1932

Abstract

Infections caused by malaria parasites place an enormous burden on the world's poorest communities. Breakthrough drugs with novel mechanisms of action are urgently needed. As an organism that undergoes rapid growth and division, the malaria parasite is highly reliant on protein synthesis, which in turn requires aminoacyl-tRNA synthetases (aaRSs) to charge tRNAs with their corresponding amino acid. Protein translation is required at all stages of the parasite life cycle; thus, aaRS inhibitors have the potential for whole-of-life-cycle antimalarial activity. This review focuses on efforts to identify potent plasmodium-specific aaRS inhibitors using phenotypic screening, target validation, and structure-guided drug design. Recent work reveals that aaRSs are susceptible targets for a class of AMP-mimicking nucleoside sulfamates that target the enzymes via a novel reaction hijacking mechanism. This finding opens up the possibility of generating bespoke inhibitors of different aaRSs, providing new drug leads.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032421-121210
2023-09-15
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032421-121210.html?itemId=/content/journals/10.1146/annurev-micro-032421-121210&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adachi R, Okada K, Skene R, Ogawa K, Miwa M et al. 2017. Discovery of a novel prolyl-tRNA synthetase inhibitor and elucidation of its binding mode to the ATP site in complex with l-proline. Biochem. Biophys. Res. Commun. 488:393–99
    [Google Scholar]
  2. 2.
    Amaratunga C, Lim P, Suon S, Sreng S, Mao S et al. 2016. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect. Dis. 16:357–65
    [Google Scholar]
  3. 3.
    Antonova-Koch Y, Meister S, Abraham M, Luth MR, Ottilie S et al. 2018. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science 362:eaat9446
    [Google Scholar]
  4. 4.
    Babbar P, Sato M, Manickam Y, Mishra S, Harlos K et al. 2021. Inhibition of Plasmodium falciparum lysyl-tRNA synthetase via a piperidine-ring scaffold inspired cladosporin analogues. ChemBioChem 22:2468–77
    [Google Scholar]
  5. 5.
    Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C et al. 2012. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. PNAS 109:E3278–87
    [Google Scholar]
  6. 6.
    Bai N, Roder H, Dickson A, Karanicolas J. 2019. Isothermal analysis of ThermoFluor data can readily provide quantitative binding affinities. Sci. Rep. 9:2650
    [Google Scholar]
  7. 7.
    Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana S-I et al. 2021. Evidence of artemisinin-resistant malaria in Africa. New Engl. J. Med. 385:1163–71
    [Google Scholar]
  8. 8.
    Baragaña B, Forte B, Choi R, Nakazawa Hewitt S, Bueren-Calabuig JA et al. 2019. Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. PNAS 116:7015–20
    [Google Scholar]
  9. 9.
    Baumann H, Matthews H, Li M, Hu JJ, Willison KR, Baum J. 2018. A high-throughput in vitro translation screen towards discovery of novel antimalarial protein translation inhibitors. bioRxiv 248740, Jan. 16
  10. 10.
    Bergmann FH, Berg P, Dieckmann M. 1961. The enzymic synthesis of amino acyl derivatives of ribonucleic acid: II. The preparation of leucyl-, valyl-, isoleucyl-, and methionyl ribonucleic acid synthetases from Escherichia coli. J. Biol. Chem. 236:1735–40
    [Google Scholar]
  11. 11.
    Bhatt TK, Kapil C, Khan S, Jairajpuri MA, Sharma V et al. 2009. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum. BMC Genom. 10:644
    [Google Scholar]
  12. 12.
    Bhatt TK, Khan S, Dwivedi VP, Banday MM, Sharma A et al. 2011. Malaria parasite tyrosyl-tRNA synthetase secretion triggers pro-inflammatory responses. Nat. Commun. 2:530
    [Google Scholar]
  13. 13.
    Bridgford JL, Xie SC, Cobbold SA, Pasaje CFA, Herrmann S et al. 2018. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat. Commun. 9:3801
    [Google Scholar]
  14. 14.
    Burrows JN, Duparc S, Gutteridge WE, Hooft van Huijsduijnen R, Kaszubska W et al. 2017. New developments in anti-malarial target candidate and product profiles. Malar. J. 16:26 Erratum. 2017 Malar. J. 16:151
    [Google Scholar]
  15. 15.
    Carter CW Jr., Wills PR. 2018. Hierarchical groove discrimination by Class I and II aminoacyl-tRNA synthetases reveals a palimpsest of the operational RNA code in the tRNA acceptor-stem bases. Nucleic Acids Res. 46:9667–83
    [Google Scholar]
  16. 16.
