1932

Abstract

TonB-dependent transporters (TBDTs) are present in all gram-negative bacteria and mediate energy-dependent uptake of molecules that are too scarce or large to be taken up efficiently by outer membrane (OM) diffusion channels. This process requires energy that is derived from the proton motive force and delivered to TBDTs by the TonB-ExbBD motor complex in the inner membrane. Together with the need to preserve the OM permeability barrier, this has led to an extremely complex and fascinating transport mechanism for which the fundamentals, despite decades of research, are still unclear. In this review, we describe our current understanding of the transport mechanism of TBDTs, their potential role in the delivery of novel antibiotics, and the important contributions made by TBDT-associated (lipo)proteins.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032421-111116
2023-09-15
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032421-111116.html?itemId=/content/journals/10.1146/annurev-micro-032421-111116&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abellon-Ruiz J, Jana K, Silale A, Frey AM, Baslé A et al. 2022. BtuB TonB-dependent transporters and BtuG surface lipoproteins form stable complexes for vitamin B12 uptake in gut Bacteroides. bioRxiv 2022.11.17.516869, Nov. 17
  2. 2.
    Arnoux P, Haser R, Izadi-Pruneyre N, Lecroisey A, Czjzek M. 2000. Functional aspects of the heme bound hemophore HasA by structural analysis of various crystal forms. Proteins 41:202–10
    [Google Scholar]
  3. 3.
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T et al. 2011. Enterotypes of the human gut microbiome. Nature 473:7346174–80. Erratum. 2011. Nature 474:666
    [Google Scholar]
  4. 4.
    Balusek C, Gumbart JC. 2016. Role of the native outer-membrane environment on the transporter BtuB. Biophys. J. 111:71409–17
    [Google Scholar]
  5. 5.
    Baquero F, Moreno F. 1984. The microcins. FEMS Microbiol. Lett. 23:2–3117–24
    [Google Scholar]
  6. 6.
    Bassford PJ, Kadner RJ, Schnaitman CA. 1977. Biosynthesis of the outer membrane receptor for vitamin B12, E colicins, and bacteriophage BF23 by Escherichia coli: kinetics of phenotypic expression after the introduction of bfe+ and bfe alleles. J. Bacteriol. 129:1265–75
    [Google Scholar]
  7. 7.
    Bateman TJ, Shah M, Ho TP, Shin HE, Pan C et al. 2021. A Slam-dependent hemophore contributes to heme acquisition in the bacterial pathogen Acinetobacter baumannii. Nat. Commun. 12:16270
    [Google Scholar]
  8. 8.
    Bhamidimarri SP, Young TR, Shanmugam M, Soderholm S, Basle A et al. 2021. Acquisition of ionic copper by the bacterial outer membrane protein OprC through a novel binding site. PLOS Biol 19:11e3001446
    [Google Scholar]
  9. 9.
    Biou V, Adaixo RJD, Chami M, Coureux PD, Laurent B et al. 2022. Structural and molecular determinants for the interaction of ExbB from Serratia marcescens and HasB, a TonB paralog. Commun. Biol. 5:1355 Erratum. 2023. Commun. Biol. 6(1):67
    [Google Scholar]
  10. 10.
    Bishop TF, Martin LW, Lamont IL. 2017. Activation of a cell surface signaling pathway in Pseudomonas aeruginosa requires ClpP protease and new sigma factor synthesis. Front. Microbiol. 8:2442
    [Google Scholar]
  11. 11.
    Bonhivers M, Plançon L, Ghazi A, Boulanger P, Le Maire M et al. 1998. FhuA, an Escherichia coli outer membrane protein with a dual function of transporter and channel which mediates the transport of phage DNA. Biochimie 80:5–6363–69
    [Google Scholar]
  12. 12.
    Bradbeer C. 1993. The proton motive force drives the outer membrane transport of cobalamin in Escherichia coli. J. Bacteriol. 175:103146–50
    [Google Scholar]
  13. 13.
    Bradbeer C, Woodrow ML, Khalifah LI. 1976. Transport of vitamin B12 in Escherichia coli: common receptor system for vitamin B12 and bacteriophage BF23 on the outer membrane of the cell envelope. J. Bacteriol. 125:31032–39
    [Google Scholar]
  14. 14.
    Braun V. 1995. Energy-coupled transport and signal transduction through the Gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol. Rev. 16:4295–307
    [Google Scholar]
  15. 15.
    Braun V, Killmann H. 1999. Bacterial solutions to the iron-supply problem. Trends Biochem. Sci. 24:3104–9
    [Google Scholar]
  16. 16.
    Braun V, Killmann H, Herrmann C. 1994. Inactivation of FhuA at the cell surface of Escherichia coli K-12 by a phage T5 lipoprotein at the periplasmic face of the outer membrane. J. Bacteriol. 176:154710–17
    [Google Scholar]
  17. 17.
