1932

Abstract

Extracellular electron transfer (EET) is the physiological process that enables the reduction or oxidation of molecules and minerals beyond the surface of a microbial cell. The first bacteria characterized with this capability were and , both reported to couple their growth to the reduction of iron or manganese oxide minerals located extracellularly. A key difference between EET and nearly every other respiratory activity on Earth is the need to transfer electrons beyond the cell membrane. The past decade has resolved how well-conserved strategies conduct electrons from the inner membrane to the outer surface. However, recent data suggest a much wider and less well understood collection of mechanisms enabling electron transfer to distant acceptors. This review reflects the current state of knowledge from and , specifically focusing on transfer across the outer membrane and beyond—an activity that enables reduction of highly variable minerals, electrodes, and even other organisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032221-023725
2023-09-15
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032221-023725.html?itemId=/content/journals/10.1146/annurev-micro-032221-023725&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbas CA, Sibirny AA. 2011. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol. Mol. Biol. Rev. 75:2321–60
    [Google Scholar]
  2. 2.
    Aklujkar M, Coppi MV, Leang C, Kim BC, Chavan MA et al. 2013. Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiology 159:Part 3515–35
    [Google Scholar]
  3. 3.
    Baker IR, Conley BE, Gralnick JA, Girguis PR. 2022. Evidence for horizontal and vertical transmission of Mtr-mediated extracellular electron transfer among the Bacteria. mBio 13:1e0290421
    [Google Scholar]
  4. 4.
    Bauer I, Kappler A. 2009. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances. Environ. Sci. Technol. 43:4902–4908
    [Google Scholar]
  5. 5.
    Beliaev AS, Saffarini DA. 1998. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol. 180:236292–97The first gene (mtrB) shown to be required for dissimilatory metal reduction.
    [Google Scholar]
  6. 6.
    Beliaev AS, Saffarini DA, McLaughlin JL, Hunnicutt D. 2001. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol. Microbiol. 39:3722–30
    [Google Scholar]
  7. 7.
    Bond DR, Holmes DE, Tender LM, Lovley DR. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–85
    [Google Scholar]
  8. 8.
    Bond DR, Lovley DR. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69:1548–55
    [Google Scholar]
  9. 9.
    Bond DR, Lovley DR. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71:2186–89
    [Google Scholar]
  10. 10.
    Brutinel ED, Gralnick JA. 2012. Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl. Microbiol. Botechnol. 93:141–48
    [Google Scholar]
  11. 11.
    Brutinel ED, Dean AM, Gralnick JA. 2013. Description of a riboflavin biosynthetic gene variant prevalent in the phylum Proteobacteria. J. Bacteriol. 195:245479–86
    [Google Scholar]
  12. 12.
    Butler JE, Kaufmann F, Coppi MV, Núñez C, Lovley DR. 2004. MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens. J. Bacteriol. 186:124042–45
    [Google Scholar]
  13. 13.
    Chan CH, Levar CE, Jiménez-Otero F, Bond DR. 2017. Genome scale mutational analysis of Geobacter sulfurreducens reveals distinct molecular mechanisms for respiration and sensing of poised electrodes versus Fe(III) oxides. J. Bacteriol. 199:19e00340–17
    [Google Scholar]
  14. 14.
    Chong GW, Pirbadian S, Zhao Y, Zacharoff LA, Pinaud F, El-Naggar MY. 2022. Single molecule tracking of bacterial cell surface cytochromes reveals dynamics that impact long-distance electron transport. PNAS 119:19e2119964119
    [Google Scholar]
  15. 15.
    Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF et al. 2011. Structure of a bacterial cell surface decaheme electron conduit. PNAS 108:239384–89
    [Google Scholar]
  16. 16.
    Coates JD, Ellis DJ, Blunt-Harris EL, Gaw CV, Roden EE, Lovley DR. 1998. Recovery of humic-reducing bacteria from a diversity of environments. Appl. Environ. Microbiol. 64:1504–9
    [Google Scholar]
  17. 17.
    Coursolle D, Gralnick JA. 2010. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol. Microbiol. 77:4995–1008
    [Google Scholar]
  18. 18.
    Coursolle D, Baron DB, Bond DR, Gralnick JA. 2010. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J. Bacteriol. 192:2467–74
    [Google Scholar]
  19. 19.
