1932

Abstract

Heat shock protein 90 (Hsp90) is a molecular chaperone that folds and remodels proteins, thereby regulating the activity of numerous substrate proteins. Hsp90 is widely conserved across species and is essential in all eukaryotes and in some bacteria under stress conditions. To facilitate protein remodeling, bacterial Hsp90 collaborates with the Hsp70 molecular chaperone and its cochaperones. In contrast, the mechanism of protein remodeling performed by eukaryotic Hsp90 is more complex, involving more than 20 Hsp90 cochaperones in addition to Hsp70 and its cochaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of bacterial Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70. We describe the universally conserved structure and conformational dynamics of these chaperones and their interactions with one another and with client proteins. The physiological roles of Hsp90 in and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide a framework for understanding the more complex eukaryotic Hsp90 system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032421-035644
2021-10-08
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-032421-035644.html?itemId=/content/journals/10.1146/annurev-micro-032421-035644&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Acebron SP, Fernandez-Saiz V, Taneva SG, Moro F, Muga A. 2008. DnaJ recruits DnaK to protein aggregates. J. Biol. Chem. 283:1381–90
    [Google Scholar]
  2. 2. 
    Adir N, Bar-Zvi S, Harris D 2020. The amazing phycobilisome. Biochim. Biophys. Acta Bioenerg. 1861:148047
    [Google Scholar]
  3. 3. 
    Ahmad A, Bhattacharya A, McDonald RA, Cordes M, Ellington B et al. 2011. Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface. PNAS 108:18966–71
    [Google Scholar]
  4. 4. 
    Ali MMU, Roe SM, Vaughan CK, Meyer P, Panaretou B et al. 2006. Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature 440:1013–17
    [Google Scholar]
  5. 5. 
    Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M. 2020. Post-translational modifications of Hsp90 and translating the chaperone code. J. Biol. Chem. 295:11099–117
    [Google Scholar]
  6. 6. 
    Balasubramanian A, Markovski M, Hoskins JR, Doyle SM, Wickner S. 2019. Hsp90 of E. coli modulates assembly of FtsZ, the bacterial tubulin homolog. PNAS 116:12285–94
    [Google Scholar]
  7. 7. 
    Balchin D, Hayer-Hartl M, Hartl FU. 2016. In vivo aspects of protein folding and quality control. Science 353:aac4354
    [Google Scholar]
  8. 8. 
    Bardwell JC, Craig EA. 1987. Eukaryotic Mr 83,000 heat shock protein has a homologue in Escherichia coli. PNAS 84:5177–81
    [Google Scholar]
  9. 9. 
    Bardwell JC, Craig EA. 1988. Ancient heat shock gene is dispensable. J. Bacteriol. 170:2977–83
    [Google Scholar]
  10. 10. 
    Barriot R, Latour J, Castanié-Cornet M-P, Fichant G, Genevaux P 2020. J-domain proteins in bacteria and their viruses. J. Mol. Biol. 432:3771–89
    [Google Scholar]
  11. 11. 
    Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ERP. 2009. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. PNAS 106:8471–76
    [Google Scholar]
  12. 12. 
    Bhattacharya K, Weidenauer L, Luengo TM, Pieters EC, Echeverria PC et al. 2020. The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation. Nat. Commun. 11:5975
    [Google Scholar]
  13. 13. 
    Biebl MM, Buchner J. 2019. Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb. Perspect. Biol. 11:a034017
    [Google Scholar]
  14. 14. 
    Bracher A, Verghese J. 2015. The nucleotide exchange factors of Hsp70 molecular chaperones. Front. Mol. Biosci. 2:10
    [Google Scholar]
  15. 15. 
    Bron P, Giudice E, Rolland J-P, Buey RM, Barbier P et al. 2008. Apo-Hsp90 coexists in two open conformational states in solution. Biol. Cell 100:413–25
    [Google Scholar]
  16. 16. 
    Buchner J. 2010. Bacterial Hsp90—desperately seeking clients. Mol. Microbiol. 76:540–44
    [Google Scholar]
  17. 17. 
    Bukau B, Weissman J, Horwich A. 2006. Molecular chaperones and protein quality control. Cell 125:443–51
    [Google Scholar]
  18. 18. 
