1932

Abstract

Bacteria are highly interactive and possess an extraordinary repertoire of intercellular communication and social behaviors, including quorum sensing (QS). QS has been studied in detail at the molecular level, so mechanistic details are well understood in many species and are often involved in virulence. The use of different animal host models has demonstrated QS-dependent control of virulence determinants and virulence in several human pathogenic bacteria. QS also controls virulence in several plant pathogenic species. Despite the role QS plays in virulence during animal and plant laboratory-engineered infections, QS mutants are frequently isolated from natural infections, demonstrating that the function of QS during infection and its role in pathogenesis remain poorly understood and are fruitful areas for future research. We discuss the role of QS during infection in various organisms and highlight approaches to better understand QS during human infection. This is an important consideration in an era of growing antimicrobial resistance, when we are looking for new ways to target bacterial infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032020-093845
2020-09-08
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-032020-093845.html?itemId=/content/journals/10.1146/annurev-micro-032020-093845&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Azimi S, Roberts AEL, Peng S, Weitz JS, McNally A et al. 2020. Allelic polymorphism shapes community function in evolving Pseudomonas aeruginosa populations. ISME J 14:1929–42 https://doi.org/10.1038/s41396-020-0652-0
    [Crossref] [Google Scholar]
  2. 2. 
    Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GP et al. 1992. N-(3-Oxohexanoyl)-l-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. . Biochem. J 288:997–1004
    [Google Scholar]
  3. 3. 
    Bala A, Chhibber S, Harjai K 2014. Pseudomonas quinolone signalling system: A component of quorum sensing cascade is a crucial player in the acute urinary tract infection caused by Pseudomonas aeruginosa. . Int. J. Med. Microbiol 304:1199–208
    [Google Scholar]
  4. 4. 
    Balaban N, Novick RP. 1995. Autocrine regulation of toxin synthesis by Staphylococcus aureus. . PNAS 92:1619–23
    [Google Scholar]
  5. 5. 
    Bansal T, Jesudhasan P, Pillai S, Wood TK, Jayaraman A 2008. Temporal regulation of enterohemorrhagic Escherichia coli virulence mediated by autoinducer-2. Appl. Microbiol. Biotechnol. 78:811–19
    [Google Scholar]
  6. 6. 
    Barr HL, Halliday N, Camara M, Barrett DA, Williams P et al. 2015. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis. Eur. Respir. J. 46:1046–54
    [Google Scholar]
  7. 7. 
    Barthe C, Nandakumar S, Derlich L, Macey J, Bui S et al. 2015. Exploring the expression of Pseudomonas aeruginosa genes directly from sputa of cystic fibrosis patients. Lett. Appl. Microbiol. 61:423–28
    [Google Scholar]
  8. 8. 
    Bartlett JG, Perl TM. 2005. The new Clostridium difficile: What does it mean. N. Engl. J. Med. 353:2503–5
    [Google Scholar]
  9. 9. 
    Bassler BL, Wright M, Silverman MR 1994. Multiple signaling systems controlling expression of luminescence in Vibrio harveyi—sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13:273–86
    [Google Scholar]
  10. 10. 
    Benitez JA, Silva AJ, Finkelstein RA 2001. Environmental signals controlling production of hemagglutinin/protease in Vibrio cholerae. Infect. . Immun 69:6549–53
    [Google Scholar]
  11. 11. 
    Bjarnsholt T, Jensen PO, Fiandaca MJ, Pedersen J, Hansen CR et al. 2009. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol. 44:547–58
    [Google Scholar]
  12. 12. 
    Boucher JC, Yu H, Mudd MH, Deretic V 1997. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect. Immun. 65:3838–46
    [Google Scholar]
  13. 13. 
    Burr T, Barnard AM, Corbett MJ, Pemberton CL, Simpson NJ, Salmond GP 2006. Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor. Mol. Microbiol. 59:113–25
    [Google Scholar]
  14. 14. 
    Canovas J, Baldry M, Bojer MS, Andersen PS, Grzeskowiak PK et al. 2016. Cross-talk between Staphylococcus aureus and other staphylococcal species via the agr quorum sensing system. Front. Microbiol. 7:1733
    [Google Scholar]
  15. 15. 
    Carter GP, Purdy D, Williams P, Minton NP 2005. Quorum sensing in Clostridium difficile: analysis of a luxS-type signalling system. J. Med. Microbiol. 54:119–27
    [Google Scholar]
  16. 16. 