    Coursolle D, Gralnick JA. 2012. Reconstruction of extracellular respiratory pathways for iron(III) reduction in Shewanella oneidensis strain MR-1. Front. Microbiol. 3:56
    [Google Scholar]
  20. 20.
    Covington ED, Gelbmann CB, Kotloski NJ, Gralnick JA. 2010. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Mol. Microbiol. 78:2519–32
    [Google Scholar]
  21. 21.
    DiChristina TJ, Moore CM, Haller CA. 2002. Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene. J. Bacteriol. 184:1142–51
    [Google Scholar]
  22. 22.
    Ding YH, Hixson KK, Aklujkar MA, Lipton MS, Smith RD et al. 2008. Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor. Biochim. Biophys. Acta Proteins Proteom. 1784:121935–41
    [Google Scholar]
  23. 23.
    Edwards MJ, Hall A, Shi L, Fredrickson JK, Zachara JM et al. 2012. The crystal structure of the extracellular 11-heme cytochrome UndA reveals a conserved 10-heme motif and defined binding site for soluble iron chelates. Structure 20:71275–84
    [Google Scholar]
  24. 24.
    Edwards MJ, Baiden NA, Johs A, Tomanicek SJ, Liang L et al. 2014. The X-ray crystal structure of Shewanella oneidensis OmcA reveals new insight at the microbe-mineral interface. FEBS Lett. 588:101886–90
    [Google Scholar]
  25. 25.
    Edwards MJ, White GF, Norman M, Tome-Fernandez A, Ainsworth E et al. 2015. Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer. Sci. Rep. 5:11677
    [Google Scholar]
  26. 26.
    Edwards MJ, White GF, Butt JN, Richardson DJ, Clarke TA. 2020. The crystal structure of a biological insulated transmembrane molecular wire. Cell 181:3665–73.e10Crystal structure of the MtrCAB complex, visualizing the porin-cytochrome model.
    [Google Scholar]
  27. 27.
    El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G et al. 2010. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. PNAS 107:4218127–31
    [Google Scholar]
  28. 28.
    Escobar CA, Douzi B, Ball G, Barbat B, Alphonse S et al. 2021. Structural interactions define assembly adapter function of a type II secretion system pseudopilin. Structure 29:101116–27.e8
    [Google Scholar]
  29. 29.
    Feliciano GT, da Silva AJ, Reguera G, Artacho E. 2012. Molecular and electronic structure of the peptide subunit of Geobacter sulfurreducens conductive pili from first principles. J. Phys. Chem. A 116:308023–30
    [Google Scholar]
  30. 30.
    Filman DJ, Marino SF, Ward JE, Yang L, Mester Z et al. 2019. Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Commun. Biol. 2:219
    [Google Scholar]
  31. 31.
    Franks AE, Glaven RH, Lovley DR. 2012. Real-time spatial gene expression analysis within current-producing biofilms. ChemSusChem 5:1092–98
    [Google Scholar]
  32. 32.
    Fujita M, Mihara H, Goto S, Esaki N, Kanehisa M 2007. Mining prokaryotic genomes for unknown amino acids: a stop-codon-based approach. BMC Bioinform. 8:225
    [Google Scholar]
  33. 33.
    Gambelli L, Isupov MN, Conners R, McLaren M, Bellack A et al. 2022. An archaellum filament composed of two alternating subunits. Nat. Commun. 13:1710
    [Google Scholar]
  34. 34.
    Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D et al. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 103:3011358–63
    [Google Scholar]
  35. 35.
    Gorby Y, McLean J, Korenevsky A, Rosso K, El-Naggar MY, Beveridge TJ. 2008. Redox-reactive membrane vesicles produced by Shewanella. Geobiology 6:3232–41
    [Google Scholar]
  36. 36.
    Gregory KB, Bond DR, Lovley DR. 2004. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6:596–604
    [Google Scholar]
  37. 37.
    Gu Y, Srikanth V, Salazar-Morales AI, Jain R, O'Brien JP et al. 2021. Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Nature 597:7876430–34
    [Google Scholar]
  38. 38.
    Harris HW, El-Naggar MY, Bretschger O, Ward MJ, Romine MF et al. 2010. Electrokinesis is a microbial behavior that requires extracellular electron transport. PNAS 107:1326–31
    [Google Scholar]
  39. 39.
