1932

Abstract

Genetic manipulation is necessary to interrogate the functions of microbes in their environments, such as the human gut microbiome. Yet, the vast majority of human gut microbiome species are not genetically tractable. Here, we review the hurdles to seizing genetic control of more species. We address the barriers preventing the application of genetic techniques to gut microbes and report on genetic systems currently under development. While methods aimed at genetically transforming many species simultaneously in situ show promise, they are unable to overcome many of the same challenges that exist for individual microbes. Unless a major conceptual breakthrough emerges, the genetic tractability of the microbiome will remain an arduous task. Increasing the list of genetically tractable organisms from the human gut remains one of the highest priorities for microbiome research and will provide the foundation for microbiome engineering.

Keyword(s): engineeringgeneticsmicrobiome
Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032421-112304
2023-09-15
2024-05-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032421-112304.html?itemId=/content/journals/10.1146/annurev-micro-032421-112304&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Amarelle V, Sanches-Medeiros A, Silva-Rocha R, Guazzaroni ME. 2019. Expanding the toolbox of broad host-range transcriptional terminators for Proteobacteria through metagenomics. ACS Synth. Biol. 8:4647–54
    [Google Scholar]
  2. 2.
    Aparicio-Maldonado C, Ofir G, Salini A, Sorek R, Nobrega FL et al. 2021. Class I DISARM provides anti-phage and anti-conjugation activity by unmethylated DNA recognition. bioRxiv 474362, Dec. 18. https://doi.org/10.1101/2021.12.28.474362
  3. 3.
    Archer EJ, Robinson AB, Süel GM. 2012. Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing. ACS Synth. Biol. 1:10451–57
    [Google Scholar]
  4. 4.
    Aune TEV, Aachmann FL. 2010. Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. Appl. Microbiol. Biotechnol. 85:51301–13
    [Google Scholar]
  5. 5.
    Aviv G, Rahav G, Gal-Mor O. 2016. Horizontal transfer of the Salmonella enterica serovar Infantis resistance and virulence plasmid pESI to the gut microbiota of warm-blooded hosts. mBio 7:5e01395–16
    [Google Scholar]
  6. 6.
    Baharoglu Z, Krin E, Mazel D. 2012. Connecting environment and genome plasticity in the characterization of transformation-induced SOS regulation and carbon catabolite control of the Vibrio cholerae integron integrase. J. Bacteriol. 194:71659–67
    [Google Scholar]
  7. 7.
    Baharoglu Z, Mazel D. 2014. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol. Rev. 38:61126–45
    [Google Scholar]
  8. 8.
    Baughn AD, Malamy MH. 2002. A mitochondrial-like aconitase in the bacterium Bacteroides fragilis: implications for the evolution of the mitochondrial Krebs cycle. PNAS 99:74662–67
    [Google Scholar]
  9. 9.
    Bean EL, Herman C, Anderson ME, Grossman AD. 2022. Biology and engineering of integrative and conjugative elements: construction and analyses of hybrid ICEs reveal element functions that affect species-specific efficiencies. PLOS Genet 18:5e1009998
    [Google Scholar]
  10. 10.
    Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW et al. 2014. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32:111146–50
    [Google Scholar]
  11. 11.
    Blomqvist T, Steinmoen H, Håvarstein LS. 2006. Natural genetic transformation: a novel tool for efficient genetic engineering of the dairy bacterium Streptococcus thermophilus. Appl. Environ. Microb. 72:106751–56
    [Google Scholar]
  12. 12.
    Bonomo J, Gill RT. 2005. Amino acid content of recombinant proteins influences the metabolic burden response. Biotechnol. Bioeng. 90:1116–26
    [Google Scholar]
  13. 13.
    Borrero J, Chen Y, Dunny GM, Kaznessis YN. 2015. Modified lactic acid bacteria detect and inhibit multiresistant enterococci. ACS Synth. Biol. 4:3299–306
    [Google Scholar]
  14. 14.
    Brophy JAN, Triassi AJ, Adams BL, Renberg RL, Stratis-Cullum DN et al. 2018. Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nat. Microbiol. 3:91043–53
    [Google Scholar]
  15. 15.
    Campoy S, Hervàs A, Busquets N, Erill I, Teixidó L, Barbé J. 2006. Induction of the SOS response by bacteriophage lytic development in Salmonella enterica. Virology 351:2360–67
    [Google Scholar]
  16. 16.