    Carter CW Jr., Wills PR. 2019. Class I and II aminoacyl-tRNA synthetase tRNA groove discrimination created the first synthetase-tRNA cognate pairs and was therefore essential to the origin of genetic coding. IUBMB Life 71:1088–98
    [Google Scholar]
  17. 17.
    Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E 2014. Keeping the eIF2 alpha kinase Gcn2 in check. Biochim. Biophys. Acta Mol. Cell Res. 1843:1948–68
    [Google Scholar]
  18. 18.
    Chhibber-Goel J, Sharma A. 2019. Side chain rotameric changes and backbone dynamics enable specific cladosporin binding in Plasmodium falciparum lysyl-tRNA synthetase. Proteins 87:730–37
    [Google Scholar]
  19. 19.
    Chhibber-Goel J, Yogavel M, Sharma A. 2021. Structural analyses of the malaria parasite aminoacyl-tRNA synthetases provide new avenues for antimalarial drug discovery. Protein Sci. 30:1793–803
    [Google Scholar]
  20. 20.
    Chopra S, Palencia A, Virus C, Tripathy A, Temple BR et al. 2013. Plant tumour biocontrol agent employs a tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase. Nat. Commun. 4:1417
    [Google Scholar]
  21. 21.
    Cowell AN, Istvan ES, Lukens AK, Gomez-Lorenzo MG, Vanaerschot M et al. 2018. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science 359:191–99
    [Google Scholar]
  22. 22.
    Cowell AN, Winzeler EA. 2019. Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med. 11:63
    [Google Scholar]
  23. 23.
    Dahl EL, Shock JL, Shenai BR, Gut J, DeRisi JL, Rosenthal PJ. 2006. Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob. Agents Chemother. 50:3124–31
    [Google Scholar]
  24. 24.
    Du Y, Giannangelo C, He W, Shami GJ, Zhou W et al. 2022. Dimeric artesunate glycerophosphocholine conjugate nano-assemblies as slow-release antimalarials to overcome Kelch 13 mutant artemisinin resistance. Antimicrob. Agents Chemother. 66:e0206521
    [Google Scholar]
  25. 25.
    Eriani G, Delarue M, Poch O, Gangloff J, Moras D. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–6
    [Google Scholar]
  26. 26.
    Fennell C, Babbitt S, Russo I, Wilkes J, Ranford-Cartwright L et al. 2009. PfeIK1, a eukaryotic initiation factor 2α kinase of the human malaria parasite Plasmodium falciparum, regulates stress-response to amino-acid starvation. Malar. J. 8:99
    [Google Scholar]
  27. 27.
    Forte B, Ottilie S, Plater A, Campo B, Dechering KJ et al. 2021. Prioritization of molecular targets for antimalarial drug discovery. ACS Infect. Dis. 7:2764–76
    [Google Scholar]
  28. 28.
    Francklyn CS, First EA, Perona JJ, Hou YM. 2008. Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases. Methods 44:100–18
    [Google Scholar]
  29. 29.
    Francklyn CS, Mullen P. 2019. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J. Biol. Chem. 294:5365–85
    [Google Scholar]
  30. 30.
    Gaillard T, Madamet M, Pradines B. 2015. Tetracyclines in malaria. Malar. J. 14:445
    [Google Scholar]
  31. 31.
    Giuliodori AM, Spurio R, Milón P, Fabbretti A. 2018. Antibiotics targeting the 30S ribosomal subunit: a lesson from Nature to find and develop new drugs. Curr. Top. Med. Chem. 18:2080–96
    [Google Scholar]
  32. 32.
    Goldgur Y, Mosyak L, Reshetnikova L, Ankilova V, Lavrik O et al. 1997. The crystal structure of phenylalanyl-tRNA synthetase from Thermus thermophilus complexed with cognate tRNAPhe. Structure 5:59–68
    [Google Scholar]
  33. 33.
    Guo M, Ignatov M, Musier-Forsyth K, Schimmel P, Yang XL. 2008. Crystal structure of tetrameric form of human lysyl-tRNA synthetase: implications for multisynthetase complex formation. PNAS 105:2331–36
    [Google Scholar]
  34. 34.
    Gupta AK, Daigle D. 2014. Tavaborole (AN-2690) for the treatment of onychomycosis of the toenail in adults. Expert Rev. Anti-Infect. Ther. 12:735–42
    [Google Scholar]
  35. 35.