    Harris HW, Sánchez-Andrea I, McLean JS, Salas EC, Tran W et al. 2018. Redox sensing within the genus Shewanella. Front. Microbiol. 8:2568
    [Google Scholar]
  40. 40.
    Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC et al. 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20:111118–23
    [Google Scholar]
  41. 41.
    Hernández-Eligio A, Huerta-Miranda GA, Martínez-Bahena S, Castrejón-López D, Miranda-Hernández M, Juárez K. 2022. GSU1771 regulates extracellular electron transfer and electroactive biofilm formation in Geobacter sulfurreducens: Genetic and electrochemical characterization. Bioelectrochemistry 145:108101
    [Google Scholar]
  42. 42.
    Holmes DE, Chaudhuri SK, Nevin KP, Mehta T, Methé BA et al. 2006. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ. Microbiol. 8:101805–15
    [Google Scholar]
  43. 43.
    Holmes DE, Dang Y, Walker D, Lovley DR. 2016. The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microbial Genom. 2:8e000072
    [Google Scholar]
  44. 44.
    Huang L, Tang J, Chen M, Liu X, Zhou S. 2018. Two modes of riboflavin-mediated extracellular electron transfer in Geobacter uraniireducens. Front. Microbiol. 9:2886
    [Google Scholar]
  45. 45.
    Huang L, Liu X, Ye Y, Chen M, Zhou S. 2020. Evidence for the coexistence of direct and riboflavin-mediated interspecies electron transfer in Geobacter co-culture. Environ. Microbiol. 22:243–54
    [Google Scholar]
  46. 46.
    Huerta-Miranda GA, Arroyo-Escoto AI, Burgos X, Juárez K, Miranda-Hernández M. 2019. Influence of the major pilA transcriptional regulator in electrochemical responses of Geobacter sulfureducens PilR-deficient mutant biofilm formed on FTO electrodes. Bioelectrochemistry 127:145–53
    [Google Scholar]
  47. 47.
    Ing NL, Spencer RK, Luong SH, Nguyen HD, Hochbaum AI. 2018. Electronic conductivity in biomimetic α-helical peptide nanofibers and gels. ACS Nano 12:2652–61
    [Google Scholar]
  48. 48.
    Inoue K, Leang C, Franks AE, Woodard TL, Nevin KP, Lovley DR. 2011. Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens. Environ. Microbiol. Rep. 3:211–17
    [Google Scholar]
  49. 49.
    Jahan MI, Tobe R, Mihara H. 2018. Characterization of a novel porin-like protein, ExtI, from Geobacter sulfurreducens and its implication in the reduction of selenite and tellurite. Int. J. Mol. Sci. 19:3809
    [Google Scholar]
  50. 50.
    Jahan MI, Juengwiwattanakitti P, Izu Y, Tobe R, Imai T, Mihara H 2019. Selenite uptake by outer membrane porin ExtI and its involvement in the subcellular localization of rhodanese-like lipoprotein ExtH in Geobacter sulfurreducens. Biochem. Biophys. Res. Commun. 516:2474–79
    [Google Scholar]
  51. 51.
    Jiang X, van Wonderen JH, Butt JN, Edwards MJ, Clarke TA, Blumberger J. 2020. Which multi-heme protein complex transfers electrons more efficiently? Comparing MtrCAB from Shewanella with OmcS from Geobacter. J. Phys. Chem. Lett. 11:219421–25
    [Google Scholar]
  52. 52.
    Jiménez Otero F, Chan CH, Bond DR 2018. Identification of different putative outer membrane electron conduits necessary for Fe(III) citrate, Fe(III) oxide, Mn(IV) oxide, or electrode reduction by Geobacter sulfurreducens. J. Bacteriol. 200:19e00347–18
    [Google Scholar]
  53. 53.
    Jiménez Otero F, Chadwick GL, Yates MD, Mickol RL, Saunders SH et al. 2021. Evidence of a streamlined extracellular electron transfer pathway from biofilm structure, metabolic stratification, and long-range electron transfer parameters. Appl. Environ. Microbiol. 87:17e0070621
    [Google Scholar]
  54. 54.
    Jing X, Wu Y, Shi L, Peacock CL, Ashry NM et al. 2020. Outer membrane c-type cytochromes OmcA and MtrC play distinct roles in enhancing the attachment of Shewanella oneidensis MR-1 cells to goethite. Appl. Environ. Microbiol. 86:23e01941–20
    [Google Scholar]
  55. 55.