    Cartman ST, Kelly ML, Heeg D, Heap JT, Minton NP. 2012. Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl. Environ. Microb. 78:134683–90
    [Google Scholar]
  17. 17.
    Chen Q, Fischer JR, Benoit VM, Dufour NP, Youderian P, Leong JM. 2008. In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J. Bacteriol. 190:247885–91
    [Google Scholar]
  18. 18.
    Cheng AG, Ho P-Y, Aranda-Díaz A, Jain S, Yu FB et al. 2022. Design, construction, and in vivo augmentation of a complex gut microbiome. Cell 185:193617–36
    [Google Scholar]
  19. 19.
    Chibani CM, Mahnert A, Borrel G, Almeida A, Werner A et al. 2022. A catalogue of 1,167 genomes from the human gut archaeome. Nat. Microbiol. 7:148–61
    [Google Scholar]
  20. 20.
    Christie PJ, Whitaker N, González-Rivera C. 2014. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta Mol. Cell. Res. 1843:81578–91
    [Google Scholar]
  21. 21.
    Chung D, Farkas J, Westpheling J. 2013. Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol. Biofuels 6:182–91
    [Google Scholar]
  22. 22.
    Citorik RJ, Mimee M, Lu TK. 2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32:111141–45
    [Google Scholar]
  23. 23.
    Collins MD, Gibson GR. 1999. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69:51052S–57S
    [Google Scholar]
  24. 24.
    Cooke MB, Herman C. 2023. Conjugation's toolkit: the roles of nonstructural proteins in bacterial sex. J. Bacteriol. Res. 205:3e00438–22
    [Google Scholar]
  25. 25.
    Costa SK, Donegan NP, Corvaglia A-R, François P, Cheung AL. 2017. Bypassing the restriction system to improve transformation of Staphylococcus epidermidis. J. Bacteriol. 199:16e00271–17
    [Google Scholar]
  26. 26.
    Cuív , Giri R, Hoedt EC, McGuckin MA, Begun J, Morrison M. 2018. Enterococcus faecalis AHG0090 is a genetically tractable bacterium and produces a secreted peptidic bioactive that suppresses nuclear factor kappa B activation in human gut epithelial cells. Front. Immunol. 9:790
    [Google Scholar]
  27. 27.
    Daeffler KN, Galley JD, Sheth RU, Ortiz-Velez LC, Bibb CO et al. 2017. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol. Syst. Biol. 13:4923
    [Google Scholar]
  28. 28.
    Dalia AB, Lazinski DW, Camilli A. 2014. Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. mBio 5:1e01028–13
    [Google Scholar]
  29. 29.
    Deatherage DE, Leon D, Rodriguez ÁE, Omar SK, Barrick JE. 2018. Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates. Nucleic Acids Res 46:179236–50
    [Google Scholar]
  30. 30.
    Deep A, Gu Y, Gao Y, Ego KM, Herzik MA et al. 2022. The SMC-family Wadjet complex protects bacteria from plasmid transformation by recognition and cleavage of closed-circular DNA. Mol. Cell 82:4145–59
    [Google Scholar]
  31. 31.
    del Campo I, Ruiz R, Cuevas A, Revilla C, Vielva L, de la Cruz F. 2012. Determination of conjugation rates on solid surfaces. Plasmid 67:2174–82
    [Google Scholar]
  32. 32.
    Devlin AS, Marcobal A, Dodd D, Nayfach S, Plummer N et al. 2016. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe 20:6709–15
    [Google Scholar]
  33. 33.
    Donahue JP, Israel DA, Peek RM, Blaser MJ, Miller GG. 2000. Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori. Mol. Microbiol. 37:51066–74
    [Google Scholar]
  34. 34.
    Dorer MS, Cohen IE, Sessler TH, Fero J, Salama NR. 2013. Natural competence promotes Helicobacter pylori chronic infection. Infect. Immun. 81:1209–15
    [Google Scholar]
  35. 35.
    Drouault S, Anba J, Corthier G. 2002. Streptococcus thermophilus is able to produce a β-galactosidase active during its transit in the digestive tract of germ-free mice. Appl. Environ. Microb. 68:2938–41
    [Google Scholar]
  36. 36.
