1932

Abstract

The emergence of animals from their unicellular ancestors is a major evolutionary event. Thanks to the study of diverse close unicellular relatives of animals, we now have a better grasp of what the unicellular ancestor of animals was like. However, it is unclear how that unicellular ancestor of animals became the first animals. To explain this transition, two popular theories, the choanoblastaea and the synzoospore, have been proposed. We will revise and expose the flaws in these two theories while showing that, due to the limits of our current knowledge, the origin of animals is a biological black swan event. As such, the origin of animals defies retrospective explanations. Therefore, we should be extra careful not to fall for confirmation biases based on few data and, instead, embrace this uncertainty and be open to alternative scenarios. With the aim to broaden the potential explanations on how animals emerged, we here propose two novel and alternative scenarios. In any case, to find the answer to how animals evolved, additional data will be required, as will the hunt for microscopic creatures that are closely related to animals but have not yet been sampled and studied.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032421-120023
2023-09-15
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032421-120023.html?itemId=/content/journals/10.1146/annurev-micro-032421-120023&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abedin M, King N. 2008. The premetazoan ancestry of cadherins. Science 319:5865946–48
    [Google Scholar]
  2. 2.
    Adamska M, Degnan SM, Green KM, Adamski M, Craigie A et al. 2007. Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLOS ONE 2:10e1031
    [Google Scholar]
  3. 3.
    Alie A, Manuel M. 2010. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans. BMC Evol. Biol. 10:134
    [Google Scholar]
  4. 4.
    Arroyo AS, Iannes R, Bapteste E, Ruiz-Trillo I. 2020. Gene similarity networks unveil a potential novel unicellular group closely related to animals from the Tara Oceans expedition. Genome Biol. Evol. 12:91664–78. Erratum 2021. Genome Biol. Evol. 13:8evab140
    [Google Scholar]
  5. 5.
    Arroyo AS, López-Escardó D, Kim E, Ruiz-Trillo I, Najle SR. 2018. Novel diversity of deeply branching Holomycota and unicellular holozoans revealed by metabarcoding in Middle Paraná River, Argentina. Front. Ecol. Evol. 6:99
    [Google Scholar]
  6. 6.
    Booth DS, King N. 2020. Genome editing enables reverse genetics of multicellular development in the choanoflagellate Salpingoeca rosetta. eLife 9:946
    [Google Scholar]
  7. 7.
    Booth DS, Szmidt-Middleton H, King N. 2018. Choanoflagellate transfection illuminates their cell biology and the ancestry of animal septins. Mol. Biol. Cell 29:253026–38
    [Google Scholar]
  8. 8.
    Bråte J, Neumann RS, Fromm B, Haraldsen AAB, Tarver JE et al. 2018. Unicellular origin of the animal microRNA machinery. Curr. Biol. 28:201–27
    [Google Scholar]
  9. 9.
    Brooke NM, Holland PW. 2003. The evolution of multicellularity and early animal genomes. Curr. Opin. Genet. Dev. 13:6599–603
    [Google Scholar]
  10. 10.
    Brunet T, Albert M, Roman W, Coyle MC, Spitzer DC, King N. 2021. A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 10:e61037
    [Google Scholar]
  11. 11.
    Brunet T, King N. 2017. The origin of animal multicellularity and cell differentiation. Dev. Cell 43:2124–40
    [Google Scholar]
  12. 12.
    Carr M, Leadbeater BSC, Hassan R, Nelson M, Baldauf SL. 2008. Molecular phylogeny of choanoflagellates, the sister group to Metazoa. PNAS 105:4316641–46
    [Google Scholar]
  13. 13.
    Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T et al. 2010. The dynamic genome of Hydra. Nature 464:7288592–96
    [Google Scholar]
  14. 14.
    Colgren J, Nichols SA. 2020. The significance of sponges for comparative studies of developmental evolution. WIREs Dev. Biol. 9:2e359
    [Google Scholar]
  15. 15.
    de Mendoza A, Sebe-Pedros A, Ruiz-Trillo I. 2014. The evolution of the gpcr signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biol. Evol. 6:3606–19
    [Google Scholar]
  16. 16.
    del Campo J, Mallo D, Massana R, de Vargas C, Richards TA, Ruiz-Trillo I. 2015. Diversity and distribution of unicellular opisthokonts along the European coast analysed using high-throughput sequencing. Environ. Microbiol. 17:93195–207
    [Google Scholar]
  17. 17.