    Butler LM, Ferraldeschi R, Armstrong HK, Centenera MM, Workman P. 2015. Maximizing the therapeutic potential of HSP90 inhibitors. Mol. Cancer Res. 13:1445–51
    [Google Scholar]
  19. 19. 
    Chang HC, Nathan DF, Lindquist S. 1997. In vivo analysis of the Hsp90 cochaperone Sti1 (p60). Mol. Cell. Biol. 17:318–25
    [Google Scholar]
  20. 20. 
    Choi S, Jang KK, Choi S, Yun HJ, Kang DH. 2012. Identification of the Vibrio vulnificus htpG gene and its influence on cold shock recovery. J. Microbiol. 50:707–11
    [Google Scholar]
  21. 21. 
    Clerico EM, Meng W, Pozhidaeva A, Bhasne K, Petridis C, Gierasch LM. 2019. Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem. J. 476:1653–77
    [Google Scholar]
  22. 22. 
    Cowing DW, Bardwell JC, Craig EA, Woolford C, Hendrix RW, Gross CA 1985. Consensus sequence for Escherichia coli heat shock gene promoters. PNAS 82:2679–83
    [Google Scholar]
  23. 23. 
    Craig EA, Marszalek J. 2017. How do J-proteins get Hsp70 to do so many different things?. Trends Biochem. Sci. 42:355–68
    [Google Scholar]
  24. 24. 
    Cunningham CN, Southworth DR, Krukenberg KA, Agard DA. 2012. The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis. Protein Sci 21:1162–71
    [Google Scholar]
  25. 25. 
    Dahiya V, Buchner J. 2019. Functional principles and regulation of molecular chaperones. Adv. Protein Chem. Struct. Biol. 114:1–60
    [Google Scholar]
  26. 26. 
    Dang W, Hu Y-H, Sun L. 2011. HtpG is involved in the pathogenesis of Edwardsiella tarda. Vet. Microbiol. 152:394–400
    [Google Scholar]
  27. 27. 
    Daturpalli S, Waudby CA, Meehan S, Jackson SE. 2013. Hsp90 inhibits α-synuclein aggregation by interacting with soluble oligomers. J. Mol. Biol. 425:4614–28
    [Google Scholar]
  28. 28. 
    Dollins DE, Warren JJ, Immormino RM, Gewirth DT. 2007. Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol. Cell 28:41–56
    [Google Scholar]
  29. 29. 
    Doyle SM, Genest O, Wickner S. 2013. Protein rescue from aggregates by powerful molecular chaperone machines. Nat. Rev. Mol. Cell Biol. 14:617–29
    [Google Scholar]
  30. 30. 
    Doyle SM, Hoskins JR, Kravats AN, Heffner AL, Garikapati S, Wickner S. 2019. Intermolecular interactions between Hsp90 and Hsp70. J. Mol. Biol. 431:2729–46
    [Google Scholar]
  31. 31. 
    Edkins AL. 2015. ChIP: a co-chaperone for degradation by the proteasome. Subcell. Biochem. 78:219–42
    [Google Scholar]
  32. 32. 
    Elnatan D, Betegon M, Liu Y, Ramelot T, Kennedy MA, Agard DA. 2017. Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1. eLife 6:e25235
    [Google Scholar]
  33. 33. 
    English CA, Sherman W, Meng W, Gierasch LM. 2017. The Hsp70 interdomain linker is a dynamic switch that enables allosteric communication between two structured domains. J. Biol. Chem. 292:14765–74
    [Google Scholar]
  34. 34. 
    Fang F, Barnum SR. 2003. The heat shock gene, htpG, and thermotolerance in the cyanobacterium, Synechocystis sp. PCC 6803. Curr. Microbiol. 47:341–46
    [Google Scholar]
  35. 34a. 
    Fauvet B, Finka A, Castanié-Cornet MP, Cirinesi AM, Genevaux Pet al 2021. Bacterial Hsp90 facilitates the degradation of aggregation-prone Hsp70-Hsp40 substrates. Front. Mol. Biosci 8:653073
    [Google Scholar]
  36. 35. 
    Finka A, Sharma SK, Goloubinoff P. 2015. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front. Mol. Biosci. 2:29
    [Google Scholar]
  37. 36. 
    Deleted in proof
  38. 37. 