    Duan FF, Liu JH, March JC. 2015. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes 64:51794–803
    [Google Scholar]
  37. 37.
    Echlin H, Rosch JW. 2020. Advancing genetic tools in Streptococcus pneumoniae. Genes 11:9965
    [Google Scholar]
  38. 38.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L et al. 2005. Diversity of the human intestinal microbial flora. Science 308:57281635–38
    [Google Scholar]
  39. 39.
    Edwards RA, Helm RA, Maloy SR. 1999. Increasing DNA transfer efficiency by temporary inactivation of host restriction. Biotechniques 26:892–94
    [Google Scholar]
  40. 40.
    Enríquez LL, Mendes MV, Antón N, Tunca S, Guerra SM et al. 2006. An efficient gene transfer system for the pimaricin producer Streptomyces natalensis. FEMS Microbiol. Lett. 257:2312–18
    [Google Scholar]
  41. 41.
    Ettwiller L, Buswell J, Yigit E, Schildkraut I. 2016. A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome. BMC Genom. 17:1199
    [Google Scholar]
  42. 42.
    Farzadfard F, Gharaei N, Citorik RJ, Lu TK. 2021. Efficient retroelement-mediated DNA writing in bacteria. Cell Syst 12:9860–72
    [Google Scholar]
  43. 43.
    Fernandez-Lopez R, del Campo I, Revilla C, Cuevas A, de la Cruz F. 2014. Negative feedback and transcriptional overshooting in a regulatory network for horizontal gene transfer. PLOS Genet 10:2e1004171
    [Google Scholar]
  44. 44.
    Flint HJ, Thomson AM, Bisset J. 1988. Plasmid-associated transfer of tetracycline resistance in Bacteroides ruminicola. Appl. Environ. Microb. 54:4855–60
    [Google Scholar]
  45. 45.
    Freed E, Fenster J, Smolinski SL, Walker J, Henard CA et al. 2018. Building a genome engineering toolbox in nonmodel prokaryotic microbes. Biotechnol. Bioeng. 115:92120–38
    [Google Scholar]
  46. 46.
    García-Bayona L, Comstock LE. 2019. Streamlined genetic manipulation of diverse Bacteroides and Parabacteroides isolates from the human gut microbiota. mBio 10:4e01762–19
    [Google Scholar]
  47. 47.
    Glowacki RWP, Pudlo NA, Tuncil Y, Luis AS, Sajjakulnukit P et al. 2020. A ribose-scavenging system confers colonization fitness on the human gut symbiont Bacteroides thetaiotaomicron in a diet-specific manner. Cell Host Microbe 27:179–92
    [Google Scholar]
  48. 48.
    Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD et al. 2009. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6:3279–89
    [Google Scholar]
  49. 49.
    Grahn AM, Haase J, Bamford DH, Lanka E. 2000. Components of the RP4 conjugative transfer apparatus form an envelope structure bridging inner and outer membranes of donor cells: implications for related macromolecule transport systems. J. Bacteriol. 182:61564–74
    [Google Scholar]
  50. 50.
    Gu J, Liu X, Li Y, Han W, Lei L et al. 2012. A method for generation phage cocktail with great therapeutic potential. PLOS ONE 7:3e31698
    [Google Scholar]
  51. 51.
    Guglielmini J, Quintais L, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. 2011. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLOS Genet 7:8e1002222
    [Google Scholar]
  52. 52.
    Guiral S, Mitchell TJ, Martin B, Claverys J-P. 2005. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. PNAS 102:248710–15
    [Google Scholar]
  53. 53.
    Guo C-J, Allen BM, Hiam KJ, Dodd D, Treuren WV et al. 2019. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science 366:6471eaav1282
    [Google Scholar]
  54. 54.
    Guthrie EP, Salyers AA. 1986. Use of targeted insertional mutagenesis to determine whether chondroitin lyase II is essential for chondroitin sulfate utilization by Bacteroides thetaiotaomicron. J. Bacteriol. 166:3966–71
    [Google Scholar]
  55. 55.
    Hamady ZZR, Scott N, Farrar MD, Lodge JPA, Holland KT et al. 2010. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59:4461–69
    [Google Scholar]
  56. 56.
    Hapfelmeier S, Lawson MAE, Slack E, Kirundi JK, Stoel M et al. 2010. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328:59861705–9
    [Google Scholar]
  57. 57.
