
  95. 95. 
    Qvortrup K, Hultgren SJ, Nilsson M, Jakobsen TH, Jansen CU et al. 2019. Small molecule anti-biofilm agents developed on the basis of mechanistic understanding of biofilm formation. Front. Chem. 7:742
    [Google Scholar]
  96. 96. 
    Redman WK, Welch GS, Rumbaugh KP. 2020. Differential efficacy of glycoside hydrolases to disperse biofilms. Front. Cell. Infect. Biol. 10:379
    [Google Scholar]
  97. 97. 
    Richter AM, Possling A, Malysheva N, Yousef KP, Herbst S et al. 2020. Local c-di-GMP signaling in the control of synthesis of the E. coli biofilm exopolysaccharide pEtN-cellulose. J. Mol. Biol. 432:4576–95
    [Google Scholar]
  98. 98. 
    Richter AM, Povolotsky TL, Wieler LH, Hengge R. 2014. c-di-GMP signaling and biofilm-related properties of the Shiga toxin-producing German outbreak Escherichia coli O104:H4. EMBO Mol. Med. 6:1622–37
    [Google Scholar]
  99. 99. 
    Römling U. 2005. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell. Mol. Life Sci. 62:1234–46
    [Google Scholar]
  100. 100. 
    Römling U, Bian Z, Hammar M, Sierralta WD, Normark S. 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180:722–31
    [Google Scholar]
  101. 101. 
    Römling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Åkerlund B. 2014. Microbial biofilm formation: a need to act. J. Intern. Med. 276:98–110
    [Google Scholar]
  102. 102. 
    Römling U, Rohde M, Olsén A, Normark S, Reinköster J. 2000. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol. Microbiol. 36:10–23
    [Google Scholar]
  103. 103. 
    Rooney LM, Amos WB, Hoskisson PA, McConnell G. 2020. Intra-colony channels in E. coli function as a nutrient uptake system. ISME J 14:2461–73
    [Google Scholar]
  104. 104. 
    Rosser T, Dransfield T, Allison L, Hanson M, Holden N et al. 2008. Pathogenic potential of emergent sorbitol-fermenting Escherichia coli O157:NM. Infect. Immun. 76:5598–607
    [Google Scholar]
  105. 105. 
    Rossi E, Cimdins A, Luthje P, Brauner A, Sjoling A et al. 2018.. “ It's a gut feeling”—Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit. Rev. Microbiol. 44:1–30
    [Google Scholar]
  106. 106. 
    Ryjenkov DA, Simm R, Römling U, Gomelsky M. 2006. The PilZ domain is a receptor for the second messenger c-di-GMP: The PilZ protein YcgR controls motility in enterobacteria. J. Biol. Chem. 281:30310–14
    [Google Scholar]
  107. 107. 
    Saldana Z, Sánchez E, Xicohtencatl-Cortes J, Puente JL, Girón JA. 2011. Surface structures involved in plant stomata and leaf colonization by Shiga-toxigenic Escherichia coli O157:H7. Front. Microbiol. 2:119
    [Google Scholar]
  108. 108. 
    Sanchez-Vazquez P, Dewey CN, Kitten N, Ross W, Gourse RL 2019. Genome-wide effects on Escherichia coli transcription from ppGpp binding to its two sites on RNA polymerase. PNAS 116:8310–19
    [Google Scholar]
  109. 109. 
    Sarenko O, Klauck G, Wilke FM, Pfiffer V, Richter AM et al. 2017. More than enzymes that make and break c-di-GMP—the protein interaction network of GGDEF/EAL domain proteins of Escherichia coli. mBio 8:e01639-17
    [Google Scholar]
  110. 110. 
    Savageau MA. 1983. Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am. Nat. 122:732–44
    [Google Scholar]
  111. 111. 
    Schembri MA, Kjaergaard K, Klemm P. 2003. Global gene expression in Escherichia coli biofilms. Mol. Microbiol. 48:253–67
    [Google Scholar]
  112. 112. 
    Serra DO, Hengge R. 2014. Stress responses go three-dimensional—the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ. Microbiol. 16:1455–71
    [Google Scholar]
  113. 113. 
    Serra DO, Hengge R 2017. Experimental detection and visualization of the extracellular matrix in macrocolony biofilms. c-di-GMP Signaling: Methods and Protocols—Methods in Molecular Biology K Sauer 133–45 New York: Humana
    [Google Scholar]
  114. 114. 
    Serra DO, Hengge R. 2019. A c-di-GMP-based switch controls local heterogeneity of extracellular matrix synthesis which is crucial for integrity and morphogenesis of Escherichia coli macrocolony biofilms. J. Mol. Biol. 431:4775–93
    [Google Scholar]
  115. 115. 
    Serra DO, Hengge R 2019. Cellulose in bacterial biofilms. Extracellular Sugar-Based Biopolymer Matrices E Cohen, H Merzendorfer 355–92 Cham, Switz: Springer
    [Google Scholar]
  116. 116. 
    Serra DO, Klauck G, Hengge R. 2015. Vertical stratification of matrix production is essential for physical integrity and architecture of macrocolony biofilms of Escherichia coli. Environ. Microbiol. 17:5073–88
    [Google Scholar]
  117. 117. 
