1932

Abstract

The cell envelope is a multilayered structure that insulates the interior of bacterial cells from an often chaotic outside world. Common features define the envelope across the bacterial kingdom, but the molecular mechanisms by which cells build and regulate this critical barrier are diverse and reflect the evolutionary histories of bacterial lineages. Intracellular pathogens of the genus exhibit marked differences in cell envelope structure, regulation, and biogenesis when compared to more commonly studied gram-negative bacteria and therefore provide an excellent comparative model for study of the gram-negative envelope. We review distinct features of the envelope, highlighting a conserved regulatory system that links cell cycle progression to envelope biogenesis and cell division. We further discuss recently discovered structural features of the envelope that ensure envelope integrity and that facilitate cell survival in the face of host immune stressors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032521-013159
2023-09-15
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032521-013159.html?itemId=/content/journals/10.1146/annurev-micro-032521-013159&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adhikari S, Erill I, Curtis PD. 2021. Transcriptional rewiring of the GcrA/CcrM bacterial epigenetic regulatory system in closely related bacteria. PLOS Genet. 17:e1009433
    [Google Scholar]
  2. 2.
    Aktas M, Wessel M, Hacker S, Klusener S, Gleichenhagen J, Narberhaus F. 2010. Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. Eur. J. Cell Biol. 89:888–94
    [Google Scholar]
  3. 3.
    Al Dahouk S, Kohler S, Occhialini A, Jimenez de Bagues MP, Hammerl JA et al. 2017. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts. Sci. Rep. 7:44420
    [Google Scholar]
  4. 4.
    Anwari K, Webb CT, Poggio S, Perry AJ, Belousoff M et al. 2012. The evolution of new lipoprotein subunits of the bacterial outer membrane BAM complex. Mol. Microbiol. 84:832–44
    [Google Scholar]
  5. 5.
    Aragon-Aranda B, Palacios-Chaves L, Salvador-Bescos M, de Miguel MJ, Munoz PM et al. 2021. The phospholipid N-methyltransferase and phosphatidylcholine synthase pathways and the ChoXWV choline uptake system involved in phosphatidylcholine synthesis are widely conserved in most, but not all Brucella species. Front. Microbiol. 12:614243
    [Google Scholar]
  6. 6.
    Araujo RS, Robleto EA, Handelsman J. 1994. A hydrophobic mutant of Rhizobium etli altered in nodulation competitiveness and growth in the rhizosphere. Appl. Environ. Microbiol. 60:1430–36
    [Google Scholar]
  7. 7.
    Ardissone S, Fumeaux C, Berge M, Beaussart A, Theraulaz L et al. 2014. Cell cycle constraints on capsulation and bacteriophage susceptibility. eLife 3:e03587
    [Google Scholar]
  8. 8.
    Asmar AT, Collet JF. 2018. Lpp, the Braun lipoprotein, turns 50—major achievements and remaining issues. FEMS Microbiol. Lett. 365:18fny199
    [Google Scholar]
  9. 9.
    Bang B. 1897. Die Aetiologie des seuchenhaften (“infectiösen”) Verwerfens. Z. Tiermedizin 1:241–78
    [Google Scholar]
  10. 10.
    Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzman-Verri C, Chacon-Diaz C et al. 2007. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLOS ONE 2:e631
    [Google Scholar]
  11. 11.
    Batut J, Andersson SG, O'Callaghan D. 2004. The evolution of chronic infection strategies in the alpha-proteobacteria. Nat. Rev. Microbiol. 2:933–45
    [Google Scholar]
  12. 12.
    Bhat UR, Carlson RW, Busch M, Mayer H. 1991. Distribution and phylogenetic significance of 27-hydroxy-octacosanoic acid in lipopolysaccharides from bacteria belonging to the alpha-2 subgroup of Proteobacteria. Int. J. Syst. Bacteriol. 41:213–17
    [Google Scholar]
  13. 13.
    Bialer MG, Ruiz-Ranwez V, Sycz G, Estein SM, Russo DM et al. 2019. MapB, the Brucella suis TamB homologue, is involved in cell envelope biogenesis, cell division and virulence. Sci. Rep. 9:12158
    [Google Scholar]
  14. 14.
    Bittinger MA, Milner JL, Saville BJ, Handelsman J. 1997. rosR, a determinant of nodulation competitiveness in Rhizobium etli. Mol. Plant Microbe Interact. 10:180–86
    [Google Scholar]
  15. 15.
    Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S et al. 2021. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49:D344–54
    [Google Scholar]
  16. 16.
    Braun V, Bosch V. 1972. Sequence of the murein-lipoprotein and the attachment site of the lipid. Eur. J. Biochem. 28:51–69
    [Google Scholar]
  17. 17.
    Brown PJ, de Pedro MA, Kysela DT, Van der Henst C, Kim J et al. 2012. Polar growth in the Alphaproteobacterial order Rhizobiales. PNAS 109:1697–701
    [Google Scholar]
  18. 18.
    Bruce D. 1887. Note on the discovery of a microorganism in Malta fever. Practitioner 39:161–70
    [Google Scholar]
  19. 19.
    Bukata L, Altabe S, de Mendoza D, Ugalde RA, Comerci DJ. 2008. Phosphatidylethanolamine synthesis is required for optimal virulence of Brucella abortus. J. Bacteriol. 190:8197–203
    [Google Scholar]
  20. 20.
    Casabuono AC, Czibener C, Del Giudice MG, Valguarnera E, Ugalde JE, Couto AS. 2017. New features in the lipid A structure of Brucella suis and Brucella abortus lipopolysaccharide. J. Am. Soc. Mass Spectrom. 28:2716–23
    [Google Scholar]
  21. 21.
    Caswell CC, Elhassanny AE, Planchin EE, Roux CM, Weeks-Gorospe JN et al. 2013. Diverse genetic regulon of the virulence-associated transcriptional regulator MucR in Brucella abortus 2308. Infect. Immun. 81:1040–51
    [Google Scholar]
  22. 22.
    Charles TC, Nester EW. 1993. A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J. Bacteriol. 175:6614–25
    [Google Scholar]
  23. 23.
    Chou AY, Archdeacon J, Kado CI. 1998. Agrobacterium transcriptional regulator Ros is a prokaryotic zinc finger protein that regulates the plant oncogene ipt. PNAS 95:5293–98
    [Google Scholar]
  24. 24.
    Cloeckaert A, Vizcaino N, Paquet JY, Bowden RA, Elzer PH. 2002. Major outer membrane proteins of Brucella spp.: past, present and future. Vet. Microbiol. 90:229–47
    [Google Scholar]
  25. 25.
    Cloeckaert A, Zygmunt MS, de Wergifosse P, Dubray G, Limet JN. 1992. Demonstration of peptidoglycan-associated Brucella outer-membrane proteins by use of monoclonal antibodies. J. Gen. Microbiol. 138:1543–50
    [Google Scholar]
  26. 26.
    Coloma-Rivero RF, Flores-Concha M, Molina RE, Soto-Shara R, Cartes A, Onate AA. 2021. Brucella and its hidden flagellar system. Microorganisms 10:83
    [Google Scholar]
  27. 27.
    Comerci DJ, Altabe S, de Mendoza D, Ugalde RA. 2006. Brucella abortus synthesizes phosphatidylcholine from choline provided by the host. J. Bacteriol. 188:1929–34
    [Google Scholar]
  28. 28.
    Conde-Alvarez R, Arce-Gorvel V, Iriarte M, Mancek-Keber M, Barquero-Calvo E et al. 2012. The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition. PLOS Pathog. 8:e1002675
    [Google Scholar]
  29. 29.
    Conde-Alvarez R, Palacios-Chaves L, Gil-Ramirez Y, Salvador-Bescos M, Barcena-Varela M et al. 2017. Identification of lptA, lpxE, and lpxO, three genes involved in the remodeling of Brucella cell envelope. Front. Microbiol. 8:2657
    [Google Scholar]
  30. 30.
    Conde-Alvarez R, Grilló MJ, Salcedo SP, De Miguel MJ, Fugier E et al. 2006. Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell. Microbiol. 8:1322–35
    [Google Scholar]
  31. 31.
    Conner JG, Zamorano-Sanchez D, Park JH, Sondermann H, Yildiz FH. 2017. The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. Curr. Opin. Microbiol. 36:20–29
    [Google Scholar]
  32. 32.
    Corbel MJ. 1997. Brucellosis: an overview. Emerg. Infect. Dis. 3:213–21
    [Google Scholar]
  33. 33.
    De Bolle X, Crosson S, Matroule JY, Letesson JJ. 2015. Brucella abortus cell cycle and infection are coordinated. Trends Microbiol. 23:812–21
    [Google Scholar]
  34. 34.