    Hartsough LA, Park M, Kotlajich MV, Lazar JT, Han B et al. 2020. Optogenetic control of gut bacterial metabolism to promote longevity. eLife 9:e56849
    [Google Scholar]
  58. 58.
    Hormaeche I, Iloro I, Arrondo JLR, Goñi FM, de la Cruz F, Alkorta I. 2004. Role of the transmembrane domain in the stability of TrwB, an integral protein involved in bacterial conjugation. J. Biol. Chem. 279:1210955–61
    [Google Scholar]
  59. 59.
    Huang P-H, Chen S, Shiver AL, Culver RN, Huang KC, Buie CR. 2022. M-TUBE enables large-volume bacterial gene delivery using a high-throughput microfluidic electroporation platform. PLOS Biol 20:9e3001727
    [Google Scholar]
  60. 60.
    Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH et al. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:7402207–14
    [Google Scholar]
  61. 61.
    Hwang IY, Koh E, Wong A, March JC, Bentley WE et al. 2017. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8:115028
    [Google Scholar]
  62. 62.
    Jaskólska M, Adams DW, Blokesch M. 2022. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 604:323–29
    [Google Scholar]
  63. 63.
    Jayaraman P, Holowko MB, Yeoh JW, Lim S, Poh CL. 2017. Repurposing a two-component system-based biosensor for the killing of Vibrio cholerae. ACS Synth. Biol. 6:71403–15
    [Google Scholar]
  64. 64.
    Jin W-B, Li T-T, Huo D, Qu S, Li XV et al. 2022. Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell 185:547–62
    [Google Scholar]
  65. 65.
    Johnston CD, Cotton SL, Rittling SR, Starr JR, Borisy GG et al. 2019. Systematic evasion of the restriction-modification barrier in bacteria. PNAS 116:2311454–59
    [Google Scholar]
  66. 66.
    Johnston CD, Skeete CA, Fomenkov A, Roberts RJ, Rittling SR. 2017. Restriction-modification mediated barriers to exogenous DNA uptake and incorporation employed by Prevotella intermedia. PLOS ONE 12:9e0185234
    [Google Scholar]
  67. 67.
    Kinder SA, Badger JL, Bryant GO, Pepe JC, Miller VL. 1993. Cloning of the YenI restriction endonuclease and methyltransferase from Yersinia enterocolitica serotype O8 and construction of a transformable RM+ mutant. Gene 136:12271–75
    [Google Scholar]
  68. 68.
    Kino Y, Nakayama-Imaohji H, Fujita M, Tada A, Yoneda S et al. 2016. Counterselection employing mutated pheS for markerless genetic deletion in Bacteroides species. Anaerobe 42:81–88
    [Google Scholar]
  69. 69.
    Klümper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH et al. 2015. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J 9:4934–45
    [Google Scholar]
  70. 70.
    Koropatkin NM, Martens EC, Gordon JI, Smith TJ. 2008. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16:71105–15
    [Google Scholar]
  71. 71.
    Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ et al. 2014. Programmable bacteria detect and record an environmental signal in the mammalian gut. PNAS 111:134838–43
    [Google Scholar]
  72. 72.
    Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR et al. 2019. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 11:475eaau7975
    [Google Scholar]
  73. 73.
    Kushwaha M, Salis HM. 2015. A portable expression resource for engineering cross-species genetic circuits and pathways. Nat. Commun. 6:17832
    [Google Scholar]
  74. 74.
    Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M et al. 2018. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16:9540–50
    [Google Scholar]
  75. 75.
    Lai Y, Hayashi N, Lu TK. 2022. Engineering the human gut commensal Bacteroides thetaiotaomicron with synthetic biology. Curr. Opin. Chem. Biol. 70:102178
    [Google Scholar]
  76. 76.
    Landry BP, Tabor JJ. 2017. Engineering diagnostic and therapeutic gut bacteria. Microbiol. Spectr. 5:5 https://doi.org/10.1128/microbiolspec.BAD-0020-2017
    [Google Scholar]
  77. 77.
    Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK. 2013. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501:7467426–29
    [Google Scholar]
  78. 78.
    Liu D, Siguenza NE, Zarrinpar A, Ding Y. 2022. Methods of DNA introduction for the engineering of commensal microbes. Eng. Microbiol. 2:4100048
    [Google Scholar]
  79. 79.