    Chambers CE, Visser MB, Schwab U, Sokol PA 2005. Identification of N-acylhomoserine lactones in mucopurulent respiratory secretions from cystic fibrosis patients. FEMS Microbiol. Lett. 244:297–304
    [Google Scholar]
  17. 17. 
    Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I et al. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–49
    [Google Scholar]
  18. 18. 
    Cheng Q, Campbell EA, Naughton AM, Johnson S, Masure HR 1997. The com locus controls genetic transformation in Streptococcus pneumoniae. Mol. . Microbiol 23:683–92
    [Google Scholar]
  19. 19. 
    Collier DN, Anderson L, McKnight SL, Noah TL, Knowles M et al. 2002. A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol. Lett. 215:41–46
    [Google Scholar]
  20. 20. 
    Cornforth DM, Dees JL, Ibberson CB, Huse HK, Mathiesen IH et al. 2018. Pseudomonas aeruginosa transcriptome during human infection. PNAS 115:E5125–34
    [Google Scholar]
  21. 21. 
    Cornforth DM, Diggle FL, Melvin JA, Bomberger JM, Whiteley M 2020. Quantitative framework for model evaluation in microbiology research using Pseudomonas aeruginosa and cystic fibrosis infection as a test case. mBio 11:03042
    [Google Scholar]
  22. 22. 
    Cunningham MW. 2000. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13:470–511
    [Google Scholar]
  23. 23. 
    D'Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Deziel E et al. 2007. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol. Microbiol. 64:512–33
    [Google Scholar]
  24. 24. 
    Darch SE, West SA, Winzer K, Diggle SP 2012. Density-dependent fitness benefits in quorum-sensing bacterial populations. PNAS 109:8259–63
    [Google Scholar]
  25. 25. 
    Darkoh C, DuPont HL, Norris SJ, Kaplan HB 2015. Toxin synthesis by Clostridium difficile is regulated through quorum signaling. mBio 6:02569
    [Google Scholar]
  26. 26. 
    Darkoh C, Odo C, DuPont HL 2016. Accessory gene regulator-1 locus is essential for virulence and pathogenesis of Clostridium difficile. . mBio 7:01237
    [Google Scholar]
  27. 27. 
    Diggle SP, Griffin AS, Campbell GS, West SA 2007. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–14
    [Google Scholar]
  28. 28. 
    Dong YH, Xu JL, Li XZ, Zhang LH 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. . PNAS 97:3526–31
    [Google Scholar]
  29. 29. 
    Duan F, March JC. 2010. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. PNAS 107:11260–64
    [Google Scholar]
  30. 30. 
    Dubern JF, Diggle SP. 2008. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol. Biosyst. 4:882–88
    [Google Scholar]
  31. 31. 
    Dunny GM, Leonard BAB. 1997. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol. 51:527–64
    [Google Scholar]
  32. 32. 
    Engebrecht J, Nealson K, Silverman M 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. . Cell 32:773–81
    [Google Scholar]
  33. 33. 
    Erickson DL, Endersby R, Kirkham A, Stuber K, Vollman DD et al. 2002. Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect. Immun. 70:1783–90
    [Google Scholar]
  34. 34. 
    Feltner JB, Wolter DJ, Pope CE, Groleau MC, Smalley NE et al. 2016. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. . mBio 7:01513
    [Google Scholar]
  35. 35. 
    Fuqua WC, Winans SC, Greenberg EP 1994. Quorum sensing in bacteria: the LuxR–LuxI family of cell density–responsive transcriptional regulators. J. Bacteriol. 176:269–75
    [Google Scholar]
  36. 36. 
    Garg N, Wang M, Hyde E, Silva RR, Melnik AV et al. 2017. Three-dimensional microbiome and metabolome cartography of a diseased human lung. Cell Host Microbe 22:705–16
    [Google Scholar]
  37. 37. 
    Garge S, Azimi S, Diggle SP 2018. A simple mung bean infection model for studying the virulence of Pseudomonas aeruginosa. . Microbiology 164:764–68
    [Google Scholar]
  38. 38. 