    Flom GA, Lemieszek M, Fortunato EA, Johnson JL. 2008. Farnesylation of Ydj1 is required for in vivo interaction with Hsp90 client proteins. Mol. Biol. Cell 19:5249–58
    [Google Scholar]
  39. 38. 
    García-Descalzo L, Alcazar A, Baquero F, Cid C. 2011. Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria. Cell Stress Chaperones 16:203–18
    [Google Scholar]
  40. 39. 
    Garcie C, Tronnet S, Garénaux A, McCarthy AJ, Brachmann AO et al. 2016. The bacterial stress-responsive Hsp90 chaperone (HtpG) is required for the production of the genotoxin colibactin and the siderophore yersiniabactin in Escherichia coli. J. Infect. Dis. 214:916–24
    [Google Scholar]
  41. 40. 
    Gassler CS, Buchberger A, Laufen T, Mayer MP, Schroder H et al. 1998. Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. PNAS 95:15229–34
    [Google Scholar]
  42. 41. 
    Genest O, Hoskins JR, Camberg JL, Doyle SM, Wickner S 2011. Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. PNAS 108:8206–11
    [Google Scholar]
  43. 42. 
    Genest O, Hoskins JR, Kravats AN, Doyle SM, Wickner S. 2015. Hsp70 and Hsp90 of E. coli directly interact for collaboration in protein remodeling. J. Mol. Biol. 427:3877–89
    [Google Scholar]
  44. 43. 
    Genest O, Reidy M, Street TO, Hoskins JR, Camberg JL et al. 2013. Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast. Mol. Cell 49:464–73
    [Google Scholar]
  45. 44. 
    Genest O, Wickner S, Doyle SM. 2019. Hsp90 and Hsp70 chaperones: collaborators in protein remodeling. J. Biol. Chem. 294:2109–20
    [Google Scholar]
  46. 45. 
    Genevaux P, Georgopoulos C, Kelley WL. 2007. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol. 66:840–57
    [Google Scholar]
  47. 46. 
    Graf C, Stankiewicz M, Kramer G, Mayer MP. 2009. Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine. EMBO J 28:602–13
    [Google Scholar]
  48. 47. 
    Grudniak AM, Klecha B, Wolska KI. 2018. Effects of null mutation of the heat-shock gene htpG on the production of virulence factors by Pseudomonas aeruginosa. Future Microbiol 13:69–80
    [Google Scholar]
  49. 48. 
    Grudniak AM, Pawlak K, Bartosik K, Wolska KI. 2013. Physiological consequences of mutations in the htpG heat shock gene of Escherichia coli. Mutat. Res. 745/746:1–5
    [Google Scholar]
  50. 49. 
    Hagn F, Lagleder S, Retzlaff M, Rohrberg J, Demmer O et al. 2011. Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nat. Struct. Mol. Biol. 18:1086–93
    [Google Scholar]
  51. 50. 
    Hainzl O, Lapina MC, Buchner J, Richter K. 2009. The charged linker region is an important regulator of Hsp90 function. J. Biol. Chem. 284:22559–67
    [Google Scholar]
  52. 51. 
    Harnagel A, Lopez Quezada L, Park SW, Baranowski C, Kieser K et al. 2020. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress. Mol. Microbiol. 115:272–89
    [Google Scholar]
  53. 52. 
    Harrison C. 2003. GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones 8:218–24
    [Google Scholar]
  54. 53. 
    Heitzer A, Mason CA, Hamer G. 1992. Heat shock gene expression in continuous cultures of Escherichia coli. J. Biotechnol. 22:153–69
    [Google Scholar]
  55. 54. 
    Hernandez MP, Sullivan WP, Toft DO. 2002. The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J. Biol. Chem. 277:38294–304
    [Google Scholar]
  56. 55. 
    Hipp MS, Kasturi P, Hartl FU. 2019. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20:421–35
    [Google Scholar]
  57. 56. 
    Honoré FA, Maillot NJ, Méjean V, Genest O. 2019. Interplay between the Hsp90 chaperone and the HslVU protease to regulate the level of an essential protein in Shewanella oneidensis. mBio 10:00269-19
    [Google Scholar]
  58. 57. 
    Honoré FA, Méjean V, Genest O. 2017. Hsp90 is essential under heat stress in the bacterium Shewanella oneidensis. Cell Rep 19:680–87
    [Google Scholar]
  59. 58. 