    Liu H, Price MN, Waters RJ, Ray J, Carlson HK et al. 2018. Magic pools: parallel assessment of transposon delivery vectors in bacteria. mSystems 3:1e00143–17
    [Google Scholar]
  80. 80.
    Liu H, Shiver AL, Price MN, Carlson HK, Trotter VV et al. 2021. Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. Cell Rep 34:9108789
    [Google Scholar]
  81. 81.
    Liu M, Li S, Zhang Q, Xu Z, Wang J, Sun H. 2018. Oral engineered Bifidobacterium longum expressing rhMnSOD to suppress experimental colitis. Int. Immunopharmacol. 57:25–32
    [Google Scholar]
  82. 82.
    Loeschcke A, Markert A, Wilhelm S, Wirtz A, Rosenau F et al. 2013. TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth. Biol. 2:122–33
    [Google Scholar]
  83. 83.
    López-Igual R, Bernal-Bayard J, Rodríguez-Patón A, Ghigo J-M, Mazel D. 2019. Engineered toxin-intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. Nat. Biotechnol. 37:7755–60
    [Google Scholar]
  84. 84.
    Lu TK, Collins JJ. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. PNAS 104:2711197–202
    [Google Scholar]
  85. 85.
    Lubkowicz D, Ho CL, Hwang IY, Yew WS, Lee YS, Chang MW. 2018. Reprogramming probiotic Lactobacillus reuteri as a biosensor for Staphylococcus aureus derived AIP-I detection. ACS Synth. Biol. 7:51229–37
    [Google Scholar]
  86. 86.
    Luo X, Tsao C-Y, Wu H-C, Quan DN, Payne GF et al. 2015. Distal modulation of bacterial cell-cell signalling in a synthetic ecosystem using partitioned microfluidics. Lab Chip 15:81842–51
    [Google Scholar]
  87. 87.
    Marsh JW, Ley RE. 2022. Microbiome engineering: taming the untractable. Cell 185:3416–18
    [Google Scholar]
  88. 88.
    Martens EC, Chiang HC, Gordon JI. 2008. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:5447–57
    [Google Scholar]
  89. 89.
    Mazhar SF, Afzal M, Almatroudi A, Munir S, Ashfaq UA et al. 2020. The prospects for the therapeutic implications of genetically engineered probiotics. J. Food Qual. 2020:9676452
    [Google Scholar]
  90. 90.
    Mell JC, Lee JY, Firme M, Sinha S, Redfield RJ. 2014. Extensive cotransformation of natural variation into chromosomes of naturally competent Haemophilus influenzae. G3 4:4717–31
    [Google Scholar]
  91. 91.
    Millan AS, MacLean RC. 2017. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol. Spectr. 5:5 https://doi.org/10.1128/microbiolspec.MTBP-0016-2017
    [Google Scholar]
  92. 92.
    Miller RW, Skinner J, Sulakvelidze A, Mathis GF, Hofacre CL. 2010. Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis 54:133–40
    [Google Scholar]
  93. 93.
    Mimee M, Nadeau P, Hayward A, Carim S, Flanagan S et al. 2018. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360:6391915–18
    [Google Scholar]
  94. 94.
    Mimee M, Tucker AC, Voigt CA, Lu TK. 2015. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst 1:162–71
    [Google Scholar]
  95. 95.
    Motherway MO, Fitzgerald GF, Neirynck S, Ryan S, Steidler L, van Sinderen D. 2008. Characterization of ApuB, an extracellular Type II amylopullulanase from Bifidobacterium breve UCC2003. . Appl. Environ. Microb. 74:206271–79
    [Google Scholar]
  96. 96.
    Motherway MO, O'Driscoll J, Fitzgerald GF, Sinderen DV 2009. Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb. Biotechnol. 2:3321–32
    [Google Scholar]
  97. 97.
    Motta J-P, Bermúdez-Humarán LG, Deraison C, Martin L, Rolland C et al. 2012. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci. Transl. Med. 4:158158ra144
    [Google Scholar]
  98. 98.
    Mullany P, Wilks M, Puckey L, Tabaqchali S. 1994. Gene cloning in Clostridium difficile using Tn916 as a shuttle conjugative transposon. Plasmid 31:3320–23
    [Google Scholar]
  99. 99.