    Gifford AH, Willger SD, Dolben EL, Moulton LA, Dorman DB et al. 2016. Use of a multiplex transcript method for analysis of Pseudomonas aeruginosa gene expression profiles in the cystic fibrosis lung. Infect. Immun. 84:2995–3006
    [Google Scholar]
  39. 39. 
    Goerke C, Campana S, Bayer MG, Doring G, Botzenhart K, Wolz C 2000. Direct quantitative transcript analysis of the agr regulon of Staphylococcus aureus during human infection in comparison to the expression profile in vitro. Infect. Immunity 68:1304–11
    [Google Scholar]
  40. 40. 
    Gray B, Hall P, Gresham H 2013. Targeting agr- and agr-like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections. Sensors 13:5130–66
    [Google Scholar]
  41. 41. 
    Hammond JH, Hebert WP, Naimie A, Ray K, Van Gelder RD et al. 2016. Environmentally endemic Pseudomonas aeruginosa strains with mutations in lasR are associated with increased disease severity in corneal ulcers. mSphere 1:e00140
    [Google Scholar]
  42. 42. 
    Harrison F, Browning LE, Vos M, Buckling A 2006. Cooperation and virulence in acute Pseudomonas aeruginosa infections. BMC Biol 4:21
    [Google Scholar]
  43. 43. 
    Håvarstein LS, Hakenbeck R, Gaustad P 1997. Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J. Bacteriol. 179:6589–94
    [Google Scholar]
  44. 44. 
    Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M 2011. Quinolones: from antibiotics to autoinducers. FEMS Microbiol. Rev. 35:247–74
    [Google Scholar]
  45. 45. 
    Hoffman LR, Kulasekara HD, Emerson J, Houston LS, Burns JL et al. 2009. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J. Cyst. Fibros. 8:66–70
    [Google Scholar]
  46. 46. 
    Huisman GW, Kolter R. 1994. Sensing starvation—a homoserine lactone-dependent signaling pathway in Escherichia coli. Science 265:537–39
    [Google Scholar]
  47. 47. 
    Ibberson CB, Whiteley M. 2019. The Staphylococcus aureus transcriptome during cystic fibrosis lung infection. mBio 10:02774
    [Google Scholar]
  48. 48. 
    Jacob F. 1973. The Logic of Life: A History of Heredity, transl BE Spillman Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  49. 49. 
    Jeon B, Itoh K. 2007. Production of Shiga toxin by a luxS mutant of Escherichia coli O157:H7 in vivo and in vitro. Microbiol. Immunol. 51:391–96
    [Google Scholar]
  50. 50. 
    Ji G, Beavis R, Novick RP 1997. Bacterial interference caused by autoinducing peptide variants. Science 276:2027–30
    [Google Scholar]
  51. 51. 
    Ji G, Beavis RC, Novick RP 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. PNAS 92:12055–59
    [Google Scholar]
  52. 52. 
    Jimenez JC, Federle MJ. 2014. Quorum sensing in group A Streptococcus. Front. Cell Infect. . Microbiol 4:127
    [Google Scholar]
  53. 53. 
    Jobling MG, Holmes RK. 1997. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol. Microbiol. 26:1023–34
    [Google Scholar]
  54. 54. 
    Joloba ML, Kidenya BR, Kateete DP, Katabazi FA, Muwanguzi JK et al. 2010. Comparison of transformation frequencies among selected Streptococcus pneumoniae serotypes. Int. J. Antimicrob. Agents 36:124–28
    [Google Scholar]
  55. 55. 
    Jordan DM, Booher SL, Moon HW 2005. Escherichia coli O157:H7 does not require intimin to persist in pigs. Infect. Immun. 73:1865–67
    [Google Scholar]
  56. 56. 
    Kadioglu A, Weiser JN, Paton JC, Andrew PW 2008. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat. Rev. Microbiol. 6:288–301
    [Google Scholar]
  57. 57. 
    Kavanaugh JS, Horswill AR. 2016. Impact of environmental cues on staphylococcal quorum sensing and biofilm development. J. Biol. Chem. 291:12556–64
    [Google Scholar]
  58. 58. 
    Kerem E, Corey M, Gold R, Levison H 1990. Pulmonary function and clinical course in patients with cystic fibrosis after pulmonary colonization with Pseudomonas aeruginosa. J. . Pediatr 116:714–19
    [Google Scholar]
  59. 59. 