    Braun V, Schaller K, Wolff H. 1973. A common receptor protein for phage T5 and colicin M in the outer membrane of Escherichia coli B. Biochim. Biophys. Acta Biomembr. 323:187–97
    [Google Scholar]
  18. 18.
    Brillet K, Journet L, Célia H, Paulus L, Stahl A et al. 2007. A β strand lock exchange for signal transduction in TonB-dependent transducers on the basis of a common structural motif. Structure 15:111383–91
    [Google Scholar]
  19. 19.
    Brillet K, Reimmann C, Mislin GLA, Noël S, Rognan D et al. 2011. Pyochelin enantiomers and their outer-membrane siderophore transporters in fluorescent pseudomonads: structural bases for unique enantiospecific recognition. J. Am. Chem. Soc. 133:4116503–9
    [Google Scholar]
  20. 20.
    Buchanan SK, Smith BS, Venkatramani L, Xia D, Esser L et al. 1999. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struct. Biol. 6:156–63
    [Google Scholar]
  21. 21.
    Cadieux N, Bradbeer C, Kadner RJ. 2000. Sequence changes in the Ton box region of BtuB affect its transport activities and interaction with TonB protein. J. Bacteriol. 182:215954–61
    [Google Scholar]
  22. 22.
    Calmettes C, Ing C, Buckwalter CM, El Bakkouri M, Chieh-Lin Lai C et al. 2015. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nat. Commun. 6:7996
    [Google Scholar]
  23. 23.
    Carter DM, Gagnon JN, Damlaj M, Mandava S, Makowski L et al. 2006. Phage display reveals multiple contact sites between FhuA, an outer membrane receptor of Escherichia coli, and TonB. J. Mol. Biol. 357:1236–51
    [Google Scholar]
  24. 24.
    Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R et al. 2007. Colicin Biology. Microbiol. Mol. Biol. Rev. 71:1158–229
    [Google Scholar]
  25. 25.
    Celia H, Botos I, Ni X, Fox T, De Val N et al. 2019. Cryo-EM structure of the bacterial Ton motor subcomplex ExbB-ExbD provides information on structure and stoichiometry. Commun. Biol. 2:358
    [Google Scholar]
  26. 26.
    Chang C, Mooser A, Plückthun A, Wlodawer A. 2001. Crystal structure of the dimeric C-terminal domain of TonB reveals a novel fold. J. Biol. Chem. 276:2927535–40
    [Google Scholar]
  27. 27.
    Chimento DP, Kadner RJ, Wiener MC. 2005. Comparative structural analysis of TonB-dependent outer membrane transporters: implications for the transport cycle. Proteins Struct. Funct. Genet. 59:2240–51
    [Google Scholar]
  28. 28.
    Chimento DP, Mohanty AK, Kadner RJ, Wiener MC. 2003. Substrate-induced transmembrane signaling in the cobalamin transporter BtuB. Nat. Struct. Mol. Biol. 10:5394–401
    [Google Scholar]
  29. 29.
    Cobessi D, Celia H, Folschweiller N, Schalk IJ, Abdallah MA, Pattus F. 2005. The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 angstroms resolution. J. Mol. Biol. 347:1121–34
    [Google Scholar]
  30. 30.
    Cohen-Khait R, Harmalkar A, Pham P, Webby MN, Housden NG et al. 2021. Colicin-mediated transport of DNA through the iron transporter FepA. mBio 12:5e0178721
    [Google Scholar]
  31. 31.
    Cornelissen CN, Hollander A. 2011. TonB-dependent transporters expressed by Neisseria gonorrhoeae. Front. Microbiol. 2:117
    [Google Scholar]
  32. 32.
    Degnan PH, Barry NA, Mok KC, Taga ME, Goodman AL. 2014. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. Cell Host Microbe 15:147–57
    [Google Scholar]
  33. 33.
    Deme JC, Johnson S, Vickery O, Aron A, Monkhouse H et al. 2020. Structures of the stator complex that drives rotation of the bacterial flagellum. Nat. Microbiol. 5:121553–64
    [Google Scholar]
  34. 34.
    Devanathan S, Postle K. 2007. Studies on colicin B translocation: FepA is gated by TonB. Mol. Microbiol. 65:2441–53
    [Google Scholar]
  35. 35.
    Di Masi DR, White JC, Schnaitman CA, Bradbeer C. 1973. Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J. Bacteriol. 115:2506–13
    [Google Scholar]
  36. 36.
    Draper RC, Martin LW, Beare PA, Lamont IL. 2011. Differential proteolysis of sigma regulators controls cell-surface signalling in Pseudomonas aeruginosa. Mol. Microbiol. 82:61444–53
    [Google Scholar]
  37. 37.
    Eisenhauer HA, Shames S, Pawelek PD, Coulton JW. 2005. Siderophore transport through Escherichia coli outer membrane receptor FhuA with disulfide-tethered cork and barrel domains. J. Biol. Chem. 280:3430574–80
    [Google Scholar]
  38. 38.