    DeJesus MA, Ambadipudi C, Baker R, Sassetti C, Ioerger TR. 2015. TRANSIT–a software tool for Himar1 TnSeq analysis. PLOS Comput. Biol. 11:e1004401
    [Google Scholar]
  35. 35.
    DeJesus MA, Ioerger TR. 2015. Capturing uncertainty by modeling local transposon insertion frequencies improves discrimination of essential genes. IEEE/ACM Trans. Comput. Biol. Bioinform. 12:92–102
    [Google Scholar]
  36. 36.
    DelVecchio VG, Kapatral V, Redkar RJ, Patra G, Mujer C et al. 2002. The genome sequence of the facultative intracellular pathogen Brucella melitensis. PNAS 99:443–48
    [Google Scholar]
  37. 37.
    Duenas AI, Orduna A, Crespo MS, Garcia-Rodriguez C. 2004. Interaction of endotoxins with Toll-like receptor 4 correlates with their endotoxic potential and may explain the proinflammatory effect of Brucella spp. LPS. Int. Immunol. 16:1467–75
    [Google Scholar]
  38. 38.
    Eswara PJ, Ramamurthi KS. 2017. Bacterial cell division: nonmodels poised to take the spotlight. Annu. Rev. Microbiol. 71:393–411
    [Google Scholar]
  39. 39.
    Ferguson GP, Datta A, Baumgartner J, Roop RM, Carlson RW, Walker GC. 2004. Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. PNAS 101:5012–17
    [Google Scholar]
  40. 40.
    Fiebig A, Herrou J, Willett J, Crosson S. 2015. General stress signaling in the Alphaproteobacteria. Annu. Rev. Genet. 49:603–25
    [Google Scholar]
  41. 41.
    Fontana C, Conde-Alvarez R, Stahle J, Holst O, Iriarte M et al. 2016. Structural studies of lipopolysaccharide-defective mutants from Brucella melitensis identify a core oligosaccharide critical in virulence. J. Biol. Chem. 291:7727–41
    [Google Scholar]
  42. 42.
    Francez-Charlot A, Kaczmarczyk A, Fischer HM, Vorholt JA. 2015. The general stress response in Alphaproteobacteria. Trends Microbiol. 23:164–71
    [Google Scholar]
  43. 43.
    Francis N, Poncin K, Fioravanti A, Vassen V, Willemart K et al. 2017. CtrA controls cell division and outer membrane composition of the pathogen Brucella abortus. Mol. Microbiol. 103:780–97
    [Google Scholar]
  44. 44.
    Fretin D, Fauconnier A, Kohler S, Halling S, Leonard S et al. 2005. The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell Microbiol. 7:687–98
    [Google Scholar]
  45. 45.
    Gamazo C, Moriyon I. 1987. Release of outer membrane fragments by exponentially growing Brucella melitensis cells. Infect. Immun. 55:609–15
    [Google Scholar]
  46. 46.
    Gao JL, Weissenmayer B, Taylor AM, Thomas-Oates J, Lopez-Lara IM, Geiger O. 2004. Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids. Mol. Microbiol. 53:1757–70
    [Google Scholar]
  47. 47.
    Giambartolomei GH, Zwerdling A, Cassataro J, Bruno L, Fossati CA, Philipp MT. 2004. Lipoproteins, not lipopolysaccharide, are the key mediators of the proinflammatory response elicited by heat-killed Brucella abortus. J. Immunol. 173:4635–42
    [Google Scholar]
  48. 48.
    Gil-Ramirez Y, Conde-Alvarez R, Palacios-Chaves L, Zuniga-Ripa A, Grillo MJ et al. 2014. The identification of wadB, a new glycosyltransferase gene, confirms the branched structure and the role in virulence of the lipopolysaccharide core of Brucella abortus. Microb. Pathog. 73:53–59
    [Google Scholar]
  49. 49.
    Godessart P, Lannoy A, Dieu M, Van der Verren SE, Soumillion P et al. 2021. β-Barrels covalently link peptidoglycan and the outer membrane in the α-proteobacterium Brucella abortus. Nat. Microbiol. 6:27–33
    [Google Scholar]
  50. 50.
    Godfroid F, Taminiau B, Danese I, Denoel P, Tibor A et al. 1998. Identification of the perosamine synthetase gene of Brucella melitensis 16M and involvement of lipopolysaccharide O side chain in Brucella survival in mice and in macrophages. Infect. Immun. 66:5485–93
    [Google Scholar]
  51. 51.