    Kernacki KA, Hobden JA, Hazlett LD, Fridman R, Berk RS 1995. In vivo bacterial protease production during Pseudomonas aeruginosa corneal infection. Investig. Ophthalmol. Vis. Sci. 36:1371–78
    [Google Scholar]
  60. 60. 
    Kohler T, Buckling A, van Delden C 2009. Cooperation and virulence of clinical Pseudomonas aeruginosa populations. PNAS 106:6339–44
    [Google Scholar]
  61. 61. 
    Konowalchuk J, Speirs JI, Stavric S 1977. Vero response to a cytotoxin of Escherichia coli. Infect. . Immun 18:775–79
    [Google Scholar]
  62. 62. 
    Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP, Dandekar AA 2019. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. PNAS 116:7027–32
    [Google Scholar]
  63. 63. 
    Lee AS, Song KP. 2005. LuxS/autoinducer-2 quorum sensing molecule regulates transcriptional virulence gene expression in Clostridium difficile. Biochem. Biophys. Res. . Commun 335:659–66
    [Google Scholar]
  64. 64. 
    Leffler DA, Lamont JT. 2015. Clostridium difficile infection. N. Engl. J. Med. 373:287–88
    [Google Scholar]
  65. 65. 
    Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. . Cell 118:69–82
    [Google Scholar]
  66. 66. 
    Lesic B, Lepine F, Deziel E, Zhang J, Zhang Q et al. 2007. Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLOS Pathog 3:1229–39
    [Google Scholar]
  67. 67. 
    Li YH, Tang N, Aspiras MB, Lau PC, Lee JH et al. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184:2699–708
    [Google Scholar]
  68. 68. 
    Longman LP, Pearce PK, McGowan P, Hardey P, Martin MV 1991. Antibiotic-resistant oral streptococci in dental patients susceptible to infective endocarditis. J. Med. Microbiol. 34:33–37
    [Google Scholar]
  69. 69. 
    Lutter EI, Purighalla S, Duong J, Storey DG 2012. Lethality and cooperation of Pseudomonas aeruginosa quorum-sensing mutants in Drosophila melanogaster infection models. Microbiology 158:2125–32
    [Google Scholar]
  70. 70. 
    Lyon GJ, Novick RP. 2004. Peptide signaling in Staphylococcus aureus and other gram-positive bacteria. Peptides 25:1389–403
    [Google Scholar]
  71. 71. 
    Majowicz SE, Scallan E, Jones-Bitton A, Sargeant JM, Stapleton J et al. 2014. Global incidence of human Shiga toxin–producing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. Foodborne Pathog. Dis. 11:447–55
    [Google Scholar]
  72. 72. 
    McGowan SJ, Barnard AML, Bosgelmez G, Sebaihia M, Simpson NJL et al. 2005. Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing–dependent control pathway. Mol. Microbiol. 55:526–45
    [Google Scholar]
  73. 73. 
    Middleton B, Rodgers HC, Camara M, Knox AJ, Williams P, Hardman A 2002. Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiol. Lett. 207:1–7
    [Google Scholar]
  74. 74. 
    Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–99
    [Google Scholar]
  75. 75. 
    Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler DL 2002. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. . Cell 110:303–14
    [Google Scholar]
  76. 76. 
    Mowat E, Paterson S, Fothergill JL, Wright EA, Ledson MJ et al. 2011. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am. J. Respir. Crit. Care Med. 183:1674–79
    [Google Scholar]
  77. 77. 
    Nealson KH, Platt T, Hastings JW 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104:313–22
    [Google Scholar]
  78. 78. 
    Nguyen Y, Sperandio V. 2012. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front. Cell Infect Microbiol. 2:90
    [Google Scholar]
  79. 79. 
    Ortíz-Castro R, Martínez-Trujillo M, López-Bucio J 2008. N-Acyl-l-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. . Plant Cell Environ 31:1497–509
    [Google Scholar]
  80. 80. 
    Otto M, Echner H, Voelter W, Gotz F 2001. Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect. . Immun 69:1957–60
    [Google Scholar]
  81. 81. 
    Pang YY, Schwartz J, Thoendel M, Ackermann LW, Horswill AR, Nauseef WM 2010. agr-dependent interactions of Staphylococcus aureus USA300 with human polymorphonuclear neutrophils. J. Innate Immun. 2:546–59
    [Google Scholar]
  82. 82. 