    Endriß F, Braun M, Killmann H, Braun V. 2003. Mutant analysis of the Escherichia coli FhuA protein reveals sites of FhuA activity. J. Bacteriol. 185:164683–92
    [Google Scholar]
  39. 39.
    Enz S, Mahren S, Stroeher UH, Braun V. 2000. Surface signaling in ferric citrate transport gene induction: interaction of the FecA, FecR, and FecI regulatory proteins. J. Bacteriol. 182:3637–46
    [Google Scholar]
  40. 40.
    Fanucci GE, Lee JY, Cafiso DS. 2003. Spectroscopic evidence that osmolytes used in crystallization buffers inhibit a conformation change in a membrane protein. Biochemistry 42:4513106–12
    [Google Scholar]
  41. 41.
    Ferguson AD, Amezcua CA, Halabi NM, Chelliah Y, Rosen MK et al. 2007. Signal transduction pathway of TonB-dependent transporters. PNAS 104:2513–18
    [Google Scholar]
  42. 42.
    Ferguson AD, Chakraborty R, Smith BS, Esser L, Van Der Helm D, Deisenhofer J. 2002. Structural basis of gating by the outer membrane transporter FecA. Science 295:55601715–19
    [Google Scholar]
  43. 43.
    Ferguson AD, Coulton JW, Diederichs K, Welte W, Braun V, Fiedler H-P. 2000. Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA. Protein Sci 9:5956–63
    [Google Scholar]
  44. 44.
    Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W. 1998. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:53972215–20
    [Google Scholar]
  45. 45.
    Fischer E, Günter K, Braun V. 1989. Involvement of ExbB and TonB in transport across the outer membrane of Escherichia coli: phenotypic complementation of exb mutants by overexpressed tonB and physical stabilization of TonB by ExbB. J. Bacteriol. 171:95127–34
    [Google Scholar]
  46. 46.
    Fisher JF, Mobashery S. 2016. Endless resistance. Endless antibiotics?. MedChemComm 7:137–49
    [Google Scholar]
  47. 47.
    Flores Jiménez RH, Cafiso DS. 2012. The N-terminal domain of a TonB-dependent transporter undergoes a reversible stepwise denaturation. Biochemistry 51:173642–50
    [Google Scholar]
  48. 48.
    Flores Jiménez RH, Do Cao MA, Kim M, Cafiso DS 2010. Osmolytes modulate conformational exchange in solvent-exposed regions of membrane proteins. Protein Sci 19:2269–78
    [Google Scholar]
  49. 49.
    Foley MH, Martens EC, Koropatkin NM. 2018. SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron. Mol. Microbiol. 108:5551
    [Google Scholar]
  50. 50.
    Freed DM, Lukasik SM, Sikora A, Mokdad A, Cafiso DS. 2013. Monomeric TonB and the Ton box are required for the formation of a high-affinity transporter-TonB complex. Biochemistry 52:152638–48
    [Google Scholar]
  51. 51.
    Frost GE, Rosenberg H. 1975. Relationship between the tonB locus and iron transport in Escherichia coli. J. Bacteriol. 124:2704–12
    [Google Scholar]
  52. 52.
    Garen A, Puck TT. 1951. The first two steps of the invasion of host cells by bacterial viruses: II. J. Exp. Med. 94:3177–89
    [Google Scholar]
  53. 53.
    Gause GF, Biol D. 1955. Recent studies on albomycin, a new antibiotic. Br. Med. J. 2:49491177
    [Google Scholar]
  54. 54.
    Ghosh M, Lin YM, Miller PA, Möllmann U, Boggess WC, Miller MJ. 2018. Siderophore conjugates of daptomycin are potent inhibitors of carbapenem resistant strains of Acinetobacter baumannii. ACS Infect. Dis. 4:101529–35
    [Google Scholar]
  55. 55.
    Ghosh M, Miller MJ. 1996. Synthesis and in vitro antibacterial activity of spermidine-based mixed catechol- and hydroxamate-containing siderophore–vancomycin conjugates. Bioorg. Med. Chem. 4:143–48
    [Google Scholar]
  56. 56.
    Giannella RA, Broitman SA, Zamcheck N. 1971. Vitamin B12 uptake by intestinal microorganisms: mechanism and relevance to syndromes of intestinal bacterial overgrowth. J. Clin. Investig. 50:51100–7
    [Google Scholar]
  57. 57.
    Glenwright AJ, Pothula KR, Bhamidimarri SP, Chorev DS, Baslé A et al. 2017. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature 541:7637407–11
    [Google Scholar]
  58. 58.
    Gómez-Santos N, Glatter T, Koebnik R, Świątek-Połatyńska MA, Søgaard-Andersen L. 2019. A TonB-dependent transporter is required for secretion of protease PopC across the bacterial outer membrane. Nat. Commun. 10:11360
    [Google Scholar]
  59. 59.