    Serra DO, Mika F, Richter AM, Hengge R. 2016. The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and down-regulating the biofilm regulator CsgD via the σE-dependent sRNA RybB. Mol. Microbiol. 101:136–51
    [Google Scholar]
  118. 118. 
    Serra DO, Richter AM, Hengge R. 2013. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J. Bacteriol. 195:5540–54
    [Google Scholar]
  119. 119. 
    Serra DO, Richter AM, Klauck G, Mika F, Hengge R 2013. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. mBio 4:2e00103-13
    [Google Scholar]
  120. 120. 
    Solano C, García B, Valle J, Berasain C, Ghigo J-M et al. 2002. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol. Microbiol. 43:793–808
    [Google Scholar]
  121. 121. 
    Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S et al. 1999. Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J. Bacteriol. 181:7500–8
    [Google Scholar]
  122. 122. 
    Stewart PS. 2015. Prospects for anti-biofilm pharmaceuticals. Pharmaceuticals 8:504–11
    [Google Scholar]
  123. 123. 
    Sun L, Vella P, Schnell R, Polyakova A, Bourenkov G et al. 2018. Structural and functional characterization of the BcsG subunit of the cellulose synthase in Salmonella typhimurium. J. Mol. Biol. 430:3170–89
    [Google Scholar]
  124. 124. 
    Tacconelli E, Magrini N. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics Prior. Pathog. List, World Health Organ., Geneva: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
    [Google Scholar]
  125. 125. 
    Thomason MK, Fontaine F, De Lay N, Storz G. 2012. A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol. Microbiol. 84:17–35
    [Google Scholar]
  126. 126. 
    Thongsomboon W, Serra DO, Possling A, Hadjineophytou C, Hengge R, Cegelski L. 2018. Phosphoethanolamine cellulose: a naturally produced chemically modified cellulose. Science 359:334–38
    [Google Scholar]
  127. 127. 
    Tolker-Nielsen T, Sternberg C. 2011. Growing and analyzing biofilms in flow chambers. Curr. Protoc. Microbiol. 21:11B.2.1–17
    [Google Scholar]
  128. 128. 
    Tükel C, Nishimori JH, Wilson RP, Winter MG, Keestra AM et al. 2010. Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cell. Microbiol. 12:1495–505
    [Google Scholar]
  129. 129. 
    Turner JS. 2000. The Extended Organism—The Physiology of Animal-Built Structures Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  130. 130. 
    Turner JS. 2016. Homeostasis and the physiological dimension of niche construction theory in ecology and evolution. Evol. Ecol. 30:203–19
    [Google Scholar]
  131. 131. 
    Vogeleer P, Tremblay YDN, Mafu AA, Jacques M, Harel J 2014. Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front. Microbiol. 5:317
    [Google Scholar]
  132. 132. 
    Wall E, Majdalani N, Gottesman S. 2018. The complex Rcs regulatory cascade. Annu. Rev. Microbiol. 72:111–39
    [Google Scholar]
  133. 133. 
    Wang X, Hammer ND, Chapman MR. 2008. The molecular basis of functional bacterial amyloid polymerization and nucleation. J. Biol. Chem. 283:21530–39
    [Google Scholar]
  134. 134. 
    Wang X, Rochon M, Lamprokostopoulou A, Lünsdorf H, Nimtz M, Römling U. 2006. Impact of biofilm matrix components on interaction of commensal Escherichia coli with the gastrointestinal cell line HT-29. Cell. Mol. Life Sci. 63:2352–63
    [Google Scholar]
  135. 135. 
    Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R. 2006. Cyclic-di-GMP-mediated signaling within the σS network of Escherichia coli. Mol. Microbiol. 62:1014–34
    [Google Scholar]
  136. 136. 
    Wilking JN, Zaburdaev V, De Volder M, Losick R, Brenner MP, Weitz DA 2013. Liquid transport facilitated by channels in Bacillus subtilis biofilms. PNAS 110:848–52
    [Google Scholar]
  137. 137. 
    Winfield MD, Groisman EA. 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 69:3687–94
    [Google Scholar]
  138. 138. 
    Yaron S, Römling U. 2014. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb. Biotechnol. 7:496–516
    [Google Scholar]
  139. 139. 
    You C, Okano H, Hui S, Zhang Z, Kim M et al. 2013. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500:301–6
    [Google Scholar]
  140. 140. 
    Zhao K, Liu M, Burgess RR. 2007. Adaptation in bacterial flagellar and motility systems: from regulon members to “foraging”-like behavior in E. coli. Nucleic Acids Res 35:4441–52
    [Google Scholar]
  141. 141. 
    Zhu M, Pan Y, Dai X. 2019. (p)ppGpp: the magic governor of bacterial growth economy. Curr. Genet. 65:1121–25
    [Google Scholar]
  142. 142. 
    Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U. 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol 39:1452–63
    [Google Scholar]
/content/journals/10.1146/annurev-micro-031921-055801
Loading
/content/journals/10.1146/annurev-micro-031921-055801
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error