    Huang G, Zhang L, Birch RG. 2001. A multifunctional polyketide-peptide synthetase essential for albicidin biosynthesis in Xanthomonas albilineans. Microbiology 147:631–42
    [Google Scholar]
  60. 59. 
    Huck JD, Que NL, Hong F, Li Z, Gewirth DT. 2017. Structural and functional analysis of GRP94 in the closed state reveals an essential role for the pre-N domain and a potential client-binding site. Cell Rep 20:2800–9
    [Google Scholar]
  61. 60. 
    Inoue T, Shingaki R, Hirose S, Waki K, Mori H, Fukui K. 2007. Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J. Bacteriol. 189:950–57
    [Google Scholar]
  62. 61. 
    Jakob U, Lilie H, Meyer I, Buchner J 1995. Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J. Biol. Chem. 270:7288–94
    [Google Scholar]
  63. 62. 
    Johnson BD, Schumacher RJ, Ross ED, Toft DO. 1998. Hop modulates Hsp70/Hsp90 interactions in protein folding. J. Biol. Chem. 273:3679–86
    [Google Scholar]
  64. 63. 
    Johnson JL. 2012. Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim. Biophys. Acta Mol. Cell Res. 1823:607–13
    [Google Scholar]
  65. 64. 
    Joshi A, Dai L, Liu Y, Lee J, Ghahhari NM et al. 2020. The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis. BMC Biol 18:10
    [Google Scholar]
  66. 65. 
    Kampinga HH, Craig EA. 2010. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11:579–92
    [Google Scholar]
  67. 66. 
    Karagöz GE, Duarte AMS, Akoury E, Ippel H, Biernat J et al. 2014. Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell 156:963–74
    [Google Scholar]
  68. 67. 
    Karagöz GE, Rüdiger SGD. 2015. Hsp90 interaction with clients. Trends Biochem. Sci. 40:117–25
    [Google Scholar]
  69. 68. 
    King AM, Pretre G, Bartpho T, Sermswan RW, Toma C et al. 2014. High-temperature protein G is an essential virulence factor of Leptospira interrogans. Infect. Immun. 82:1123–31
    [Google Scholar]
  70. 69. 
    Kirschke E, Goswami D, Southworth D, Griffin PR, Agard DA. 2014. Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell 157:1685–97
    [Google Scholar]
  71. 70. 
    Kityk R, Kopp J, Mayer MP. 2018. Molecular mechanism of J-domain-triggered ATP hydrolysis by Hsp70 chaperones. Mol. Cell 69:227–37.e4
    [Google Scholar]
  72. 71. 
    Kityk R, Kopp J, Sinning I, Mayer MP. 2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48:863–74
    [Google Scholar]
  73. 72. 
    Kravats AN, Doyle SM, Hoskins JR, Genest O, Doody E, Wickner S. 2017. Interaction of E. coli Hsp90 with DnaK involves the DnaJ binding region of DnaK. J. Mol. Biol. 429:858–72
    [Google Scholar]
  74. 73. 
    Kravats AN, Hoskins JR, Reidy M, Johnson JL, Doyle SM et al. 2018. Functional and physical interaction between yeast Hsp90 and Hsp70. PNAS 115:E2210–19
    [Google Scholar]
  75. 74. 
    Krukenberg KA, Böttcher UMK, Southworth DR, Agard DA. 2009. Grp94, the endoplasmic reticulum Hsp90, has a similar solution conformation to cytosolic Hsp90 in the absence of nucleotide. Protein Sci 18:1815–27
    [Google Scholar]
  76. 75. 
    Krukenberg KA, Förster F, Rice LM, Sali A, Agard DA. 2008. Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90. Structure 16:755–65
    [Google Scholar]
  77. 76. 
    Krukenberg KA, Street TO, Lavery LA, Agard DA. 2011. Conformational dynamics of the molecular chaperone Hsp90. Q. Rev. Biophys. 44:229–55
    [Google Scholar]
  78. 77. 
    Laufen T, Mayer MP, Beisel C, Klostermeier D, Mogk A et al. 1999. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. PNAS 96:5452–57
    [Google Scholar]
  79. 78. 
    Lavery LA, Partridge JR, Ramelot TA, Elnatan D, Kennedy MA, Agard DA. 2014. Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism. Mol. Cell 53:330–43
    [Google Scholar]
  80. 79. 