    Gray DA, White JBR, Oluwole AO, Rath P, Glenwright AJ et al. 2021. Insights into SusCD-mediated glycan import by a prominent gut symbiont. Nat. Commun. 12:144
    [Google Scholar]
  60. 60.
    Greenwald J, Nader M, Celia H, Gruffaz C, Geoffroy V et al. 2009. FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter. Mol. Microbiol. 72:51246–59
    [Google Scholar]
  61. 61.
    Gresock MG, Kastead KA, Postle K. 2015. From homodimer to heterodimer and back: elucidating the TonB energy transduction cycle. J. Bacteriol. 197:213433–45
    [Google Scholar]
  62. 62.
    Gresock MG, Postle K. 2017. Going outside the TonB box: identification of novel FepA-TonB interactions in vivo. J. Bacteriol. 199:10e00649–16
    [Google Scholar]
  63. 63.
    Grinter R, Hay ID, Song J, Wang J, Teng D et al. 2018. FusC, a member of the M16 protease family acquired by bacteria for iron piracy against plants. PLOS Biol. 16:8e2006026
    [Google Scholar]
  64. 64.
    Grinter R, Josts I, Mosbahi K, Roszak AW, Cogdell RJ et al. 2016. Structure of the bacterial plant-ferredoxin receptor FusA. Nat. Commun. 7:13308
    [Google Scholar]
  65. 65.
    Grinter R, Leung PM, Wijeyewickrema LC, Littler D, Beckham S et al. 2019. Protease-associated import systems are widespread in Gram-negative bacteria. PLOS Genet. 1510e1008435
  66. 66.
    Grinter R, Lithgow T. 2019. The structure of the bacterial iron-catecholate transporter Fiu suggests that it imports substrates via a two-step mechanism. J. Biol. Chem. 294:5119523
    [Google Scholar]
  67. 67.
    Grinter R, Lithgow T. 2019. Determination of the molecular basis for coprogen import by Gram-negative bacteria. IUCrJ 6:Part 3401–11
    [Google Scholar]
  68. 68.
    Grinter R, Lithgow T. 2020. The crystal structure of the TonB-dependent transporter YncD reveals a positively charged substrate-binding site. Acta Crystallogr. Sect. D 76:5484–95
    [Google Scholar]
  69. 69.
    Grossman AS, Mauer TJ, Forest KT, Goodrich-Blair H. 2021. A widespread bacterial secretion system with diverse substrates. mBio 12:4e0195621
    [Google Scholar]
  70. 70.
    Gudmundsdottir A, Bell PA, Lundrigan MD, Bradbeer C, Kadner RJ. 1989. Point mutations in a conserved region (TonB box) of Escherichia coli outer membrane protein BtuB affect vitamin B12 transport. J. Bacteriol. 171:126526–33
    [Google Scholar]
  71. 71.
    Gumbart J, Wiener MC, Tajkhorshid E. 2007. Mechanics of force propagation in TonB-dependent outer membrane transport. Biophys. J. 93:2496–504
    [Google Scholar]
  72. 72.
    Hancock REW, Braun V. 1976. Nature of the energy requirement for the irreversible adsorption of bacteriophages T1 and ϕ80 to Escherichia coli. J. Bacteriol. 125:2409–15
    [Google Scholar]
  73. 73.
    Hannavy K, Barr GC, Dorman CJ, Adamson J, Mazengera LR et al. 1990. TonB protein of Salmonella typhimurium: A model for signal transduction between membranes. J. Mol. Biol. 216:4897–910
    [Google Scholar]
  74. 74.
    Hantke K, Braun V. 1975. Membrane receptor dependent iron transport in Escherichia coli. FEBS Lett 49:3301–5
    [Google Scholar]
  75. 75.
    Hantke K, Friz S. 2022. The TonB-dependent uptake of pyrroloquinoline-quinone (PQQ) and secretion of gluconate by Escherichia coli K-12. Mol. Microbiol. 118:417–25
    [Google Scholar]
  76. 76.
    Hickman SJ, Cooper REM, Bellucci L, Paci E, Brockwell DJ. 2017. Gating of TonB-dependent transporters by substrate-specific forced remodelling. Nat. Commun. 8:14804
    [Google Scholar]
  77. 77.
    Hider RC, Kong X. 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27:5637–57
    [Google Scholar]
  78. 78.
    Hooda Y, Moraes TF. 2018. Translocation of lipoproteins to the surface of gram negative bacteria. Curr. Opin. Struct. Biol. 51:73–79
    [Google Scholar]
  79. 79.
    Hu J, Ghosh M, Miller MJ, Bohn P. 2019. Whole-cell biosensing by siderophore-based molecular recognition and localized surface plasmon resonance. Anal. Methods 11:296–302
    [Google Scholar]
  80. 80.