    Dudin O, Ondracka A, Grau-Bové X, Haraldsen AA, Toyoda A et al. 2019. A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization. eLife 8:3123
    [Google Scholar]
  18. 18.
    Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE et al. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:7188745–49
    [Google Scholar]
  19. 19.
    Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S et al. 2013. Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol. 14:2R15
    [Google Scholar]
  20. 20.
    Faktorová D, Nisbet RER, Fernández Robledo JA, Casacuberta E, Sudek L et al. 2020. Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nat. Methods 17:481–94. Erratum 2020. Nat. Methods 17:551
    [Google Scholar]
  21. 21.
    Gierer A, Berking S, Bode H, David CN, Flick K et al. 1972. Regeneration of hydra from reaggregated cells. Nat. New Biol. 239:9198–101
    [Google Scholar]
  22. 22.
    Glockling SL, Marshall WL, Gleason FH. 2013. Phylogenetic interpretations and ecological potentials of the Mesomycetozoea (Ichthyosporea). Fungal Ecol. 6:4237–47
    [Google Scholar]
  23. 23.
    Grau-Bové X, Torruella G, Donachie S, Suga H, Leonard G et al. 2017. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife 6:946
    [Google Scholar]
  24. 24.
    Grosberg RK, Strathmann RR. 2007. The evolution of multicellularity: a minor major transition?. Annu. Rev. Ecol. Evol. Syst. 38:621–54
    [Google Scholar]
  25. 25.
    Hehenberger E, Tikhonenkov DV, Kolisko M, del Campo J, Esaulov AS et al. 2017. Novel predators reshape holozoan phylogeny and reveal the presence of a two-component signaling system in the ancestor of animals. Curr. Biol. 27:132043–50.e6
    [Google Scholar]
  26. 26.
    Hertel LA, Barbosa CS, Santos RA, Loker ES. 2004. Molecular identification of symbionts from the pulmonate snail Biomphalaria glabrata in Brazil. J. Parasitol. 90:4759–63
    [Google Scholar]
  27. 27.
    Hertel LA, Bayne CJ, Loker ES. 2002. The symbiont Capsaspora owczarzaki, nov. gen. nov. sp., isolated from three strains of the pulmonate snail Biomphalaria glabratais related to members of the Mesomycetozoea. Int. J. Parasitol. 32:91183–91
    [Google Scholar]
  28. 28.
    Huldtgren T, Cunningham JA, Yin C, Stampanoni M, Marone F et al. 2011. Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science 334:60631696–99
    [Google Scholar]
  29. 29.
    Hynes RO. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:111–25
    [Google Scholar]
  30. 30.
    Hynes RO. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110:6673–87
    [Google Scholar]
  31. 31.
    King N. 2005. Choanoflagellates. Curr. Biol. 15:4R113–14
    [Google Scholar]
  32. 32.
    King N, Westbrook MJ, Young SL, Kuo A, Abedin M et al. 2008. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:7180783–88
    [Google Scholar]
  33. 33.
    Knoll AH. 2011. The multiple origins of complex multicellularity. Annu. Rev. Earth Planetary Sci. 39:217–39
    [Google Scholar]
  34. 34.
    Kożyczkowska A, Najle SR, Ocaña-Pallarès E, Aresté C, Shabardina V et al. 2021. Stable transfection in protist Corallochytrium limacisporum identifies novel cellular features among unicellular animals relatives. Curr. Biol. 31:184104–10.e5
    [Google Scholar]
  35. 35.
    Kuzdzal-Fick JJ, Fox SA, Strassmann JE, Queller DC. 2011. High relatedness is necessary and sufficient to maintain multicellularity in Dictyostelium. Science 334:60621548–51
    [Google Scholar]
  36. 36.
    Laundon D, Larson BT, McDonald K, King N, Burkhardt P. 2019. The architecture of cell differentiation in choanoflagellates and sponge choanocytes. PLOS Biol. 17:4e3000226–22
    [Google Scholar]
  37. 37.