    Herman JD, Pepper LR, Cortese JF, Estiu G, Galinsky K et al. 2015. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Sci. Transl. Med. 7:288ra77
    [Google Scholar]
  36. 36.
    Herman JD, Rice DP, Ribacke U, Silterra J, Deik AA et al. 2014. A genomic and evolutionary approach reveals non-genetic drug resistance in malaria. Genome Biol. 15:511
    [Google Scholar]
  37. 37.
    Hewitt SN, Dranow DM, Horst BG, Abendroth JA, Forte B et al. 2017. Biochemical and structural characterization of selective allosteric inhibitors of the Plasmodium falciparum drug target, prolyl-tRNA-synthetase. ACS Infect. Dis. 3:34–44
    [Google Scholar]
  38. 38.
    Hoen R, Novoa EM, López A, Camacho N, Cubells L et al. 2013. Selective inhibition of an apicoplastic aminoacyl-tRNA synthetase from Plasmodium falciparum. ChemBioChem 14:499–509
    [Google Scholar]
  39. 39.
    Hoepfner D, McNamara CW, Lim CS, Studer C, Riedl R et al. 2012. Selective and specific inhibition of the Plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin. Cell Host Microbe 11:654–63
    [Google Scholar]
  40. 40.
    Hussain T, Yogavel M, Sharma A. 2015. Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases. Antimicrob. Agents Chemother. 59:1856–67
    [Google Scholar]
  41. 41.
    Huynh K, Partch CL. 2015. Analysis of protein stability and ligand interactions by thermal shift assay. Curr. Protoc. Protein Sci. 79:28.9.1–14
    [Google Scholar]
  42. 42.
    Ibba M, Soll D. 2000. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69:617–50
    [Google Scholar]
  43. 43.
    Istvan ES, Dharia NV, Bopp SE, Gluzman I, Winzeler EA, Goldberg DE. 2011. Validation of isoleucine utilization targets in Plasmodium falciparum. PNAS 108:1627–32
    [Google Scholar]
  44. 44.
    Istvan ES, Guerra F, Abraham M, Huang KS, Rocamora F et al. 2023. Cytoplasmic isoleucyl tRNA synthetase as an attractive multistage antimalarial drug target. Sci. Transl. Med. 15:eadc9249
    [Google Scholar]
  45. 45.
    Jackson KE, Habib S, Frugier M, Hoen R, Khan S et al. 2011. Protein translation in Plasmodium parasites. Trends Parasitol. 27:467–76
    [Google Scholar]
  46. 46.
    Jain V, Yogavel M, Kikuchi H, Oshima Y, Hariguchi N et al. 2017. Targeting prolyl-tRNA synthetase to accelerate drug discovery against malaria, leishmaniasis, toxoplasmosis, cryptosporidiosis, and coccidiosis. Structure 25:1495–505.e6
    [Google Scholar]
  47. 47.
    Jain V, Yogavel M, Oshima Y, Kikuchi H, Touquet B et al. 2015. Structure of prolyl-tRNA synthetase-halofuginone complex provides basis for development of drugs against malaria and toxoplasmosis. Structure 23:819–29
    [Google Scholar]
  48. 48.
    Kaiser F, Krautwurst S, Salentin S, Haupt VJ, Leberecht C et al. 2020. The structural basis of the genetic code: amino acid recognition by aminoacyl-tRNA synthetases. Sci. Rep. 10:12647
    [Google Scholar]
  49. 49.
    Kato N, Comer E, Sakata-Kato T, Sharma A, Sharma M et al. 2016. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature 538:344–49
    [Google Scholar]
  50. 50.
    Keller TL, Zocco D, Sundrud MS, Hendrick M, Edenius M et al. 2012. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat. Chem. Biol. 8:311–17
    [Google Scholar]
  51. 51.
    Kennedy K, Cobbold SA, Hanssen E, Birnbaum J, Spillman NJ et al. 2019. Delayed death in the malaria parasite Plasmodium falciparum is caused by disruption of prenylation-dependent intracellular trafficking. PLOS Biol. 17:e3000376
    [Google Scholar]
  52. 52.
    Khan S. 2016. Recent advances in the biology and drug targeting of malaria parasite aminoacyl-tRNA synthetases. Malar. J. 15:203
    [Google Scholar]
  53. 53.
    Khan S, Sharma A, Belrhali H, Yogavel M, Sharma A. 2014. Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin. J. Struct. Funct. Genom. 15:63–71
    [Google Scholar]
  54. 54.