    Johs A, Shi L, Droubay T, Ankner JF, Liang L. 2010. Characterization of the decaheme c-type cytochrome OmcA in solution and on hematite surfaces by small angle x-ray scattering and neutron reflectometry. Biophys. J. 98:123035–43
    [Google Scholar]
  56. 56.
    Kalyoncu E, Ahan RE, Olmez TT, Seker UOS. 2017. Genetically encoded conductive protein nanofibers secreted by engineered cells. RSC Adv 7:32543–51
    [Google Scholar]
  57. 57.
    Kees ED, Pendleton AR, Paquete CM, Arriola MB, Kane AL et al. 2019. Secreted flavin cofactors for anaerobic respiration of fumarate and urocanate by Shewanella oneidensis: cost and role. Appl. Environ. Microbiol. 85:16e00852–19
    [Google Scholar]
  58. 58.
    Kellenberger CA, Wilson SC, Hickey SF, Gonzalez TL, Su Y et al. 2015. GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP. PNAS 112:175383–88
    [Google Scholar]
  59. 59.
    Kim BC, Leang C, Ding YH, Glaven RH, Coppi MV, Lovley DR. 2005. OmcF, a putative c-type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens. J. Bacteriol. 187:134505–13
    [Google Scholar]
  60. 60.
    Kim BC, Qian X, Leang C, Coppi MV, Lovley DR. 2006. Two putative c-type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 188:83138–42
    [Google Scholar]
  61. 61.
    Kim BC, Postier BL, Didonato RJ, Chaudhuri SK, Nevin KP, Lovley DR. 2008. Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. 73170–75
  62. 62.
    Kim BC, Lovley DR. 2008. Investigation of direct versus indirect involvement of the c-type cytochrome MacA in Fe(III) reduction by Geobacter sulfurreducens. FEMS Microbiol. Lett. 286:139–44
    [Google Scholar]
  63. 63.
    Klimes A, Franks AE, Glaven RH, Tran H, Barrett CL et al. 2010. Production of pilus-like filaments in Geobacter sulfurreducens in the absence of the type IV pilin protein PilA. FEMS Microbiol. Lett. 310:162–68
    [Google Scholar]
  64. 64.
    Kotloski NJ, Gralnick JA. 2013. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4:1e00553–12
    [Google Scholar]
  65. 65.
    Leang C, Coppi MV, Lovley DR. 2003. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 185:72096–103
    [Google Scholar]
  66. 66.
    Leang C, Lovley DR. 2005. Regulation of two highly similar genes, omcB and omcC, in a 10 kb chromosomal duplication in Geobacter sulfurreducens. Microbiology 151:Part 61761–67
    [Google Scholar]
  67. 67.
    Leang C, Qian X, Mester T, Lovley DR. 2010. Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl. Environ. Microbiol. 76:124080–84
    [Google Scholar]
  68. 68.
    Leang C, Malvankar NS, Franks AE, Nevin KP, Lovley DR. 2013. Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy Environ. Sci. 6:61901–8
    [Google Scholar]
  69. 69.
    Leys D, Tsapin AS, Nealson KH, Meyer TE, Cusanovich MA, Van Beeumen JJ. 1999. Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1. Nat. Struct. Biol. 6:121113–17
    [Google Scholar]
  70. 70.
    Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA, Newman DK. 2005. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 71:84414–26
    [Google Scholar]
  71. 71.
    Liu Y, Wang Z, Liu J, Levar C, Edwards MJ et al. 2014. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducensPCA. Environ. Microbiol. Rep. 6:6776–85Biochemical evidence that OmcB is part of a transmembrane porin-cytochrome complex in Geobacter.
    [Google Scholar]
  72. 72.
    Liu X, Tremblay PL, Malvankar NS, Nevin KP, Lovley DR, Vargas M. 2014. A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production. Appl. Environ. Microbiol. 80:31219–24
    [Google Scholar]
  73. 73.
    Liu Y, Fredrickson JK, Zachara JM, Shi L. 2015. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front. Microbiol. 6:1075
    [Google Scholar]
  74. 74.
    Liu X, Zhuo S, Rensing C, Zhou S. 2018. Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species. ISME J. 12:92142–51
    [Google Scholar]
  75. 75.