    Musovic S, Klümper U, Dechesne A, Magid J, Smets BF. 2014. Long-term manure exposure increases soil bacterial community potential for plasmid uptake. Env. Microbiol. Rep. 6:2125–30
    [Google Scholar]
  100. 100.
    Neil K, Allard N, Grenier F, Burrus V, Rodrigue S. 2020. Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl2 conjugative plasmid TP114. Commun. Biol. 3:1523
    [Google Scholar]
  101. 101.
    Neil K, Allard N, Rodrigue S. 2021. Molecular mechanisms influencing bacterial conjugation in the intestinal microbiota. Front. Microbiol. 12:673260
    [Google Scholar]
  102. 102.
    Néron B, Denise R, Coluzzi C, Touchon M, Rocha EPC, SS Abby 2023. MacSyFinder v2: improved modelling and search engine to identify molecular systems in genomes. bioRxiv 506364, Feb. 28. https://doi.org/10.1101/2022.09.02.506364
  103. 103.
    Nishida H. 2012. Comparative analyses of base compositions, DNA sizes, and dinucleotide frequency profiles in archaeal and bacterial chromosomes and plasmids. Int. J. Evol. Biol. 2012:342482
    [Google Scholar]
  104. 104.
    Ogilvie LA, Firouzmand S, Jones BV. 2012. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioeng. Bugs 3:113–31
    [Google Scholar]
  105. 105.
    Petersen J. 2011. Phylogeny and compatibility: plasmid classification in the genomics era. Arch. Microbiol. 193:5313–21
    [Google Scholar]
  106. 106.
    Pifer R, Greenberg DE. 2020. Antisense antibacterial compounds. Transl. Res. 223:89–106
    [Google Scholar]
  107. 107.
    Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L et al. 2019. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 48:42000–12
    [Google Scholar]
  108. 108.
    Plotkin JB, Kudla G. 2011. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12:132–42
    [Google Scholar]
  109. 109.
    Popella L, Jung J, Popova K, Ðurica-Mitić S, Barquist L, Vogel J. 2021. Global RNA profiles show target selectivity and physiological effects of peptide-delivered antisense antibiotics. Nucleic Acids Res 49:84705–24
    [Google Scholar]
  110. 110.
    Poyet M, Groussin M, Gibbons SM, Avila-Pacheco J, Jiang X et al. 2019. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat. Med. 25:91442–52
    [Google Scholar]
  111. 111.
    Purdy D, O'Keeffe TAT, Elmore M, Herbert M, McLeod A et al. 2002. Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol. Microbiol. 46:2439–52
    [Google Scholar]
  112. 112.
    Redondo-Salvo S, Fernández-López R, Ruiz R, Vielva L, de Toro M et al. 2020. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 11:13602
    [Google Scholar]
  113. 113.
    Reysset G, Sebald M. 1985. Conjugal transfer of plasmid-mediated antibiotic resistance from streptococci to Clostridium acetobutylicum. Ann. Inst. Pasteur Microbiol. 136:3275–82
    [Google Scholar]
  114. 114.
    Riglar DT, Giessen TW, Baym M, Kerns SJ, Niederhuber MJ et al. 2017. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35:7653–58
    [Google Scholar]
  115. 115.
    Riley LA, Ji L, Schmitz RJ, Westpheling J, Guss AM 2019. Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems. J. Ind. Microbiol. Biotechnol. 46:9101435–43
    [Google Scholar]
  116. 116.
    Robert S, Gysemans C, Takiishi T, Korf H, Spagnuolo I et al. 2014. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 63:82876–87
    [Google Scholar]
  117. 117.
    Robillard NJ, Tally FP, Malamy MH. 1985. Tn4400, a compound transposon isolated from Bacteroides fragilis, functions in Escherichia coli. J. Bacteriol. 164:31248–55
    [Google Scholar]
  118. 118.
    Ronda C, Chen SP, Cabral V, Yaung SJ, Wang HH. 2019. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16:2167–70
    [Google Scholar]
  119. 119.
    Rosberg-Cody E, Stanton C, O'Mahony L, Wall R, Shanahan F et al. 2011. Recombinant lactobacilli expressing linoleic acid isomerase can modulate the fatty acid composition of host adipose tissue in mice. Microbiology 157:2609–15
    [Google Scholar]
  120. 120.