    Lee M-K, Lee Y, Huh J-W, Chen H, Wu W, Ha U-H. 2020. The Pseudomonas aeruginosa HSP90-like protein HtpG regulates IL-8 expression through NF-κB/p38 MAPK and CYLD signaling triggered by TLR4 and CD91. Microbes Infect 22:558–66
    [Google Scholar]
  81. 80. 
    Li J, Soroka J, Buchner J. 2012. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim. Biophys. Acta Mol. Cell Res. 1823:624–35
    [Google Scholar]
  82. 81. 
    Lindquist S. 1986. The heat-shock response. Annu. Rev. Biochem. 55:1151–91
    [Google Scholar]
  83. 82. 
    Liu LN, Chen XL, Zhang YZ, Zhou BC. 2005. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim. Biophys. Acta Bioenerg. 1708:133–42
    [Google Scholar]
  84. 83. 
    Lorenz OR, Freiburger L, Rutz DA, Krause M, Zierer BK et al. 2014. Modulation of the Hsp90 chaperone cycle by a stringent client protein. Mol. Cell 53:941–53
    [Google Scholar]
  85. 84. 
    Marcinowski M, Holler M, Feige MJ, Baerend D, Lamb DC, Buchner J. 2011. Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions. Nat. Struct. Mol. Biol. 18:150–58
    [Google Scholar]
  86. 85. 
    Marcsisin RA, Bartpho T, Bulach DM, Srikram A, Sermswan RW et al. 2013. Use of a high-throughput screen to identify Leptospira mutants unable to colonize the carrier host or cause disease in the acute model of infection. J. Med. Microbiol. 62:1601–8
    [Google Scholar]
  87. 86. 
    Mashaghi A, Bezrukavnikov S, Minde DP, Wentink AS, Kityk R et al. 2016. Alternative modes of client binding enable functional plasticity of Hsp70. Nature 539:448–51
    [Google Scholar]
  88. 87. 
    Mayer MP. 2010. Gymnastics of molecular chaperones. Mol. Cell 39:321–31
    [Google Scholar]
  89. 88. 
    Mayer MP. 2013. Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem. Sci. 38:507–14
    [Google Scholar]
  90. 89. 
    Mayer MP. 2018. Intra-molecular pathways of allosteric control in Hsp70s. Philos. Trans. R. Soc. B 373:2017.0183
    [Google Scholar]
  91. 90. 
    Mayer MP, Gierasch LM. 2019. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J. Biol. Chem. 294:2085–97
    [Google Scholar]
  92. 91. 
    Mayer MP, Kityk R. 2015. Insights into the molecular mechanism of allostery in Hsp70s. Front. Mol. Biosci. 2:58
    [Google Scholar]
  93. 92. 
    Mayer MP, Laufen T, Paal K, McCarty JS, Bukau B. 1999. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. J. Mol. Biol. 289:1131–44
    [Google Scholar]
  94. 93. 
    Mayer MP, Le Breton L 2015. Hsp90: breaking the symmetry. Mol. Cell 58:8–20
    [Google Scholar]
  95. 94. 
    Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM et al. 2003. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell 11:647–58
    [Google Scholar]
  96. 95. 
    Mickler M, Hessling M, Ratzke C, Buchner J, Hugel T. 2009. The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat. Struct. Mol. Biol. 16:281–86
    [Google Scholar]
  97. 96. 
    Miyata Y, Nakamoto H, Neckers L. 2013. The therapeutic target Hsp90 and cancer hallmarks. Curr. Pharm. Des. 19:347–65
    [Google Scholar]
  98. 97. 
    Mogk A, Bukau B, Kampinga HH. 2018. Cellular handling of protein aggregates by disaggregation machines. Mol. Cell 69:214–26
    [Google Scholar]
  99. 98. 
    Morán Luengo T, Kityk R, Mayer MP, Rüdiger SGD 2018. Hsp90 breaks the deadlock of the Hsp70 chaperone system. Mol. Cell 70:545–52.e9
    [Google Scholar]
  100. 99. 
    Morán Luengo T, Mayer MP, Rüdiger SGD 2019. The Hsp70-Hsp90 chaperone cascade in protein folding. Trends Cell Biol 29:164–77
    [Google Scholar]
  101. 100. 