    Liu X, Nealson KH, Zhou S, Rensing C. 2022. Reply to Lovley, “Untangling Geobacter sulfurreducens nanowires. .” mBio 13:3e0104122
    [Google Scholar]
  76. 76.
    Lovley DR, Woodward JC, Chapelle FH. 1994. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370:128–31
    [Google Scholar]
  77. 77.
    Lovley DR, Woodward JC, Chapelle FH. 1996. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl. Environ. Microbiol. 62:288–91
    [Google Scholar]
  78. 78.
    Lovley D, Coates J, Blunt-Harris E, Phillips E, Woodward J. 1996. Humic substances as electron acceptors for microbial respiration. Nature 382:445–48
    [Google Scholar]
  79. 79.
    Lovley DR, Blunt-Harris EL. 1999. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl. Environ. Microbiol. 65:4252–54
    [Google Scholar]
  80. 80.
    Lovley DR. 2012. Electromicrobiology. Annu. Rev. Microbiol. 66:391–409
    [Google Scholar]
  81. 81.
    Lovley DR. 2012. Long-range electron transport to Fe(III) oxide via pili with metallic-like conductivity. Biochem. Soc. Trans. 40:61186–90
    [Google Scholar]
  82. 82.
    Lovley DR. 2017. Syntrophy goes electric: direct interspecies electron transfer. Annu. Rev. Microbiol. 71:643–64
    [Google Scholar]
  83. 83.
    Lovley DR, Walker D. 2019. Geobacter protein nanowires. Front. Microbiol. 10:2078
    [Google Scholar]
  84. 84.
    Lovley DR, Holmes DE. 2020. Protein nanowires: the electrification of the microbial world and maybe our own. J. Bacteriol. 202:20e00331–20
    [Google Scholar]
  85. 85.
    Lovley DR, Yao J. 2021. Intrinsically conductive microbial nanowires for ‘green’ electronics with novel functions. Trends Biotechnol. 39:9940–52
    [Google Scholar]
  86. 86.
    Lovley DR. 2022. Untangling Geobacter sulfurreducens nanowires. mBio 13:3e0085022
    [Google Scholar]
  87. 87.
    Lovley DR. 2022. On the existence of pilin-based microbial nanowires. Front. Microbiol. 13:872610
    [Google Scholar]
  88. 88.
    Lower BH, Shi L, Yongsunthon R, Droubay TC, McCready DE, Lower SK. 2007. Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J. Bacteriol. 189:134944–52
    [Google Scholar]
  89. 89.
    Lower BH, Lins RD, Oestreicher Z, Straatsma TP, Hochella MF, Shi L et al. 2008. In vitro evolution of a peptide with a hematite binding motif that may constitute a natural metal-oxide binding archetype. Environ. Sci. Technol. 42:3821–27
    [Google Scholar]
  90. 90.
    Magnuson TS, Hodges-Myerson AL, Lovley DR. 2000. Characterization of a membrane-bound NADH-dependent Fe3+ reductase from the dissimilatory Fe3+-reducing bacterium Geobacter sulfurreducens. FEMS Microbiol. Lett. 185:2205–11
    [Google Scholar]
  91. 91.
    Magnuson TS, Isoyama N, Hodges-Myerson AL, Davidson G, Maroney MJ et al. 2001. Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe(III) reducing cytochrome c from Geobacter sulfurreducens. Biochem. J. 359:Part 1147–52
    [Google Scholar]
  92. 92.
    Maier TM, Myers JM, Myers CR. 2003. Identification of the gene encoding the sole physiological fumarate reductase in Shewanella oneidensis MR-1. J. Basic Microbiol. 43:4312–27
    [Google Scholar]
  93. 93.
    Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C et al. 2011. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6:9573–79
    [Google Scholar]
  94. 94.
    Malvankar NS, Tuominen MT, Lovley DR. 2012. Comment on “On electrical conductivity of microbial nanowires and biofilms” by SM Strycharz-Glaven, RM Snider, A Guiseppi-Elie and LM Tender. Energy Environ. Sci., 2011, 4, 4366. Energy Environ. Sci. 5:6247–49
    [Google Scholar]
  95. 95.
    Malvankar NS, Lovley DR. 2014. Microbial nanowires for bioenergy applications. Curr. Opin. Biotechnol. 27:88–95
    [Google Scholar]
  96. 96.