    Rousset F, Depardieu F, Miele S, Dowding J, Laval A-L et al. 2022. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 30:5740–53
    [Google Scholar]
  121. 121.
    Rubin BE, Diamond S, Cress BF, Crits-Christoph A, Lou YC et al. 2021. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7:34–47
    [Google Scholar]
  122. 122.
    Ruotsalainen P, Penttinen R, Mattila S, Jalasvuori M. 2019. Midbiotics: conjugative plasmids for genetic engineering of natural gut flora. Gut Microbes 10:6643–53
    [Google Scholar]
  123. 123.
    Russell BJ, Brown SD, Siguenza N, Mai I, Saran AR et al. 2022. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes. Cell 185:173263–77
    [Google Scholar]
  124. 124.
    Salyers AA, Bonheyo G, Shoemaker NB. 2000. Starting a new genetic system: lessons from Bacteroides. Methods 20:135–46
    [Google Scholar]
  125. 125.
    Samuel B, Burstein D. 2023. A diverse repertoire of anti-defense systems is encoded in the leading region of plasmids. bioRxiv 528439, Feb. 16. https://doi.org/10.1101/2023.02.15.528439
  126. 126.
    Schmidt F, Zimmermann J, Tanna T, Farouni R, Conway T et al. 2022. Noninvasive assessment of gut function using transcriptional recording sentinel cells. Science 376:6594eabm6038
    [Google Scholar]
  127. 127.
    Shark KB, Smith FD, Harpending PR, Rasmussen JL, Sanford JC. 1991. Biolistic transformation of a procaryote, Bacillus megaterium. Appl. Environ. Microb 57:2480–85
    [Google Scholar]
  128. 128.
    Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. 2018. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557:7705434–38
    [Google Scholar]
  129. 129.
    Sheridan PO, Martin JC, Minton NP, Flint HJ, O'Toole PW et al. 2019. Heterologous gene expression in the human gut bacteria Eubacterium rectale and Roseburia inulinivorans by means of conjugative plasmids. Anaerobe 59:131–40
    [Google Scholar]
  130. 130.
    Shoemaker NB, Getty C, Gardner JF, Salyers AA. 1986. Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome. J. Bacteriol. 165:3929–36
    [Google Scholar]
  131. 131.
    Shoemaker NB, Guthrie EP, Salyers AA, Gardner JF. 1985. Evidence that the clindamycin-erythromycin resistance gene of Bacteroides plasmid pBF4 is on a transposable element. J. Bacteriol. 162:2626–32
    [Google Scholar]
  132. 132.
    Sidik S, Kottwitz H, Benjamin J, Ryu J, Jarrar A et al. 2014. A Shigella flexneri virulence plasmid encoded factor controls production of outer membrane vesicles. G3 4:122493–503
    [Google Scholar]
  133. 133.
    Smith CJ. 1985. Polyethylene glycol-facilitated transformation of Bacteroides fragilis with plasmid DNA. J. Bacteriol. 164:1466–69
    [Google Scholar]
  134. 134.
    Smith CJ, Spiegel H. 1987. Transposition of Tn4551 in Bacteroides fragilis: identification and properties of a new transposon from Bacteroides spp. J. Bacteriol. 169:83450–57
    [Google Scholar]
  135. 135.
    Song Y, Hahn T, Thompson IP, Mason TJ, Preston GM et al. 2007. Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Res 35:19e129
    [Google Scholar]
  136. 136.
    Suarez G, Romero-Gallo J, Sierra JC, Piazuelo MB, Krishna US et al. 2017. Genetic manipulation of Helicobacter pylori virulence function by host carcinogenic phenotypes. Cancer Res 77:92401–12
    [Google Scholar]
  137. 137.
    Suzuki H, Yoshida K. 2012. Genetic transformation of Geobacillus kaustophilus HTA426 by conjugative transfer of host-mimicking plasmids. J. Microbiol. Biotechnol. 22:91279–87
    [Google Scholar]
  138. 138.
    Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH et al. 2014. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507:7491258–61
    [Google Scholar]
  139. 139.
    Tajkarimi M, Wexler HM. 2017. CRISPR-Cas systems in Bacteroides fragilis, an important pathobiont in the human gut microbiome. Front. Microbiol. 8:2234
    [Google Scholar]
  140. 140.