    Papenfort K, Bassler B. 2018. Quorum sensing signal response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14:576–88
    [Google Scholar]
  83. 83. 
    Pearson JP, Feldman M, Iglewski BH, Prince A 2000. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect. Immun. 68:4331–34
    [Google Scholar]
  84. 84. 
    Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS et al. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. . PNAS 96:11229–34
    [Google Scholar]
  85. 85. 
    Pierce NF, Greenough WB III, Carpenter CC Jr 1971. Vibrio cholerae enterotoxin and its mode of action. Biol. Rev. 35:1–13
    [Google Scholar]
  86. 86. 
    Pirhonen M, Flego D, Heikinheimo R, Palva ET 1993. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. . EMBO J 12:2467–76
    [Google Scholar]
  87. 87. 
    Preston MJ, Seed PC, Toder DS, Iglewski BH, Ohman DE et al. 1997. Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect. Immun. 65:3086–90
    [Google Scholar]
  88. 88. 
    Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–902
    [Google Scholar]
  89. 89. 
    Raut N, Pasini P, Daunert S 2013. Deciphering bacterial universal language by detecting the quorum sensing signal, autoinducer-2, with a whole-cell sensing system. Anal. Chem. 85:9604–9
    [Google Scholar]
  90. 90. 
    Rom JS, Atwood DN, Beenken KE, Meeker DG, Loughran AJ et al. 2017. Impact of Staphylococcus aureus regulatory mutations that modulate biofilm formation in the USA300 strain LAC on virulence in a murine bacteremia model. Virulence 8:1776–90
    [Google Scholar]
  91. 91. 
    Rossi E, Falcone M, Molin S, Johansen HK 2018. High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs. Nat. Commun. 9:3459
    [Google Scholar]
  92. 92. 
    Rothfork JM, Timmins GS, Harris MN, Chen X, Lusis AJ et al. 2004. Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: new role for the NADPH oxidase in host defense. PNAS 101:13867–72
    [Google Scholar]
  93. 93. 
    Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA 2009. Quorum sensing and the social evolution of bacterial virulence. Curr. Biol. 19:341–45
    [Google Scholar]
  94. 94. 
    Rumbaugh KP, Griswold JA, Hamood AN 1999. Contribution of the regulatory gene lasR to the pathogenesis of Pseudomonas aeruginosa infection of burned mice. J. Burn Care Rehabil. 20:42–49
    [Google Scholar]
  95. 95. 
    Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN 1999. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect. Immun. 67:5854–62
    [Google Scholar]
  96. 96. 
    Rutherford ST, van Kessel JC, Shao Y, Bassler BL 2011. AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev 25:397–408
    [Google Scholar]
  97. 97. 
    Sakr A, Bregeon F, Mege JL, Rolain JM, Blin O 2018. Staphylococcus aureus nasal colonization: an update on mechanisms, epidemiology, risk factors, and subsequent infections. Front. Microbiol. 9:2419
    [Google Scholar]
  98. 98. 
    Schaber JA, Carty NL, McDonald NA, Graham ED, Cheluvappa R et al. 2004. Analysis of quorum sensing–deficient clinical isolates of Pseudomonas aeruginosa. J. Med. Microbiol 53:841–53
    [Google Scholar]
  99. 99. 
    Schauder S, Shokat K, Surette MG, Bassler BL 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41:463–76
    [Google Scholar]
  100. 100. 
    Schein OD, Glynn RJ, Poggio EC, Seddon JM, Kenyon KR 1989. The relative risk of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses—a case control study. N. Engl. J. Med. 321:773–78
    [Google Scholar]
  101. 101. 
    Schuster M, Lostroh CP, Ogi T, Greenberg EP 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185:2066–79
    [Google Scholar]
  102. 102. 
    Schuster M, Sexton DJ, Diggle SP, Greenberg EP 2013. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu. Rev. Microbiol. 67:43–63
    [Google Scholar]
  103. 103. 
    Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–64
    [Google Scholar]
  104. 104. 
    Skindersoe ME, Zeuthen LH, Brix S, Fink LN, Lazenby J et al. 2009. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell–induced T-cell proliferation. FEMS Immunol. Med. Microbiol. 55:335–45
    [Google Scholar]
  105. 105. 
    Sperandio V, Li CC, Kaper JB 2002. Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infect. . Immun 70:3085–93
    [Google Scholar]
  106. 106. 