    Gomez-Miguel MJ, Moriyon I. 1986. Demonstration of a peptidoglycan-linked lipoprotein and characterization of its trypsin fragment in the outer membrane of Brucella spp. Infect. Immun. 53:678–84
    [Google Scholar]
  52. 52.
    Goolab S, Roth RL, van Heerden H, Crampton MC. 2015. Analyzing the molecular mechanism of lipoprotein localization in Brucella. Front. Microbiol. 6:1189
    [Google Scholar]
  53. 53.
    Gourley CR, Petersen E, Harms J, Splitter G. 2015. Decreased in vivo virulence and altered gene expression by a Brucella melitensis light-sensing histidine kinase mutant. Pathog. Dis. 73:1–8
    [Google Scholar]
  54. 54.
    Grabowicz M. 2019. Lipoproteins and their trafficking to the outer membrane. EcoSal Plus 8: https://doi.org/10.1128/ecosalplus.ESP-0038-2018
    [Google Scholar]
  55. 55.
    Guzman-Verri C, Manterola L, Sola-Landa A, Parra A, Cloeckaert A et al. 2002. The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae. PNAS 99:12375–80
    [Google Scholar]
  56. 56.
    Hallez R, Mignolet J, Van Mullem V, Wery M, Vandenhaute J et al. 2007. The asymmetric distribution of the essential histidine kinase PdhS indicates a differentiation event in Brucella abortus. EMBO J. 26:1444–55
    [Google Scholar]
  57. 57.
    Hantke K, Braun V. 1973. Covalent binding of lipid to protein: diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur. J. Biochem. 34:284–96
    [Google Scholar]
  58. 58.
    Heinz E, Selkrig J, Belousoff MJ, Lithgow T. 2015. Evolution of the translocation and assembly module (TAM). Genome Biol. Evol. 7:1628–43
    [Google Scholar]
  59. 59.
    Herrmann CK, Bukata L, Melli L, Marchesini MI, Caramelo JJ, Comerci DJ. 2013. Identification and characterization of a high-affinity choline uptake system of Brucella abortus. J. Bacteriol. 195:493–501
    [Google Scholar]
  60. 60.
    Herrou J, Crosson S, Fiebig A. 2017. Structure and function of HWE/HisKA2-family sensor histidine kinases. Curr. Opin. Microbiol. 36:47–54
    [Google Scholar]
  61. 61.
    Herrou J, Willett JW, Fiebig A, Czyz DM, Cheng JX et al. 2019. Brucella periplasmic protein EipB is a molecular determinant of cell envelope integrity and virulence. J. Bacteriol. 201:e00134–19
    [Google Scholar]
  62. 62.
    Herrou J, Willett JW, Fiebig A, Varesio LM, Czyz DM et al. 2019. Periplasmic protein EipA determines envelope stress resistance and virulence in Brucella abortus. Mol. Microbiol. 111:637–61
    [Google Scholar]
  63. 63.
    Hershey DM, Porfirio S, Black I, Jaehrig B, Heiss C et al. 2019. Composition of the holdfast polysaccharide from Caulobacter crescentus. J. Bacteriol. 201:e00276–19
    [Google Scholar]
  64. 64.
    Howell M, Brown PJ. 2016. Building the bacterial cell wall at the pole. Curr. Opin. Microbiol. 34:53–59
    [Google Scholar]
  65. 65.
    Keller M, Roxlau A, Weng WM, Schmidt M, Quandt J et al. 1995. Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. Mol. Plant Microbe Interact. 8:267–77
    [Google Scholar]
  66. 66.
    Kerrinnes T, Young BM, Leon C, Roux CM, Tran L et al. 2015. Phospholipase A1 modulates the cell envelope phospholipid content of Brucella melitensis, contributing to polymyxin resistance and pathogenicity. Antimicrob. Agents Chemother. 59:6717–24
    [Google Scholar]
  67. 67.
    Khan M, Harms JS, Marim FM, Armon L, Hall CL et al. 2016. The bacterial second messenger cyclic di-GMP regulates Brucella pathogenesis and leads to altered host immune response. Infect. Immun. 84:3458–70
    [Google Scholar]
  68. 68.
    Kim HS, Caswell CC, Foreman R, Roop RM, Crosson S. 2013. The Brucella abortus general stress response system regulates chronic mammalian infection and is controlled by phosphorylation and proteolysis. J. Biol. Chem. 288:13906–16
    [Google Scholar]
  69. 69.