    Thierbach G, Schwarzer A, Pühler A. 1988. Transformation of spheroplasts and protoplasts of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 29:4356–62
    [Google Scholar]
  141. 141.
    Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB. 2015. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 10:111861–71
    [Google Scholar]
  142. 142.
    Townsend GE, Han W, Schwalm ND, Raghavan V, Barry NA et al. 2019. Dietary sugar silences a colonization factor in a mammalian gut symbiont. PNAS 116:1233–38
    [Google Scholar]
  143. 143.
    Vojcic L, Despotovic D, Martinez R, Maurer K-H, Schwaneberg U. 2012. An efficient transformation method for Bacillus subtilis DB104. Appl. Microbiol. Biotechnol. 94:2487–93
    [Google Scholar]
  144. 144.
    Vrieze JD, Christiaens MER, Verstraete W. 2017. The microbiome as engineering tool: manufacturing and trading between microorganisms. New Biotechnol. 39:206–214
    [Google Scholar]
  145. 145.
    Weiß M, Giacomelli G, Assaya MB, Grundt F, Haouz A et al. 2023. The MksG nuclease is the executing part of the bacterial plasmid defense system MksBEFG. Nucleic Acids Res 51:73288–306
    [Google Scholar]
  146. 146.
    Wexler AG, Goodman AL. 2017. An insider's perspective: Bacteroides as a window into the microbiome. Nat. Microbiol. 2:517026
    [Google Scholar]
  147. 147.
    Whitfill T, Oh J. 2019. Recoding the metagenome: microbiome engineering in situ. Curr. Opin. Microbiol. 50:28–34
    [Google Scholar]
  148. 148.
    Wilharm G, Lepka D, Faber F, Hofmann J, Kerrinnes T, Skiebe E. 2010. A simple and rapid method of bacterial transformation. J. Microbiol. Methods 80:2215–16
    [Google Scholar]
  149. 149.
    Wilson EH, Groom JD, Sarfatis MC, Ford SM, Lidstrom ME, Beck DAC. 2021. A computational framework for identifying promoter sequences in nonmodel organisms using RNA-Seq data sets. . ACS Synth. Biol. 10:61394–405
    [Google Scholar]
  150. 150.
    Woods C, Humphreys CM, Rodrigues RM, Ingle P, Rowe P et al. 2019. A novel conjugal donor strain for improved DNA transfer into Clostridium spp. Anaerobe 59:184–91
    [Google Scholar]
  151. 151.
    Wu D-D, Ye L-Q, Li Y, Sun Y-B, Shao Y et al. 2015. Integrative analyses of RNA editing, alternative splicing, and expression of young genes in human brain transcriptome by deep RNA sequencing. J. Mol. Cell. Biol. 7:4314–25
    [Google Scholar]
  152. 152.
    Wu M, McNulty NP, Rodionov DA, Khoroshkin MS, Griffin NW et al. 2015. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science 350:6256aac5992
    [Google Scholar]
  153. 153.
    Yang X, Xu M, Yang S-T. 2016. Restriction modification system analysis and development of in vivo methylation for the transformation of Clostridium cellulovorans. Appl. Microbiol. Biotechnol. 100:52289–99
    [Google Scholar]
  154. 154.
    Yaung SJ, Deng L, Li N, Braff JL, Church GM et al. 2015. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics. Mol. Syst. Biol. 11:3788
    [Google Scholar]
  155. 155.
    You HJ, Si J, Kim J, Yoon S, Cha KH et al. 2023. Bacteroides vulgatus SNUG 40005 restores Akkermansia depletion by metabolite modulation. Gastroenterology 164:1103–16
    [Google Scholar]
  156. 156.
    Zatyka M, Thomas CM. 1998. Control of genes for conjugative transfer of plasmids and other mobile elements. FEMS Microbiol. Rev. 21:4291–319
    [Google Scholar]
  157. 157.
    Zhang GQ, Bao P, Zhang Y, Deng AH, Chen N, Wen TY. 2011. Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Anal. Biochem. 409:130–37
    [Google Scholar]
  158. 158.
    Zheng L, Tan Y, Hu Y, Shen J, Qu Z et al. 2022. CRISPR/Cas-based genome editing for human gut commensal Bacteroides species. ACS Synth. Biol. 11:1464–72
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032421-112304
Loading
/content/journals/10.1146/annurev-micro-032421-112304
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error