    James HE, Beare PA, Martin LW, Lamont IL. 2005. Mutational analysis of a bifunctional ferrisiderophore receptor and signal-transducing protein from Pseudomonas aeruginosa. J. Bacteriol. 187:134514–20
    [Google Scholar]
  81. 81.
    Jean SS, Hsueh SC, Lee W-S, Hsueh PR 2019. Cefiderocol: a promising antibiotic against multidrug-resistant Gram-negative bacteria. Exp. Rev. Anti-Infect. Ther. 17:5307–9
    [Google Scholar]
  82. 82.
    Jensen JL, Jernberg BD, Sinha S, Colbert CL. 2020. Structural basis of cell surface signaling by a conserved sigma regulator in Gram-negative bacteria. J. Biol. Chem. 295:175795–806
    [Google Scholar]
  83. 83.
    Jordan LD, Zhou Y, Smallwood CR, Lill Y, Ritchie K et al. 2013. Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane. PNAS 110:2811553–58
    [Google Scholar]
  84. 84.
    Josts I, Veith K, Tidow H 2019. Ternary structure of the outer membrane transporter FoxA with resolved signalling domain provides insights into TonB-mediated siderophore uptake. eLife 8:e48528
    [Google Scholar]
  85. 85.
    Kampfenkel K, Braun V. 1992. Membrane topology of the Escherichia coli ExbD protein. J. Bacteriol. 174:165485
    [Google Scholar]
  86. 86.
    Kampfenkel K, Braun V. 1993. Topology of the ExbB protein in the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 268:86050–57
    [Google Scholar]
  87. 87.
    Killmann H, Benz R, Braun V. 1996. Properties of the FhuA channel in the Escherichia coli outer membrane after deletion of FhuA portions within and outside the predicted gating loop. J. Bacteriol. 178:236913
    [Google Scholar]
  88. 88.
    Kleanthous C 2010. Swimming against the tide: progress and challenges in our understanding of colicin translocation. Nat. Rev. Microbiol. 8:12843–48
    [Google Scholar]
  89. 89.
    Klebba PE. 2016. ROSET model of TonB action in Gram-negative bacterial iron acquisition. J. Bacteriol. 198:71013–21
    [Google Scholar]
  90. 90.
    Koedding J, Howard P, Kaufmann L, Polzer P, Lustig A, Welte W. 2004. Dimerization of TonB is not essential for its binding to the outer membrane siderophore receptor FhuA of Escherichia coli. J. Biol. Chem. 279:119978–86
    [Google Scholar]
  91. 91.
    Konisky J, Soucek S, Frick K, Davies JK, Hammond C. 1976. Relationship between the transport of iron and the amount of specific colicin Ia membrane receptors in Escherichia coli. J. Bacteriol. 127:1249
    [Google Scholar]
  92. 92.
    Kopp DR, Postle K. 2020. The intrinsically disordered region of ExbD is required for signal transduction. J. Bacteriol. 202:7e00687–19
    [Google Scholar]
  93. 93.
    Koropatkin NM, Cameron EA, Martens EC. 2012. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10:5323–35
    [Google Scholar]
  94. 94.
    Kretchmar SA, Reyes ZE, Raymond KN. 1988. The spectroelectrochemical determination of the reduction potential of differic serum transferrin. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 956:185–94
    [Google Scholar]
  95. 95.
    Krieg S, Huché F, Diederichs K, Izadi-Pruneyre N, Lecroisey A et al. 2009. Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. PNAS 106:41045–50
    [Google Scholar]
  96. 96.
    Larsen RA, Thomas MG, Postle K. 1999. Protonmotive force, ExbB and ligand-bound FepA drive conformational changes in TonB. Mol. Microbiol. 31:61809–24
    [Google Scholar]
  97. 97.
    Lauber F, Cornelis GR, Renzi F. 2016. Identification of a new lipoprotein export signal in Gram-negative bacteria. mBio 7:51232–48
    [Google Scholar]
  98. 98.
    Lidbury IDEA, Borsetto C, Murphy ARJ, Bottrill A, Jones AME et al. 2020. Niche-adaptation in plant-associated Bacteroidetes favours specialisation in organic phosphorus mineralisation. ISME J. 15:41040–55
    [Google Scholar]
  99. 99.
    Lin X, Zmyslowski AM, Gagnon IA, Nakamoto RK, Sosnick TR. 2022. Development of in vivo HDX-MS with applications to a TonB-dependent transporter and other proteins. Protein Sci 31:9e4402
    [Google Scholar]
  100. 100.
    Lin YM, Ghosh M, Miller PA, Möllmann U, Miller MJ. 2019. Synthetic sideromycins (skepticism and optimism): selective generation of either broad or narrow spectrum Gram-negative antibiotics. BioMetals 32:3425–51
    [Google Scholar]
  101. 101.
    Liu R, Miller PA, Vakulenko SB, Stewart NK, Boggess WC, Miller MJ. 2018. A synthetic dual drug sideromycin induces Gram-negative bacteria to commit suicide with a Gram-positive antibiotic. J. Med. Chem. 61:93845–54
    [Google Scholar]
  102. 102.
    Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L et al. 1998. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95:6771–78
    [Google Scholar]
  103. 103.
    Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N et al. 2012. Structural engineering of a phage lysin that targets Gram-negative pathogens. PNAS 109:259857–62
    [Google Scholar]
  104. 104.
    Lukasik SM, Ho KWD, Cafiso DS. 2007. Molecular basis for substrate-dependent transmembrane signaling in an outer-membrane transporter. J. Mol. Biol. 370:5807–11
    [Google Scholar]
  105. 105.
    Luria SE, Delbrück M. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:6491–511
    [Google Scholar]
  106. 106.
    Luscher A, Gasser V, Bumann D, Mislin GLA, Schalk IJ, Köhler T. 2022. Plant-derived catechols are substrates of TonB-dependent transporters and sensitize Pseudomonas aeruginosa to siderophore-drug conjugates. mBio 13:4e0149822
    [Google Scholar]
  107. 107.
    Luscher A, Moynie L, Saint Auguste P, Bumann D, Mazza L et al. 2018. TonB-dependent receptor repertoire of Pseudomonas aeruginosa for uptake of siderophore-drug conjugates. Antimicrob. Agents Chemother. 62:6e00097–18
    [Google Scholar]
  108. 108.
    Ma L, Kaserer W, Annamalai R, Scott DC, Jin B et al. 2007. Evidence of ball-and-chain transport of ferric enterobactin through FepA. J. Biol. Chem. 282:1397–406
    [Google Scholar]
  109. 109.
    Madej M, White JBR, Nowakowska Z, Rawson S, Scavenius C et al. 2020. Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nat. Microbiol. 5:81016–25
    [Google Scholar]
  110. 110.
    Majumdar A, Trinh V, Moore KJ, Smallwood CR, Kumar A et al. 2020. Conformational rearrangements in the N-domain of Escherichia coli FepA during ferric enterobactin transport. J. Biol. Chem. 295:154974
    [Google Scholar]
  111. 111.
    Malki I, Simenel C, Wojtowicz H, De Amorim GC, Prochnicka-Chalufour A et al. 2014. Interaction of a partially disordered antisigma factor with its partner, the signaling domain of the TonB-dependent transporter HasR. PLOS ONE 9:4e89502
    [Google Scholar]
  112. 112.
    Martens EC, Koropatkin NM, Smith TJ, Gordon JI. 2009. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284:3724673–77
    [Google Scholar]
  113. 113.
    Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M et al. 2011. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLOS Biol 9:12e1001221
    [Google Scholar]
  114. 114.
    Mills A, Le HT, Coulton JW, Duong F. 2014. FhuA interactions in a detergent-free nanodisc environment. Biochim. Biophys. Acta Biomembr. 1838:1364–71
    [Google Scholar]
  115. 115.
    Mislin GLA, Schalk IJ. 2014. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 6:3408–20
    [Google Scholar]
  116. 116.
    Moynié L, Hoegy F, Milenkovic S, Munier M, Paulen A et al. 2022. Hijacking of the enterobactin pathway by a synthetic catechol vector designed for oxazolidinone antibiotic delivery in Pseudomonas aeruginosa. ACS Infect. Dis. 8:91894–904
    [Google Scholar]
  117. 117.
    Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A et al. 2017. Structure and function of the PiuA and PirA siderophore-drug receptors from Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob. Agents Chemother. 61:4e02531–16
    [Google Scholar]
  118. 118.
    Moynié L, Milenkovic S, Mislin GLA, Gasser V, Malloci G et al. 2019. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat. Commun. 10:13673
    [Google Scholar]
  119. 119.
    Moynié L, Serra I, Scorciapino MA, Oueis E, Page MGP et al. 2018. Preacinetobactin not acinetobactin is essential for iron uptake by the BauA transporter of the pathogen Acinetobacter baumannii. . eLife 7:e42270
    [Google Scholar]
  120. 120.
    Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. 2019. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol. 10:539
    [Google Scholar]
  121. 121.
    Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G et al. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:10325629–55
    [Google Scholar]
  122. 122.
    Newton SM, Trinh V, Pi H, Klebba PE. 2010. Direct measurements of the outer membrane stage of ferric enterobactin transport: postuptake binding. J. Biol. Chem. 285:2317488–97
    [Google Scholar]
  123. 123.
    Nilaweera TD, Nyenhuis DA, Cafiso DS 2021. Structural intermediates observed only in intact Escherichia coli indicate a mechanism for TonB-dependent transport. eLife 10:e68548
    [Google Scholar]
  124. 124.
    Noinaj N, Buchanan SK, Cornelissen CN. 2012. The transferrin-iron import system from pathogenic Neisseria species. Mol. Microbiol. 86:2246
    [Google Scholar]
  125. 125.
    Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J et al. 2012. Structural basis for iron piracy by pathogenic Neisseria. Nature 483:738753–58
    [Google Scholar]
  126. 126.
    Noinaj N, Guillier M, Barnard TJ, Buchanan SK. 2010. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64:43–60
    [Google Scholar]
  127. 127.
    Nosrati R, Dehghani S, Karimi B, Yousefi M, Taghdisi SM et al. 2018. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosens. Bioelectron. 117:1–14
    [Google Scholar]
  128. 128.
    Nyenhuis DA, Nilaweera TD, Cafiso DS. 2020. Native cell environment constrains loop structure in the Escherichia coli cobalamin transporter BtuB. Biophys. J. 119:81550–57
    [Google Scholar]
  129. 129.
    Ollis AA, Kumar A, Postle K. 2012. The ExbD periplasmic domain contains distinct functional regions for two stages in TonB energization. J. Bacteriol. 194:123069
    [Google Scholar]
  130. 130.
    Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N et al. 2006. Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 312:57781399–402
    [Google Scholar]
  131. 131.
    Pieńko T, Czarnecki J, Równicki M, Wojciechowska M, Wierzba AJ et al. 2021. Vitamin B12-peptide nucleic acids use the BtuB receptor to pass through the Escherichia coli outer membrane. Biophys. J. 120:4725–37
    [Google Scholar]
  132. 132.
    Pieńko T, Trylska J. 2020. Extracellular loops of BtuB facilitate transport of vitamin B12 through the outer membrane of E. coli. PLOS Comput. Biol. 16:7e1008024
    [Google Scholar]
  133. 133.
    Pollet RM, Martin LM, Koropatkin NM. 2021. TonB-dependent transporters in the Bacteroidetes: unique domain structures and potential functions. Mol. Microbiol. 115:3490–501
    [Google Scholar]
  134. 134.
    Postle K, Good RF. 1983. DNA sequence of the Escherichia coli tonB gene. PNAS 80:175235–39
    [Google Scholar]
  135. 135.
    Postle K, Skare JT. 1988. Escherichia coli TonB protein is exported from the cytoplasm without proteolytic cleavage of its amino terminus. J. Biol. Chem. 263:2211000–7
    [Google Scholar]
  136. 136.
    Pressler U, Staudenmaier H, Zimmermann L, Braun V. 1988. Genetics of the iron dicitrate transport system of Escherichia coli. J. Bacteriol. 170:62716–24
    [Google Scholar]
  137. 137.
    Pugsley AP, Reeves P. 1976. Iron uptake in colicin B-resistant mutants of Escherichia coli K-12. J. Bacteriol. 126:31052
    [Google Scholar]
  138. 138.
    Putnam EE, Abellon-Ruiz J, Killinger BJ, Rosnow JJ, Wexler AG et al. 2022. Gut commensal Bacteroidetes encode a novel class of vitamin B12-binding proteins. mBio 13:2e0284521
    [Google Scholar]
  139. 139.
    Putnam EE, Goodman AL. 2020. B vitamin acquisition by gut commensal bacteria. PLOS Pathog 16:1e1008208
    [Google Scholar]
  140. 140.
    Ratliff AC, Buchanan SK, Celia H 2022. The Ton motor. Front. Microbiol. 13:1240
    [Google Scholar]
  141. 141.
    Reynolds PR, Mottur GP, Bradbeer C. 1980. Transport of vitamin B12 in Escherichia coli: some observations on the roles of the gene products of BtuC and TonB. J. Biol. Chem. 255:94313–19
    [Google Scholar]
  142. 142.
    Rutz JM, Liu J, Lyons JA, Goranson J, Armstrong SK et al. 1992. Formation of a gated channel by a ligand-specific transport protein in the bacterial outer membrane. Science 258:5081471–75
    [Google Scholar]
  143. 143.
    Saleem M, Prince SM, Rigby SEJ, Imran M, Patel H et al. 2013. Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis. PLOS ONE 8:2e56746
    [Google Scholar]
  144. 144.
    Santiveri M, Roa-Eguiara A, Kühne C, Wadhwa N, Hu H et al. 2020. Structure and function of stator units of the bacterial flagellar motor. Cell 183:1244–57.e16
    [Google Scholar]
  145. 145.
    Sargun A, Gerner RR, Raffatellu M, Nolan EM. 2021. Harnessing iron acquisition machinery to target Enterobacteriaceae. J. Infect. Dis. 223:Suppl. 3S307
    [Google Scholar]
  146. 146.
    Sarver JL, Zhang M, Liu L, Nyenhuis D, Cafiso DS. 2018. A dynamic protein-protein coupling between the TonB-dependent transporter FhuA and TonB. Biochemistry 57:61045–53
    [Google Scholar]
  147. 147.
    Schalk IJ, Mislin GLA. 2017. Bacterial iron uptake pathways: gates for the import of bactericide compounds. J. Med. Chem. 60:114573–76
    [Google Scholar]
  148. 148.