    Kim HS, Willett JW, Jain-Gupta N, Fiebig A, Crosson S. 2014. The Brucella abortus virulence regulator, LovhK, is a sensor kinase in the general stress response signalling pathway. Mol. Microbiol. 94:913–25
    [Google Scholar]
  70. 70.
    Kleanthous C, Armitage JP. 2015. The bacterial cell envelope. Philos. Trans. R. Soc. Lond. 370:167920150019
    [Google Scholar]
  71. 71.
    Krol E, Schaper S, Becker A. 2020. Cyclic di-GMP signaling controlling the free-living lifestyle of alpha-proteobacterial rhizobia. Biol. Chem. 401:1335–48
    [Google Scholar]
  72. 72.
    Kubler-Kielb J, Vinogradov E. 2013. The study of the core part and non-repeating elements of the O-antigen of Brucella lipopolysaccharide. Carbohydr. Res. 366:33–37
    [Google Scholar]
  73. 73.
    Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S et al. 2012. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent d-amino acids. Angew. Chem. Int. Ed. Engl. 51:12519–23
    [Google Scholar]
  74. 74.
    Lamontagne J, Butler H, Chaves-Olarte E, Hunter J, Schirm M et al. 2007. Extensive cell envelope modulation is associated with virulence in Brucella abortus. J. Proteome Res. 6:1519–29
    [Google Scholar]
  75. 75.
    Lamontagne J, Forest A, Marazzo E, Denis F, Butler H et al. 2009. Intracellular adaptation of Brucella abortus. J. Proteome Res. 8:1594–609
    [Google Scholar]
  76. 76.
    Lapaque N, Moriyon I, Moreno E, Gorvel JP. 2005. Brucella lipopolysaccharide acts as a virulence factor. Curr. Opin. Microbiol. 8:60–66
    [Google Scholar]
  77. 77.
    Lasker K, Mann TH, Shapiro L. 2016. An intracellular compass spatially coordinates cell cycle modules in Caulobacter crescentus. Curr. Opin. Microbiol. 33:131–39
    [Google Scholar]
  78. 78.
    Lopez-Goni I, Guzman-Verri C, Manterola L, Sola-Landa A, Moriyon I, Moreno E. 2002. Regulation of Brucella virulence by the two-component system BvrR/BvrS. Vet. Microbiol. 90:329–39
    [Google Scholar]
  79. 79.
    Lori C, Ozaki S, Steiner S, Bohm R, Abel S et al. 2015. Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature 523:236–39
    [Google Scholar]
  80. 80.
    Luebke JL, Eaton DS, Sachleben JR, Crosson S. 2018. Allosteric control of a bacterial stress response system by an anti-sigma factor. Mol. Microbiol. 107:164–79
    [Google Scholar]
  81. 81.
    Malinverni JC, Silhavy TJ. 2011. Assembly of outer membrane β-barrel proteins: the Bam complex. EcoSal Plus 4: https://doi.org/10.1128/ecosalplus.4.3.8
    [Google Scholar]
  82. 82.
    Manterola L, Moriyon I, Moreno E, Sola-Landa A, Weiss DS et al. 2005. The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. J. Bacteriol. 187:5631–39
    [Google Scholar]
  83. 83.
    Mantis NJ, Winans SC. 1993. The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J. Bacteriol. 175:6626–36
    [Google Scholar]
  84. 84.
    Martinez de Tejada G, Pizarro-Cerda J, Moreno E, Moriyon I. 1995. The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect. Immun. 63:3054–61
    [Google Scholar]
  85. 85.
    Martinez-Morales F, Schobert M, Lopez-Lara IM, Geiger O. 2003. Pathways for phosphatidylcholine biosynthesis in bacteria. Microbiology 149:3461–71
    [Google Scholar]
  86. 86.
    Martinez-Nunez C, Altamirano-Silva P, Alvarado-Guillen F, Moreno E, Guzman-Verri C, Chaves-Olarte E 2010. The two-component system BvrR/BvrS regulates the expression of the type IV secretion system VirB in Brucella abortus. J. Bacteriol. 192:5603–8
    [Google Scholar]
  87. 87.
    Meikle PJ, Perry MB, Cherwonogrodzky JW, Bundle DR. 1989. Fine structure of A and M antigens from Brucella biovars. Infect. Immun. 57:2820–28
    [Google Scholar]
  88. 88.
    Mirabella A, Terwagne M, Zygmunt MS, Cloeckaert A, De Bolle X, Letesson JJ. 2013. Brucella melitensis MucR, an orthologue of Sinorhizobium meliloti MucR, is involved in resistance to oxidative, detergent, and saline stresses and cell envelope modifications. J. Bacteriol. 195:453–65
    [Google Scholar]
  89. 89.