    Morishima Y, Murphy PJ, Li DP, Sanchez ER, Pratt WB. 2000. Stepwise assembly of a glucocorticoid receptor ⋅ hsp90 heterocomplex resolves two sequential ATP-dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. J. Biol. Chem. 275:18054–60
    [Google Scholar]
  102. 101. 
    Moroni E, Agard DA, Colombo G. 2018. The structural asymmetry of mitochondrial Hsp90 (Trap1) determines fine tuning of functional dynamics. J. Chem. Theory Comput. 14:1033–44
    [Google Scholar]
  103. 102. 
    Motojima-Miyazaki Y, Yoshida M, Motojima F. 2010. Ribosomal protein L2 associates with E. coli HtpG and activates its ATPase activity. Biochem. Biophys. Res. Commun. 400:241–45
    [Google Scholar]
  104. 103. 
    Nakamoto H, Fujita K, Ohtaki A, Watanabe S, Narumi S et al. 2014. Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins. J. Biol. Chem. 289:6110–19
    [Google Scholar]
  105. 104. 
    Nathan DF, Lindquist S. 1995. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol. Cell. Biol. 15:3917–25
    [Google Scholar]
  106. 105. 
    Neidhardt FC, VanBogelen RA, Vaughn V. 1984. The genetics and regulation of heat-shock proteins. Annu. Rev. Genet. 18:295–329
    [Google Scholar]
  107. 106. 
    Nillegoda NB, Wentink AS, Bukau B. 2018. Protein disaggregation in multicellular organisms. Trends Biochem. Sci. 43:285–300
    [Google Scholar]
  108. 107. 
    Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E et al. 2006. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–51
    [Google Scholar]
  109. 108. 
    Olivares AO, Baker TA, Sauer RT. 2016. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nat. Rev. Microbiol. 14:33–44
    [Google Scholar]
  110. 109. 
    Perry RD, Fetherston JD. 2011. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect 13:808–17
    [Google Scholar]
  111. 110. 
    Polier S, Dragovic Z, Hartl FU, Bracher A. 2008. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133:1068–79
    [Google Scholar]
  112. 111. 
    Press MO, Li H, Creanza N, Kramer G, Queitsch C et al. 2013. Genome-scale co-evolutionary inference identifies functions and clients of bacterial Hsp90. PLOS Genet 9:e1003631
    [Google Scholar]
  113. 112. 
    Prodromou C. 2012. The ‘active life’ of Hsp90 complexes. Biochim. Biophys. Acta Mol. Cell Res. 1823:614–23
    [Google Scholar]
  114. 113. 
    Prodromou C. 2016. Mechanisms of Hsp90 regulation. Biochem. J. 473:2439–52
    [Google Scholar]
  115. 114. 
    Qi R, Sarbeng EB, Liu Q, Le KQ, Xu X et al. 2013. Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nat. Struct. Mol. Biol. 20:900–7
    [Google Scholar]
  116. 115. 
    Queitsch C, Sangster TA, Lindquist S. 2002. Hsp90 as a capacitor of phenotypic variation. Nature 417:618–24
    [Google Scholar]
  117. 116. 
    Radli M, Rüdiger SGD. 2018. Dancing with the diva: Hsp90–client interactions. J. Mol. Biol. 430:3029–40
    [Google Scholar]
  118. 117. 
    Ratzke C, Nguyen MNT, Mayer MP, Hugel T. 2012. From a ratchet mechanism to random fluctuations evolution of Hsp90’s mechanochemical cycle. J. Mol. Biol. 423:462–71
    [Google Scholar]
  119. 118. 
    Deleted in proof
  120. 119. 
    Rist W, Graf C, Bukau B, Mayer MP. 2006. Amide hydrogen exchange reveals conformational changes in hsp70 chaperones important for allosteric regulation. J. Biol. Chem. 281:16493–501
    [Google Scholar]
  121. 120. 
    Röhl A, Rohrberg J, Buchner J. 2013. The chaperone Hsp90: changing partners for demanding clients. Trends Biochem. Sci. 38:253–62
    [Google Scholar]
  122. 121. 
    Rohner N, Jarosz DF, Kowalko JE, Yoshizawa M, Jeffery WR et al. 2013. Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science 342:1372–75
    [Google Scholar]
  123. 122. 