    Malvankar NS, Vargas M, Nevin K, Tremblay PL, Evans-Lutterodt K et al. 2015. Structural basis for metallic-like conductivity in microbial nanowires. mBio 6:2e00084
    [Google Scholar]
  97. 97.
    Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. PNAS 105:103968–73
    [Google Scholar]
  98. 98.
    McLean JS, Pinchuk GE, Geydebrekht OV, Bilskis CL, Zakrajsek BA et al. 2008. Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1. Environ. Microbiol. 10:71861–76
    [Google Scholar]
  99. 99.
    Mehta T, Coppi MV, Childers SE, Lovley DR. 2005. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71:8634–41Evidence that extracellular multiheme cytochromes, later shown to be nanowires, are essential for metal reduction.
    [Google Scholar]
  100. 100.
    Mehta-Kolte MG, Bond DR. 2012. Geothrix fermentans secretes two different redox-active compounds to utilize electron acceptors across a wide range of redox potentials. Appl. Environ. Microbiol. 78:6987–95
    [Google Scholar]
  101. 101.
    Mevers E, Su L, Pishchany G, Baruch M, Cornejo J et al. 2019. An elusive electron shuttle from a facultative anaerobe. eLife 8:e48054
    [Google Scholar]
  102. 102.
    Mitchell AC, Peterson L, Reardon CL, Reed SB, Culley DE et al. 2012. Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation, and detachment during respiration on hematite. Geobiology 10:4355–70
    [Google Scholar]
  103. 103.
    Myers CR, Myers JM. 2002. MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Appl. Environ. Microbiol. 68:115585–94
    [Google Scholar]
  104. 104.
    Myers CR, Myers JM. 2003. Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1. Lett. Appl. Microbiol. 37:3254–58
    [Google Scholar]
  105. 105.
    Myers CR, Myers JM. 2004. The outer membrane cytochromes of Shewanella oneidensis MR-1 are lipoproteins. Lett. Appl. Microbiol. 39:5466–70
    [Google Scholar]
  106. 106.
    Myers CR, Myers JM. 2004. Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. Appl. Environ. Microbiol. 70:95415–25
    [Google Scholar]
  107. 107.
    Nelson JW, Sudarsan N, Phillips GE, Stav S, Lünse CE et al. 2015. Control of bacterial exoelectrogenesis by c-AMP-GMP. PNAS 112:175389–94
    [Google Scholar]
  108. 108.
    Nevin KP, Lovley DR. 2000. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 66:52248–51
    [Google Scholar]
  109. 109.
    Nevin KP, Lovely DR. 2002. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19:2141–59
    [Google Scholar]
  110. 110.
    Nevin KP, Lovley DR. 2002. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Environ. Microbiol. 68:52294–99
    [Google Scholar]
  111. 111.
    Nevin KP, Kim B-C, Glaven RH, Johnson JP, Woodard TL et al. 2009. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLOS ONE 4:e5628
    [Google Scholar]
  112. 112.
    Newman DK, Kolter R. 2000. A role for excreted quinones in extracellular electron transfer. Nature 405:678294–97Electron shuttling as a strategy for extracellular electron transfer.
    [Google Scholar]
  113. 113.
    Okamoto A, Hashimoto K, Nealson KH, Nakamura R. 2013. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. PNAS 110:197856–61
    [Google Scholar]
  114. 114.
    Okamoto A, Kalathil S, Deng X, Hashimoto K, Nakamura R, Nealson KH. 2014. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Sci. Rep. 4:5628
    [Google Scholar]
  115. 115.
    Okamoto A, Saito K, Inoue K, Nealson KH, Hashimoto K, Nakamura R. 2014. Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species. Energy Environ. Sci. 7:1357–61
    [Google Scholar]
  116. 116.
    Oram J, Jeuken L. 2019. Tactic response of Shewanella oneidensis MR-1 toward insoluble electron acceptors. mBio 10:1e02490–18
    [Google Scholar]
  117. 117.
    Paquete CM, Fonseca BM, Cruz DR, Pereira TM, Pacheco I et al. 2014. Exploring the molecular mechanisms of electron shuttling across the microbe/metal space. Front. Microbiol. 5:318
    [Google Scholar]
  118. 118.
    Peng L, Zhang Y. 2017. Cytochrome OmcZ is essential for the current generation by Geobacter sulfurreducens under low electrode potential. Electrochim. Acta 228:447–52
    [Google Scholar]
  119. 119.
    Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y et al. 2014. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. PNAS 111:3512883–88Nanowires from S. oneidensis are outer membrane extensions rather than protein filaments.
    [Google Scholar]
  120. 120.
    Qian X, Mester T, Morgado L, Arakawa T, Sharma ML et al. 2011. Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens. Biochim. Biophys. Acta Bioenerg. 1807:404–12
    [Google Scholar]
  121. 121.
    Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:70451098–101First indication that filaments and electron transfer are linked, originating the Geobacter nanowire concept.
    [Google Scholar]
  122. 122.
    Richardson DJ, Butt JN, Fredrickson JK, Zachara JM, Shi L et al. 2012. The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer. Mol. Microbiol. 85:2201–12
    [Google Scholar]
  123. 123.
    Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM. 2009. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ. Sci. 2:506–16
    [Google Scholar]
  124. 124.
    Richter LV, Sandler SJ, Weis RM. 2012. Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. J. Bacteriol. 194:102551–63
    [Google Scholar]
  125. 125.
    Scott D, McKnight D, Blunt-Harris E, Kolesar S, Lovley D. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32:2984–89
    [Google Scholar]
  126. 126.
    Shelobolina ES, Coppi MV, Korenevsky AA, DiDonato LN, Sullivan SA et al. 2007. Importance of c-type cytochromes for U(VI) reduction by Geobacter sulfurreducens. BMC Microbiol. 7:16
    [Google Scholar]
  127. 127.
    Shrestha PM, Rotaru A-E, Aklujkar M, Liu F, Shrestha M et al. 2013. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environ. Microbiol. Rep. 5:904–10
    [Google Scholar]
  128. 128.
    Shrestha PM, Rotaru A-E, Summers ZM, Shrestha M, Liu F, Lovley DR. 2013. Transcriptomic and genetic analysis of direct interspecies electron transfer. Appl. Environ. Microbiol. 79:73397–404
    [Google Scholar]
  129. 129.
    Seidel J, Hoffmann M, Ellis KE, Seidel A, Spatzal T et al. 2012. MacA is a second cytochrome c peroxidase of Geobacter sulfurreducens. Biochemistry 51:132747–56
    [Google Scholar]
  130. 130.
    Shi L, Chen B, Wang Z, Elias DA, Mayer MU et al. 2006. Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J. Bacteriol. 188:134705–14
    [Google Scholar]
  131. 131.
    Shi L, Deng S, Marshall MJ, Wang Z, Kennedy DW et al. 2008. Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J. Bacteriol. 190:155512–16
    [Google Scholar]
  132. 132.
    Shi L, Belchik SM, Wang Z, Kennedy DW, Dohnalkova AC et al. 2011. Identification and characterization of UndAHRCR-6, an outer membrane undecaheme c-type cytochrome of Shewanella sp. strain HRCR-6. Appl. Environ. Microbiol. 77:155521–23
    [Google Scholar]
  133. 133.
    Shi L, Fredrickson JK, Zachara JM. 2014. Genomic analyses of bacterial porin-cytochrome gene clusters. Front. Microbiol. 5:657
    [Google Scholar]
  134. 134.
    Smith JA, Tremblay P-L, Shrestha PM, Snoeyenbos-West OL, Franks AE et al. 2014. Going wireless: Fe(III) oxide reduction without pili by Geobacter sulfurreducens strain JS-1. Appl. Environ. Microbiol. 80:4331–40
    [Google Scholar]
  135. 135.
    Starwalt-Lee R, El-Naggar MY, Bond DR, Gralnick JA. 2021. Electrolocation? The evidence for redox-mediated taxis in Shewanella oneidensis. Mol. Microbiol. 115:61069–79
    [Google Scholar]
  136. 136.
    Straub KL, Schink B. 2003. Evaluation of electron-shuttling compounds in microbial ferric iron reduction. FEMS Microbiol. Lett. 220:2229–33
    [Google Scholar]
  137. 137.
    Strycharz-Glaven SM, Tender LM 2012. Reply to the “comment on ‘On electrical conductivity of microbial nanowires and biofilms’” by Malvankar, Tuominen, Lovley. Energy Environ. Sci. 5:6250–55
    [Google Scholar]
  138. 138.
    Sturm G, Richter K, Doetsch A, Heide H, Louro RO, Gescher J. 2015. A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J. 9:81802–11
    [Google Scholar]
  139. 139.