    Schöffler H, Braum V. 1989. Transport across the outer membrane of Escherichia coli K12 via the FhuA receptor is regulated by the TonB protein of the cytoplasmic membrane. Mol. Gen. Genet. 217:2378–83
    [Google Scholar]
  149. 149.
    Scott DC, Cao Z, Qi Z, Bauler M, Igo JD et al. 2001. Exchangeability of N termini in the ligand-gated porins of Escherichia coli. J. Biol. Chem. 276:1613025–33
    [Google Scholar]
  150. 150.
    Shultis DD, Purdy MD, Banchs CN, Wiener MC. 2006. Outer membrane active transport: structure of the BtuB:TonB complex. Science 312:57781396–99
    [Google Scholar]
  151. 151.
    Street AG, Mayo SL. 1999. Intrinsic β-sheet propensities result from van der Waals interactions between side chains and the local backbone. PNAS 96:169074–76
    [Google Scholar]
  152. 152.
    Thoma J, Bosshart P, Pfreundschuh M, Müller DJ. 2012. Out but not in: The large transmembrane β-barrel protein FhuA unfolds but cannot refold via β-hairpins. Structure 20:122185–90
    [Google Scholar]
  153. 153.
    Thomas X, Destoumieux-Garzón D, Peduzzi J, Afonso C, Blond A et al. 2004. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J. Biol. Chem. 279:2728233–42
    [Google Scholar]
  154. 154.
    Tomasek D, Kahne D. 2021. The assembly of β-barrel outer membrane proteins. Curr. Opin. Microbiol. 60:16
    [Google Scholar]
  155. 155.
    Tomasek D, Rawson S, Lee J, Wzorek JS, Harrison SC et al. 2020. Structure of a nascent membrane protein as it folds on the BAM complex. Nature 583:7816473–78
    [Google Scholar]
  156. 156.
    Udho E, Jakes KS, Finkelstein A. 2012. TonB-dependent transporter FhuA in planar lipid bilayers: partial exit of its plug from the barrel. Biochemistry 51:346753–59
    [Google Scholar]
  157. 157.
    van den Berg B, Silale A, Baslé A, Brandner AF, Mader SL, Khalid S. 2022. Structural basis for host recognition and superinfection exclusion by bacteriophage T5. PNAS 119:42e2211672119
    [Google Scholar]
  158. 158.
    Weidel W. 1951. Über die Zellmembran von Escherichia coli B. Zeitschrift fur Naturforsch. B 6:5251–59
    [Google Scholar]
  159. 159.
    Weinberg ED. 1975. Nutritional immunity: host's attempt to withhold iron from microbial invaders. JAMA 231:139–41
    [Google Scholar]
  160. 160.
    Wencewicz TA, Miller MJ. 2018. Sideromycins as pathogen-targeted antibiotics. Top. Med. Chem. 26:151–83
    [Google Scholar]
  161. 161.
    Wexler AG, Goodman AL. 2017. An insider's perspective: Bacteroides as a window into the microbiome. Nat. Microbiol. 2:517026
    [Google Scholar]
  162. 162.
    Wexler AG, Schofield WB, Degnan PH, Folta-Stogniew E, Barry NA, Goodman AL 2018. Human gut Bacteroides capture vitamin B12 via cell surface-exposed lipoproteins. eLife 7:e37138
    [Google Scholar]
  163. 163.
    White JBR, Silale A, Feasey M, Heunis T, Zhu Y et al. 2022. Outer membrane utilisomes mediate oligosaccharide uptake in gut Bacteroidetes. bioRxiv 2022.08.15.503959, Aug. 15
  164. 164.
    White P, Joshi A, Rassam P, Housden NG, Kaminska R et al. 2017. Exploitation of an iron transporter for bacterial protein antibiotic import. PNAS 114:4512051–56
    [Google Scholar]
  165. 165.
    Wojnowska M, Walker D. 2020. FusB energizes import across the outer membrane through direct interaction with its ferredoxin substrate. mBio 11:5e02081–20
    [Google Scholar]
  166. 166.
    Yue WW, Grizot S, Buchanan SK. 2003. Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA. J. Mol. Biol. 332:2353–68
    [Google Scholar]
  167. 167.
    Zhu W, Winter MG, Spiga L, Hughes ER, Chanin R et al. 2020. Xenosiderophore utilization promotes Bacteroides thetaiotaomicron resilience during colitis. Cell Host Microbe 27:3376–88.e8
    [Google Scholar]
  168. 168.
    Zmyslowski AM, Baxa MC, Gagnon IA, Sosnick TR. 2022. HDX-MS performed on BtuB in E. coli outer membranes delineates the luminal domain's allostery and unfolding upon B12 and TonB binding. PNAS 119:20e2119436119
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032421-111116
Loading
/content/journals/10.1146/annurev-micro-032421-111116
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error