    Roongsawang N, Hase K, Haruki M, Imanaka T, Morikawa M, Kanaya S. 2003. Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem. Biol. 10:869–80
    [Google Scholar]
  124. 123. 
    Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. 2019. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 20:665–80
    [Google Scholar]
  125. 124. 
    Rutherford SL, Lindquist S. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396:336–42
    [Google Scholar]
  126. 125. 
    Sato T, Minagawa S, Kojima E, Okamoto N, Nakamoto H. 2010. HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942. Mol. Microbiol. 76:576–89
    [Google Scholar]
  127. 126. 
    Schlecht R, Erbse AH, Bukau B, Mayer MP. 2011. Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat. Struct. Mol. Biol. 18:345–51
    [Google Scholar]
  128. 127. 
    Schmid AB, Lagleder S, Grawert MA, Rohl A, Hagn F et al. 2012. The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO J 31:1506–17
    [Google Scholar]
  129. 128. 
    Schopf FH, Biebl MM, Buchner J. 2017. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 18:345–60
    [Google Scholar]
  130. 129. 
    Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L et al. 2008. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol. Cell 31:232–43
    [Google Scholar]
  131. 130. 
    Shaknovich R, Shue G, Kohtz DS. 1992. Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Mol. Cell. Biol. 12:5059–68
    [Google Scholar]
  132. 131. 
    Shiau AK, Harris SF, Southworth DR, Agard DA. 2006. Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329–40
    [Google Scholar]
  133. 132. 
    Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC et al. 2005. Regulation of Hsp70 function by HspBP1: Structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol. Cell 17:367–79
    [Google Scholar]
  134. 133. 
    Southworth DR, Agard DA. 2008. Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol. Cell 32:631–40
    [Google Scholar]
  135. 134. 
    Street TO, Krukenberg KA, Rosgen J, Bolen DW, Agard DA. 2010. Osmolyte-induced conformational changes in the Hsp90 molecular chaperone. Protein Sci 19:57–65
    [Google Scholar]
  136. 135. 
    Street TO, Lavery LA, Agard DA. 2011. Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone. Mol. Cell 42:96–105
    [Google Scholar]
  137. 136. 
    Street TO, Lavery LA, Verba KA, Lee C-T, Mayer MP, Agard DA. 2012. Cross-monomer substrate contacts reposition the Hsp90 N-terminal domain and prime the chaperone activity. J. Mol. Biol. 415:3–15
    [Google Scholar]
  138. 137. 
    Street TO, Zeng X, Pellarin R, Bonomi M, Sali A et al. 2014. Elucidating the mechanism of substrate recognition by the bacterial Hsp90 molecular chaperone. J. Mol. Biol. 426:2393–404
    [Google Scholar]
  139. 138. 
    Suh WC, Burkholder WF, Lu CZ, Zhao X, Gottesman ME, Gross CA. 1998. Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. PNAS 95:15223–28
    [Google Scholar]
  140. 139. 
    Sun M, Kotler JLM, Liu S, Street TO. 2019. The endoplasmic reticulum (ER) chaperones BiP and Grp94 selectively associate when BiP is in the ADP conformation. J. Biol. Chem. 294:6387–96
    [Google Scholar]
  141. 140. 
    Sung N, Lee J, Kim JH, Chang C, Tsai FT, Lee S 2016. 2.4 Å resolution crystal structure of human TRAP1NM, the Hsp90 paralog in the mitochondrial matrix. Acta Crystallogr. D 72:904–11
    [Google Scholar]
  142. 141. 
    Taipale M, Jarosz DF, Lindquist S. 2010. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11:515–28
    [Google Scholar]
  143. 142. 
    Takayama S, Xie Z, Reed JC. 1999. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J. Biol. Chem. 274:781–86
    [Google Scholar]
  144. 143. 
    Tanaka N, Nakamoto H. 1999. HtpG is essential for the thermal stress management in cyanobacteria. FEBS Lett 458:117–23
    [Google Scholar]
  145. 144. 
    Tsuboyama K, Tadakuma H, Tomari Y. 2018. Conformational activation of Argonaute by distinct yet coordinated actions of the Hsp70 and Hsp90 chaperone systems. Mol. Cell 70:722–29.e4
    [Google Scholar]
  146. 145. 