    Khoshnood S, Heidary M, Asadi A, Soleimani S, Motahar M et al. 2019. A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against Staphylococcus aureus. Biomed. Pharmacother. 109:1809–18
    [Google Scholar]
  55. 55.
    Klayman DL. 1985. Qinghaosu (artemisinin): an antimalarial drug from China. Science 228:1049–55
    [Google Scholar]
  56. 56.
    Kwon NH, Fox PL, Kim S 2019. Aminoacyl-tRNA synthetases as therapeutic targets. Nat. Rev. Drug Discov. 18:629–50
    [Google Scholar]
  57. 57.
    Kwon NH, Lee JY, Ryu YL, Kim C, Kong J et al. 2018. Stabilization of cyclin-dependent kinase 4 by methionyl-tRNA synthetase in p16INK4a-negative cancer. ACS Pharmacol. Transl. Sci. 1:21–31
    [Google Scholar]
  58. 58.
    Lanaspa M, Moraleda C, Machevo S, Gonzalez R, Serrano B et al. 2012. Inadequate efficacy of a new formulation of fosmidomycin-clindamycin combination in Mozambican children less than three years old with uncomplicated Plasmodium falciparum malaria. Antimicrob. Agents Chemother. 56:2923–28
    [Google Scholar]
  59. 59.
    Li M, Liang Y. 2016. Ge Hong and Zhou Hou Jiu Zu Fang (A Handbook of Formulas for Emergencies). J. Tradit. Chin. Med. Sci. 3:1–2
    [Google Scholar]
  60. 60.
    Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. 2018. Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annu. Rev. Biochem. 87:451–78
    [Google Scholar]
  61. 61.
    Luth MR, Gupta P, Ottilie S, Winzeler EA 2018. Using in vitro evolution and whole genome analysis to discover next generation targets for antimalarial drug discovery. ACS Infect. Dis. 4:301–14
    [Google Scholar]
  62. 62.
    Maetani M, Zoller J, Melillo B, Verho O, Kato N et al. 2017. Synthesis of a bicyclic azetidine with in vivo antimalarial activity enabled by stereospecific, directed C(sp3)–H arylation. J. Am. Chem. Soc. 139:11300–6
    [Google Scholar]
  63. 63.
    Manickam Y, Chaturvedi R, Babbar P, Malhotra N, Jain V, Sharma A. 2018. Drug targeting of one or more aminoacyl-tRNA synthetase in the malaria parasite Plasmodium falciparum. Drug Discov. Today 23:1233–40
    [Google Scholar]
  64. 64.
    Manickam Y, Malhotra N, Mishra S, Babbar P, Dusane A et al. 2022. Double drugging of prolyl-tRNA synthetase provides a new paradigm for anti-infective drug development. PLOS Pathog. 18:e1010363
    [Google Scholar]
  65. 65.
    Milligan JF, Uhlenbeck OC. 1989. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180:51–62
    [Google Scholar]
  66. 66.
    Mitra SK, Mehler AH. 1967. The arginyl transfer ribonucleic acid synthetase of Escherichia coli. J. Biol. Chem. 242:5490–94
    [Google Scholar]
  67. 67.
    Nasamu AS, Falla A, Pasaje CFA, Wall BA, Wagner JC et al. 2021. An integrated platform for genome engineering and gene expression perturbation in Plasmodium falciparum. Sci. Rep. 11:342
    [Google Scholar]
  68. 68.
    Noack S, Chapman HD, Selzer PM. 2019. Anticoccidial drugs of the livestock industry. Parasitol. Res. 118:2009–26
    [Google Scholar]
  69. 69.
    Novoa EM, Camacho N, Tor A, Wilkinson B, Moss S et al. 2014. Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo. PNAS 111:E5508–17
    [Google Scholar]
  70. 70.
    Nyamai DW, Tastan Bishop Ö. 2019. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar. J. 18:34
    [Google Scholar]
  71. 71.
    O'Donoghue P, Luthey-Schulten Z. 2003. On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol. Mol. Biol. Rev. 67:550–73
    [Google Scholar]
  72. 72.
    Okaniwa M, Shibata A, Ochida A, Akao Y, White KL et al. 2021. Repositioning and characterization of 1-(pyridin-4-yl)pyrrolidin-2-one derivatives as Plasmodium cytoplasmic prolyl-tRNA synthetase inhibitors. ACS Infect. Dis. 7:1680–89
    [Google Scholar]
  73. 73.