    Lavrov AI, Kosevich IA. 2016. Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates. J. Exp. Zool. 325:2158–77
    [Google Scholar]
  38. 38.
    Mah JL, Christensen-Dalsgaard KK, Leys SP. 2014. Choanoflagellate and choanocyte collar-flagellar systems and the assumption of homology. Evol. Dev. 16:125–37
    [Google Scholar]
  39. 39.
    Marshall WL, Berbee ML. 2010. Population-level analyses indirectly reveal cryptic sex and life history traits of Pseudoperkinsus tapetis (Ichthyosporea, Opisthokonta): a unicellular relative of the animals. Mol. Biol. Evol. 27:92014–26
    [Google Scholar]
  40. 40.
    Marshall WL, Celio G, McLaughlin DJ, Berbee ML. 2008. Multiple isolations of a culturable, motile ichthyosporean (Mesomycetozoa, Opisthokonta), Creolimax fragrantissima n. gen., n. sp., from marine invertebrate digestive tracts. Protist 159:3415–33
    [Google Scholar]
  41. 41.
    Medina M, Collins AG, Taylor JW, Valentine JW, Lipps JH et al. 2003. Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa. Int. J. Astrobiol. 2:203–11
    [Google Scholar]
  42. 42.
    Mendoza L, Taylor JW, Ajello L. 2002. The class Mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. Annu. Rev. Microbiol. 56:315–44
    [Google Scholar]
  43. 43.
    Mikhailov KV, Konstantinova AV, Nikitin MA, Troshin PV, Rusin LY et al. 2009. The origin of Metazoa: a transition from temporal to spatial cell differentiation. BioEssays 31:7758–68
    [Google Scholar]
  44. 44.
    Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP et al. 2014. The ctenophore genome and the evolutionary origins of neural systems. Nature 510:7503109–14
    [Google Scholar]
  45. 45.
    Nielsen C. 2008. Six major steps in animal evolution: Are we derived sponge larvae?. Evol. Dev. 10:2241–57
    [Google Scholar]
  46. 46.
    Nielsen C. 2023. Hydrodynamics in early animal evolution. Biol. Rev. 98:1376–85
    [Google Scholar]
  47. 47.
    Ocaña-Pallarès E, Williams TA, López-Escardó D, Arroyo AS, Pathmanathan JS et al. 2022. Divergent genomic trajectories predate the origin of animals and fungi. Nature 609:7928747–53
    [Google Scholar]
  48. 48.
    O'Malley MA, Wideman JG, Ruiz-Trillo I. 2016. Losing complexity: the role of simplification in macroevolution. Trends Ecol. Evol. 31:8608–21
    [Google Scholar]
  49. 49.
    Paps J, Holland PWH. 2018. Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nat. Commun. 9:12404–8
    [Google Scholar]
  50. 50.
    Parra-Acero H, Harcet M, Sánchez-Pons N, Casacuberta E, Brown NH et al. 2020. Integrin-mediated adhesion in the unicellular holozoan Capsaspora owczarzaki. Curr. Biol. 30:214270–75.e4
    [Google Scholar]
  51. 51.
    Parra-Acero H, Ros-Rocher N, Perez-Posada A, Kożyczkowska A, Sánchez-Pons N et al. 2018. Transfection of Capsaspora owczarzaki, a close unicellular relative of animals. Development 145:10dev162107
    [Google Scholar]
  52. 52.
    Paul NR, Jacquemet G, Caswell PT. 2015. Endocytic trafficking of integrins in cell migration. Curr. Biol. 25:22R1092–105
    [Google Scholar]
  53. 53.
    Phillips JE, Santos M, Konchwala M, Xing C, Pan D. 2022. Genome editing in the unicellular holozoan Capsaspora owczarzaki suggests a premetazoan role for the Hippo pathway in multicellular morphogenesis. eLife 11:e77598
    [Google Scholar]
  54. 54.
    Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J et al. 2007. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:583486–94
    [Google Scholar]
  55. 55.
    Raghu-Kumar S. 1987. Occurrence of the thraustochytrid, Corallochytrium limacisporum ge. et sp. nov. in the coral reef lagoons of the Lakshadweep Islands in the Arabian sea. Bot. Marina 30:83–89
    [Google Scholar]
  56. 56.