    Tsutsumi S, Mollapour M, Prodromou C, Lee CT, Panaretou B et al. 2012. Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity. PNAS 109:2937–42
    [Google Scholar]
  147. 146. 
    Umehara K, Hoshikawa M, Tochio N, Tate SI. 2018. Substrate binding switches the conformation at the lynchpin site in the substrate-binding domain of human Hsp70 to enable allosteric interdomain communication. Molecules 23:528
    [Google Scholar]
  148. 147. 
    Verba KA, Agard DA. 2017. How Hsp90 and Cdc37 lubricate kinase molecular switches. Trends Biochem. Sci. 42:799–811
    [Google Scholar]
  149. 148. 
    Verba KA, Wang RY-R, Arakawa A, Liu Y, Shirouzu M et al. 2016. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science 352:1542–47
    [Google Scholar]
  150. 149. 
    Verbrugghe E, Van Parys A, Leyman B, Boyen F, Haesebrouck F, Pasmans F. 2015. HtpG contributes to Salmonella Typhimurium intestinal persistence in pigs. Vet. Res. 46:118
    [Google Scholar]
  151. 150. 
    Versteeg S, Mogk A, Schumann W. 1999. The Bacillus subtilis htpG gene is not involved in thermal stress management. Mol. Gen. Genet. 261:582–88
    [Google Scholar]
  152. 151. 
    Vivien E, Megessier S, Pieretti I, Cociancich S, Frutos R et al. 2005. Xanthomonas albilineans HtpG is required for biosynthesis of the antibiotic and phytotoxin albicidin. FEMS Microbiol. Lett. 251:81–89
    [Google Scholar]
  153. 152. 
    Washio K, Lim SP, Roongsawang N, Morikawa M. 2010. Identification and characterization of the genes responsible for the production of the cyclic lipopeptide arthrofactin by Pseudomonas sp. MIS38. Biosci. Biotechnol. Biochem 74:992–99
    [Google Scholar]
  154. 153. 
    Wegele H, Wandinger SK, Schmid AB, Reinstein J, Buchner J. 2006. Substrate transfer from the chaperone Hsp70 to Hsp90. J. Mol. Biol. 356:802–11
    [Google Scholar]
  155. 154. 
    Weis F, Moullintraffort L, Heichette C, Chretien D, Garnier C. 2010. The 90-kDa heat shock protein Hsp90 protects tubulin against thermal denaturation. J. Biol. Chem. 285:9525–34
    [Google Scholar]
  156. 155. 
    Weiss DS, Brotcke A, Henry T, Margolis JJ, Chan K, Monack DM. 2007. In vivo negative selection screen identifies genes required for Francisella virulence. PNAS 104:6037–42
    [Google Scholar]
  157. 156. 
    Wiech H, Buchner J, Zimmermann R, Jakob U 1992. Hsp90 chaperones protein folding in vitro. Nature 358:169–70
    [Google Scholar]
  158. 157. 
    Winston JL, Toth SI, Roe BA, Dyer DW. 1996. Cloning and characterization of the Actinobacillus actinomycetemcomitans gene encoding a heat-shock protein 90 homologue. Gene 179:199–204
    [Google Scholar]
  159. 158. 
    Wu H, Dyson HJ. 2019. Aggregation of zinc-free p53 is inhibited by Hsp90 but not other chaperones. Protein Sci 28:2020–23
    [Google Scholar]
  160. 159. 
    Yosef I, Goren MG, Kiro R, Edgar R, Qimron U. 2011. High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. PNAS 108:20136–41
    [Google Scholar]
  161. 160. 
    Zhang Y, Zuiderweg ER. 2004. The 70-kDa heat shock protein chaperone nucleotide-binding domain in solution unveiled as a molecular machine that can reorient its functional subdomains. PNAS 101:10272–77
    [Google Scholar]
  162. 161. 
    Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM et al. 1996. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–14
    [Google Scholar]
  163. 162. 
    Zhuravleva A, Clerico EM, Gierasch LM. 2012. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151:1296–307
    [Google Scholar]
  164. 163. 
    Zhuravleva A, Gierasch LM. 2015. Substrate-binding domain conformational dynamics mediate Hsp70 allostery. PNAS 112:E2865–73
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032421-035644
Loading
/content/journals/10.1146/annurev-micro-032421-035644
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error