    Patel H, Dunican C, Cunnington AJ. 2020. Predictors of outcome in childhood Plasmodium falciparum malaria. Virulence 11:1199–221
    [Google Scholar]
  74. 74.
    Perona JJ, Rould MA, Steitz TA. 1993. Structural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase. Biochemistry 32:8758–71
    [Google Scholar]
  75. 75.
    Pham JS, Dawson KL, Jackson KE, Lim EE, Pasaje CF et al. 2014. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. Int. J. Parasitol. Drugs Drug. Resist. 4:1–13
    [Google Scholar]
  76. 76.
    Pines M, Spector I. 2015. Halofuginone—the multifaceted molecule. Molecules 20:573–94
    [Google Scholar]
  77. 77.
    Radke JB, Melillo B, Mittal P, Sharma M, Sharma A et al. 2022. Bicyclic azetidines target acute and chronic stages of Toxoplasma gondii by inhibiting parasite phenylalanyl t-RNA synthetase. Nat. Commun. 13:459
    [Google Scholar]
  78. 78.
    Rajendran V, Kalita P, Shukla H, Kumar A, Tripathi T. 2018. Aminoacyl-tRNA synthetases: structure, function, and drug discovery. Int. J. Biol. Macromol. 111:400–14
    [Google Scholar]
  79. 79.
    Ribas de Pouplana L. 2020. The evolution of aminoacyl-tRNA synthetases: from dawn to LUCA. Biology of Aminoacyl-tRNA Synthetases L Ribas de Pouplana, LS Kaguni 11–37. Enzymes . Vol. 48 Cambridge, MA: Academic
    [Google Scholar]
  80. 80.
    Ribas de Pouplana L, Schimmel P. 2001. Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell 104:191–93
    [Google Scholar]
  81. 81.
    Rock FL, Mao W, Yaremchuk A, Tukalo M, Crepin T et al. 2007. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 316:1759–61
    [Google Scholar]
  82. 82.
    Rogerson SJ, Desai M, Mayor A, Sicuri E, Taylor SM, van Eijk AM. 2018. Burden, pathology, and costs of malaria in pregnancy: new developments for an old problem. Lancet Infect. Dis. 18:4e107–18
    [Google Scholar]
  83. 83.
    Rusch M, Thevenon A, Hoepfner D, Aust T, Studer C et al. 2019. Design and synthesis of metabolically stable tRNA synthetase inhibitors derived from cladosporin. ChemBioChem 20:644–49
    [Google Scholar]
  84. 84.
    Santos M, Fidalgo A, Varanda AS, Oliveira C, Santos MAS. 2019. tRNA deregulation and its consequences in cancer. Trends Mol. Med. 25:853–65
    [Google Scholar]
  85. 85.
    Sharma A, Sharma A. 2015. Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase. Biochem. J. 465:459–69
    [Google Scholar]
  86. 86.
    Sharma M, Malhotra N, Yogavel M, Harlos K, Melillo B et al. 2021. Structural basis of malaria parasite phenylalanine tRNA-synthetase inhibition by bicyclic azetidines. Nat. Commun. 12:343
    [Google Scholar]
  87. 87.
    Shen N, Guo L, Yang B, Jin Y, Ding J 2006. Structure of human tryptophanyl-tRNA synthetase in complex with tRNATrp reveals the molecular basis of tRNA recognition and specificity. Nucleic Acids Res. 34:3246–58
    [Google Scholar]
  88. 88.
    Sheridan CM, Garcia VE, Ahyong V, DeRisi JL. 2018. The Plasmodium falciparum cytoplasmic translation apparatus: a promising therapeutic target not yet exploited by clinically approved anti-malarials. Malar. J. 17:465
    [Google Scholar]
  89. 89.
    Sonoiki E, Palencia A, Guo D, Ahyong V, Dong C et al. 2016. Antimalarial benzoxaboroles target Plasmodium falciparum leucyl-tRNA synthetase. Antimicrob. Agents Chemother. 604886–95
    [Google Scholar]
  90. 90.
    Spring MD, Lin JT, Manning JE, Vanachayangkul P, Somethy S et al. 2015. Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study. Lancet Infect. Dis. 15:683–91
    [Google Scholar]
  91. 91.
    Sugawara A, Tanaka T, Hirose T, Ishiyama A, Iwatsuki M et al. 2013. Borrelidin analogues with antimalarial activity: design, synthesis and biological evaluation against Plasmodium falciparum parasites. Bioorg. Med. Chem. Lett. 23:2302–5
    [Google Scholar]
  92. 92.