    Richter DJ, King N. 2013. The genomic and cellular foundations of animal origins. Annu. Rev. Genet. 47:509–37
    [Google Scholar]
  57. 57.
    Rokas A. 2008. The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu. Rev. Genet. 42:235–51
    [Google Scholar]
  58. 58.
    Rokas A. 2008. The molecular origins of multicellular transitions. Curr. Opin. Genet. Dev. 18:6472–78
    [Google Scholar]
  59. 59.
    Ros-Rocher N, Kidner RQ, Gerdt C, Davidson WS, Ruiz-Trillo I, Gerdt JP 2023. Chemical factors induce aggregative multicellularity in a close unicellular relative of animals. PNAS 110:18e2216668120
    [Google Scholar]
  60. 60.
    Ros-Rocher N, Pérez-Posada A, Leger MM, Ruiz-Trillo I. 2021. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol. 11:2rsob.200359
    [Google Scholar]
  61. 61.
    Ruiz-Trillo I, Burger G, Holland PW, King N, Lang BF et al. 2007. The origins of multicellularity: a multi-taxon genome initiative. Trends Genet. 23:3113–18
    [Google Scholar]
  62. 62.
    Ruiz-Trillo I, de Mendoza A. 2020. Towards understanding the origin of animal development. Development 147:23dev192575
    [Google Scholar]
  63. 63.
    Ruiz-Trillo I, Inagaki Y, Davis LA, Sperstad S, Landfald B, Roger AJ. 2004. Capsaspora owczarzaki is an independent opisthokont lineage. Curr. Biol. 14:22R946–47
    [Google Scholar]
  64. 64.
    Ruiz-Trillo I, Lane CE, Archibald JM, Roger AJ. 2006. Insights into the evolutionary origin and genome architecture of the unicellular opisthokonts Capsaspora owczarzaki and Sphaeroforma arctica. J. Eukaryot. Microbiol. 53:5379–84
    [Google Scholar]
  65. 65.
    Schultz DT, Haddock SHD, Bredeson JV, Green RE, Simakov O, Rokhsar DS. 2023. Ancient gene linkages support ctenophores as sister to other animals. Nature 618:110–17
    [Google Scholar]
  66. 66.
    Sebé-Pedrós A, Ariza-Cosano A, Weirauch MT, Leininger S, Yang A et al. 2013. Early evolution of the T-box transcription factor family. PNAS 110:4016050–55
    [Google Scholar]
  67. 67.
    Sebé-Pedrós A, Ballaré C, Parra-Acero H, Chiva C, Tena JJ et al. 2016. The dynamic regulatory genome of Capsaspora and the origin of animal multicellularity. Cell 165:51224–37
    [Google Scholar]
  68. 68.
    Sebé-Pedrós A, Burkhardt P, Sanchez-Pons N, Fairclough SR, Lang BF et al. 2013. Insights into the origin of metazoan filopodia and microvilli. Mol. Biol. Evol. 30:92013–23
    [Google Scholar]
  69. 69.
    Sebé-Pedrós A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I. 2011. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol. Biol. Evol. 28:31241–54
    [Google Scholar]
  70. 70.
    Sebé-Pedrós A, Degnan BM, Ruiz-Trillo I. 2017. The origin of Metazoa: a unicellular perspective. Nat. Rev. Genet. 18:8498–512
    [Google Scholar]
  71. 71.
    Sebé-Pedrós A, Grau-Bove X, Richards TA, Ruiz-Trillo I. 2014. Evolution and classification of myosins, a paneukaryotic whole-genome approach. Genome Biol. Evol. 6:2290–305
    [Google Scholar]
  72. 72.
    Sebé-Pedrós A, Irimia M, del Campo J, Parra-Acero H, Russ C et al. 2013. Regulated aggregative multicellularity in a close unicellular relative of metazoa. eLife 2:e01287
    [Google Scholar]
  73. 73.
    Sebé-Pedrós A, Peña MI, Capella-Gutiérrez S, Antó M, Gabaldón T et al. 2016. High-throughput proteomics reveals the unicellular roots of animal phosphosignaling and cell differentiation. Dev. Cell 39:2186–97
    [Google Scholar]
  74. 74.