    Sperandio V, Mellies JL, Nguyen W, Shin S, Kaper JB 1999. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. . PNAS 96:15196–201
    [Google Scholar]
  107. 107. 
    Sperandio V, Torres AG, Giron JA, Kaper JB 2001. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 183:5187–97
    [Google Scholar]
  108. 108. 
    Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB 2003. Bacteria–host communication: the language of hormones. PNAS 100:8951–56
    [Google Scholar]
  109. 109. 
    Sperandio V, Torres AG, Kaper JB 2002. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol. . Microbiol 43:809–21
    [Google Scholar]
  110. 110. 
    Surette MG, Bassler BL. 1998. Quorum sensing in Escherichia coli and Salmonella typhimurium. . PNAS 95:7046–50
    [Google Scholar]
  111. 111. 
    Tan MW, Mahajan-Miklos S, Ausubel FM 1999. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. PNAS 96:715–20
    [Google Scholar]
  112. 112. 
    Tang HB, DiMango E, Bryan R, Gambello M, Iglewski BH et al. 1996. Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect. Immun. 64:37–43
    [Google Scholar]
  113. 113. 
    Thoendel M, Kavanaugh JS, Flack CE, Horswill AR 2011. Peptide signaling in the staphylococci. Chem. Rev. 111:117–51
    [Google Scholar]
  114. 114. 
    Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28:603–61
    [Google Scholar]
  115. 115. 
    Traber KE, Lee E, Benson S, Corrigan R, Cantera M et al. 2008. agr function in clinical Staphylococcus aureus isolates. Microbiology 154:2265–74
    [Google Scholar]
  116. 116. 
    Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M 2014. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLOS Genet 10:e1004518
    [Google Scholar]
  117. 117. 
    Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH 2003. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185:2080–95
    [Google Scholar]
  118. 118. 
    Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY et al. 2007. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13:1510–14
    [Google Scholar]
  119. 119. 
    Webb K, Fogarty A, Barrett DA, Nash EF, Whitehouse JL et al. 2019. Clinical significance of Pseudomonas aeruginosa 2-alkyl-4-quinolone quorum-sensing signal molecules for long-term outcomes in adults with cystic fibrosis. J. Med. Microbiol. 68:1823–28
    [Google Scholar]
  120. 120. 
    West SA, Griffin AS, Gardner A, Diggle SP 2006. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4:597–607
    [Google Scholar]
  121. 121. 
    Whiteley M, Diggle SP, Greenberg EP 2017. Progress in and promise of bacterial quorum sensing research. Nature 551:313–20
    [Google Scholar]
  122. 122. 
    Whiteley M, Lee KM, Greenberg EP 1999. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. . PNAS 96:13904–9
    [Google Scholar]
  123. 123. 
    Williams P, Winzer K, Chan WC, Camara M 2007. Look who's talking: communication and quorum sensing in the bacterial world. Philos. Trans. R. Soc. B 362:1119–34
    [Google Scholar]
  124. 124. 
    Yang Y, Lin J, Harrington A, Cornilescu G, Lau GW, Tal-Gan Y 2020. Designing cyclic competence-stimulating peptide (CSP) analogs with pan-group quorum-sensing inhibition activity in Streptococcus pneumoniae. . PNAS 117:1689–99
    [Google Scholar]
  125. 125. 
    Zaborin A, Romanowski K, Gerdes S, Holbrook C, Lepine F et al. 2009. Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1. PNAS 106:6327–32
    [Google Scholar]
  126. 126. 
    Zegans ME, DiGiandomenico A, Ray K, Naimie A, Keller AE et al. 2016. Association of biofilm formation, Psl exopolysaccharide expression, and clinical outcomes in Pseudomonas aeruginosa keratitis: analysis of isolates in the Steroids for Corneal Ulcers Trial. JAMA Ophthalmol 134:383–89
    [Google Scholar]
  127. 127. 
    Zhu H, Bandara R, Conibear TC, Thuruthyil SJ, Rice SA et al. 2004. Pseudomonas aeruginosa with lasI quorum-sensing deficiency during corneal infection. Investig. Ophthalmol. Vis. Sci. 45:1897–903
    [Google Scholar]
  128. 128. 
    Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ 2002. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. . PNAS 99:3129–34
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032020-093845
Loading
/content/journals/10.1146/annurev-micro-032020-093845
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error