    Takaya Y, Tasaka H, Chiba T, Uwai K, Tanitsu M et al. 1999. New type of febrifugine analogues, bearing a quinolizidine moiety, show potent antimalarial activity against Plasmodium malaria parasite. J. Med. Chem. 42:3163–66
    [Google Scholar]
  93. 93.
    Tamaki F, Fisher F, Milne R, Terán FS, Wiedemar N et al. 2022. High-throughput screening platform to identify inhibitors of protein synthesis with potential for the treatment of malaria. Antimicrob. Agents Chemother. 66:e0023722
    [Google Scholar]
  94. 94.
    Tenero D, Derimanov G, Carlton A, Tonkyn J, Davies M et al. 2019. First-time-in-human study and prediction of early bactericidal activity for GSK3036656, a potent leucyl-tRNA synthetase inhibitor for tuberculosis treatment. Antimicrob. Agents Chemother. 63:e00240–19
    [Google Scholar]
  95. 95.
    Tye MA, Payne NC, Johansson C, Singh K, Santos SA et al. 2022. Elucidating the path to Plasmodium prolyl-tRNA synthetase inhibitors that overcome halofuginone resistance. Nat. Commun. 13:4976
    [Google Scholar]
  96. 96.
    Uttamapinant C, Tangpeerachaikul A, Grecian S, Clarke S, Singh U et al. 2012. Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew. Chem. Int. Ed. Engl. 51:5852–56
    [Google Scholar]
  97. 97.
    van der Pluijm RW, Imwong M, Chau NH, Hoa NT, Thuy-Nhien NT et al. 2019. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect. Dis. 19:952–61
    [Google Scholar]
  98. 98.
    Vázquez-Laslop N, Mankin AS. 2018. Context-specific action of ribosomal antibiotics. Annu. Rev. Microbiol. 72:185–207
    [Google Scholar]
  99. 99.
    Vinayak S, Jumani RS, Miller P, Hasan MM, McLeod BI et al. 2020. Bicyclic azetidines kill the diarrheal pathogen Cryptosporidium in mice by inhibiting parasite phenylalanyl-tRNA synthetase. Sci. Transl. Med. 12:eaba8412
    [Google Scholar]
  100. 100.
    Wakasugi K, Schimmel P. 1999. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 284:147–51
    [Google Scholar]
  101. 101.
    Wakasugi K, Slike BM, Hood J, Otani A, Ewalt KL et al. 2002. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. PNAS 99:173–77
    [Google Scholar]
  102. 102.
    World Health Organ 2022. World malaria report 2022 Global Rep. World Health Organ. Geneva: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
    [Google Scholar]
  103. 103.
    Xie SC, Metcalfe RD, Dunn E, Morton CJ, Huang S-C et al. 2022. Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy. Science 376:1074–79
    [Google Scholar]
  104. 104.
    Xu Z, Lo WS, Beck DB, Schuch LA, Oláhová M et al. 2018. Bi-allelic mutations in Phe-tRNA synthetase associated with a multi-system pulmonary disease support non-translational function. Am. J. Hum. Genet. 103:100–14
    [Google Scholar]
  105. 105.
    Yang T, Ottilie S, Istvan ES, Godinez-Macias KP, Lukens AK et al. 2021. MalDA, accelerating malaria drug discovery. Trends Parasitol. 37:493–507
    [Google Scholar]
  106. 106.
    Yang XL, Otero FJ, Ewalt KL, Liu J, Swairjo MA et al. 2006. Two conformations of a crystalline human tRNA synthetase-tRNA complex: implications for protein synthesis. EMBO J. 25:2919–29
    [Google Scholar]
  107. 107.
    Yaremchuk A, Kriklivyi I, Tukalo M, Cusack S. 2002. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J. 21:3829–40
    [Google Scholar]
  108. 108.
    Zhou J, Huang Z, Zheng L, Hei Z, Wang Z et al. 2020. Inhibition of Plasmodium falciparum lysyl-tRNA synthetase via an anaplastic lymphoma kinase inhibitor. Nucleic Acids Res. 48:11566–76
    [Google Scholar]
  109. 109.
    Zhou J, Zheng L, Hei Z, Li W, Wang J et al. 2020. Atomic resolution analyses of isocoumarin derivatives for inhibition of lysyl-tRNA synthetase. ACS Chem. Biol. 15:1016–25
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032421-121210
Loading
/content/journals/10.1146/annurev-micro-032421-121210
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error