    Sebé-Pedrós A, Roger AJ, Lang FB, King N, Ruiz-Trillo I 2010. Ancient origin of the integrin-mediated adhesion and signaling machinery. PNAS 107:2210142–47
    [Google Scholar]
  75. 75.
    Sebé-Pedrós A, Zheng Y, Ruiz-Trillo I, Pan D. 2012. Premetazoan origin of the Hippo signaling pathway. Cell Rep. 1:113–20
    [Google Scholar]
  76. 76.
    Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T et al. 2008. Multigene phylogeny of Choanozoa and the origin of animals. PLOS ONE 3:5e2098
    [Google Scholar]
  77. 77.
    Sogabe S, Hatleberg WL, Kocot KM, Say TE, Stoupin D et al. 2019. Pluripotency and the origin of animal multicellularity. Nature 570:7762519–22
    [Google Scholar]
  78. 78.
    Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U et al. 2008. The Trichoplax genome and the nature of placozoans. Nature 454:7207955–60
    [Google Scholar]
  79. 79.
    Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA et al. 2010. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:7307720–26
    [Google Scholar]
  80. 80.
    Strassmann JE, Queller DC. 2010. The social organism: congresses, parties, and committees. Evolution 64:3605–16
    [Google Scholar]
  81. 81.
    Streuli CH, Akhtar N. 2009. Signal co-operation between integrins and other receptor systems. Biochem. J. 418:3491–506
    [Google Scholar]
  82. 82.
    Suga H, Chen Z, de Mendoza A, Sebe-Pedros A, Brown MW et al. 2013. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat. Commun. 4:2325
    [Google Scholar]
  83. 83.
    Suga H, Dacre M, de Mendoza A, Shalchian-Tabrizi K, Manning G, Ruiz-Trillo I. 2012. Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases. Sci. Signal. 5:222ra35
    [Google Scholar]
  84. 84.
    Suga H, Ruiz-Trillo I. 2013. Development of ichthyosporeans sheds light on the origin of metazoan multicellularity. Dev. Biol. 377:1284–92
    [Google Scholar]
  85. 85.
    Suga H, Torruella G, Burger G, Brown MW, Ruiz-Trillo I. 2014. Earliest holozoan expansion of phosphotyrosine signaling. Mol. Biol. Evol. 31:3517–28
    [Google Scholar]
  86. 86.
    Sumathi JC, Raghukumar S, Kasbekar DP, Raghukumar C. 2006. Molecular evidence of fungal signatures in the marine protist Corallochytrium limacisporum and its implications in the evolution of animals and fungi. Protist 157:4363–76
    [Google Scholar]
  87. 87.
    Taleb NN. 2007. The Black Swan: The Impact of the Highly Improbable New York: Random House
    [Google Scholar]
  88. 88.
    Taleb NN. 2012. Antifragile: How to Live in a World We Don't Understand London: Allen Lane
    [Google Scholar]
  89. 89.
    Torruella G, de Mendoza A, Grau-Bové X, Antó M, Chaplin MA et al. 2015. Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi. Curr. Biol. 25:182404–10
    [Google Scholar]
  90. 90.
    Torruella G, Derelle R, Paps J, Lang BF, Roger AJ et al. 2012. Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. Mol. Biol. Evol. 29:2531–44
    [Google Scholar]
  91. 91.
    True JR, Carroll SB. 2002. Gene co-option in physiological and morphological evolution. Annu. Rev. Cell Dev. Biol. 18:53–80
    [Google Scholar]
  92. 92.
    Whelan NV, Kocot KM, Halanych KM. 2015. Employing phylogenomics to resolve the relationships among cnidarians, ctenophores, sponges, placozoans, and bilaterians. Integrative Comp. Biol. 55:61084–95
    [Google Scholar]
  93. 93.
    Woznica A, Kumar A, Sturge CR, Xing C, King N, Pfeiffer JK 2021. STING mediates immune responses in the closest living relatives of animals. eLife 10:e70436
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032421-120023
Loading
/content/journals/10.1146/annurev-micro-032421-120023
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error