    Subramanian P, Pirbadian S, El-Naggar MY, Jensen GJ. 2018. Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography. PNAS 115:14E3246–E3255
    [Google Scholar]
  140. 140.
    Tan Y, Adhikari RY, Malvankar NS, Ward JE, Nevin KP et al. 2016. The low conductivity of Geobacter uraniireducens pili suggests a diversity of extracellular electron transfer mechanisms in the genus Geobacter. Front. Microbiol. 7:980
    [Google Scholar]
  141. 141.
    Tang H-Y, Holmes DE, Ueki T, Palacios PA, Lovley DR. 2019. Iron corrosion via direct metal-microbe electron transfer. mBio 10:e00303–19Evidence that Geobacter can obtain electrons directly from surfaces other than laboratory electrodes.
    [Google Scholar]
  142. 142.
    Thirumurthy MA, Jones AK. 2020. Geobacter cytochrome OmcZs binds riboflavin: implications for extracellular electron transfer. Nanotechnology 31:124001
    [Google Scholar]
  143. 143.
    Tremblay P-L, Summers ZM, Glaven RH, Nevin KP, Zengler K et al. 2011. A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution. Environ. Microbiol. 13:13–23
    [Google Scholar]
  144. 144.
    von Canstein H, Ogawa J, Shimizu S, Lloyd JR. 2008. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74:3615–23
    [Google Scholar]
  145. 145.
    Walker DJ, Adhikari RY, Holmes DE, Ward JE, Woodard TL et al. 2018. Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J. 12:148–58
    [Google Scholar]
  146. 146.
    Wang F, Coureuil M, Osinski T, Orlova A, Altindal T et al. 2017. Cryoelectron microscopy reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae type IV pili at sub-nanometer resolution. Structure 25:91423–35.e4
    [Google Scholar]
  147. 147.
    Wang Q, Jones AD 3rd, Gralnick JA, Lin L, Buie CR. 2019. Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity. Sci. Adv. 5:1eaat5664
    [Google Scholar]
  148. 148.
    Wang F, Gu Y, O'Brien JP, Yi SM, Yalcin SE et al. 2019. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 177:2361–69.e10First cryo-EM structure of an extracellular conductive filament from Geobacter.
    [Google Scholar]
  149. 149.
    Wang F, Mustafa K, Suciu V, Joshi K, Chan CH et al. 2022. Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing. Nat. Microbiol. 7:81291–300
    [Google Scholar]
  150. 150.
    Wang F, Chan CH, Suciu V, Mustafa K, Ammend M et al. 2022. Structure of Geobacter OmcZ filaments suggests extracellular cytochrome polymers evolved independently multiple times. eLife 11:e81551
    [Google Scholar]
  151. 151.
    Xiong Y, Shi L, Chen B, Mayer MU, Lower BH et al. 2006. High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. J. Am. Chem. Soc. 128:4313978–79
    [Google Scholar]
  152. 152.
    Xu S, Jangir Y, El-Naggar MY. 2016. Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from Shewanella oneidensis MR-1. Electrochem. Acta 198:49–55
    [Google Scholar]
  153. 153.
    Yalcin SE, O'Brien JP, Gu Y, Reiss K, Yi SM et al. 2020. Electric field stimulates production of highly conductive microbial OmcZ nanowires. Nat. Chem. Biol. 16:101136–42
    [Google Scholar]
  154. 154.
    Yi H, Nevin KP, Kim B-C, Franks AE, Klimes A et al. 2009. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens. Bioelectron. 24:3498–503
    [Google Scholar]
  155. 155.
    Zacharoff LA, Morrone DJ, Bond DR. 2017. Geobacter sulfurreducens extracellular multiheme cytochrome PgcA facilitates respiration to Fe(III) oxides but not electrodes. Front. Microbiol. 8:2481
    [Google Scholar]
  156. 156.
    Zhang B, Song W, Pang P, Lai H, Chen Q et al. 2019. Role of contacts in long-range protein conductance. PNAS 116:5886–91
    [Google Scholar]
  157. 157.
    Zhang B, Ryan E, Wang X, Song W, Lindsay S. 2022. Electronic transport in molecular wires of precisely controlled length built from modular proteins. ACS Nano 16:1671–80
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032221-023725
Loading
/content/journals/10.1146/annurev-micro-032221-023725
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error