    Monreal D, Grillo MJ, Gonzalez D, Marin CM, De Miguel MJ et al. 2003. Characterization of Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model. Infect. Immun. 71:3261–71
    [Google Scholar]
  90. 90.
    Moreno E, Cloeckaert A, Moriyon I. 2002. Brucella evolution and taxonomy. Vet. Microbiol. 90:209–27
    [Google Scholar]
  91. 91.
    Moreno E, Stackebrandt E, Dorsch M, Wolters J, Busch M, Mayer H. 1990. Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria. J. Bacteriol. 172:3569–76
    [Google Scholar]
  92. 92.
    Okuda S, Tokuda H. 2011. Lipoprotein sorting in bacteria. Annu. Rev. Microbiol. 65:239–59
    [Google Scholar]
  93. 93.
    Onyeziri MC, Hardy GG, Natarajan R, Xu J, Reynolds IP et al. 2022. Dual adhesive unipolar polysaccharides synthesized by overlapping biosynthetic pathways in Agrobacterium tumefaciens. Mol. Microbiol. 117:1023–47
    [Google Scholar]
  94. 94.
    Palacios-Chaves L, Conde-Alvarez R, Gil-Ramirez Y, Zuniga-Ripa A, Barquero-Calvo E et al. 2011. Brucella abortus ornithine lipids are dispensable outer membrane components devoid of a marked pathogen-associated molecular pattern. PLOS ONE 6:e16030
    [Google Scholar]
  95. 95.
    Panis G, Murray SR, Viollier PH. 2015. Versatility of global transcriptional regulators in alpha-Proteobacteria: from essential cell cycle control to ancillary functions. FEMS Microbiol. Rev. 39:120–33
    [Google Scholar]
  96. 96.
    Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. 2006. The new global map of human brucellosis. Lancet Infect. Dis. 6:91–99
    [Google Scholar]
  97. 97.
    Petersen E, Chaudhuri P, Gourley C, Harms J, Splitter G. 2011. Brucella melitensis cyclic di-GMP phosphodiesterase BpdA controls expression of flagellar genes. J. Bacteriol. 193:5683–91
    [Google Scholar]
  98. 98.
    Poncin K, Gillet S, De Bolle X. 2018. Learning from the master: targets and functions of the CtrA response regulator in Brucella abortus and other alpha-proteobacteria. FEMS Microbiol. Rev. 42:500–13
    [Google Scholar]
  99. 99.
    Quilici G, Berardi A, Fabris C, Ghitti M, Punta M et al. 2022. Solution structure of the BPSL1445 protein of Burkholderia pseudomallei reveals the SYLF domain three-dimensional fold. ACS Chem. Biol. 17:230–39
    [Google Scholar]
  100. 100.
    Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635–700
    [Google Scholar]
  101. 101.
    Reboul A, Carlier E, Stubbe FX, Barbieux E, Demars A et al. 2021. PdeA is required for the rod shape morphology of Brucella abortus. Mol. Microbiol. 116:1449–63
    [Google Scholar]
  102. 102.
    Rivas-Solano O, Van der Henst M, Castillo-Zeledon A, Suarez-Esquivel M, Munoz-Vargas L et al. 2022. The regulon of Brucella abortus two-component system BvrR/BvrS reveals the coordination of metabolic pathways required for intracellular life. PLOS ONE 17:e0274397
    [Google Scholar]
  103. 103.
    Roba A, Carlier E, Godessart P, Naili C, De Bolle X. 2022. Histidine auxotroph mutant is defective for cell separation and allows the identification of crucial factors for cell division in Brucella abortus. Mol. Microbiol. 118:145–54
    [Google Scholar]
  104. 104.
    Rohs PDA, Bernhardt TG. 2021. Growth and division of the peptidoglycan matrix. Annu. Rev. Microbiol. 75:315–36
    [Google Scholar]
  105. 105.
    Romling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77:1–52
    [Google Scholar]
  106. 106.
    Roop RM 2nd, Barton IS, Hopersberger D, Martin DW. 2021. Uncovering the hidden credentials of Brucella virulence. Microbiol. Mol. Biol. Rev. 85:e00021–19
    [Google Scholar]
  107. 107.
    Sandoz KM, Moore RA, Beare PA, Patel AV, Smith RE et al. 2021. β-Barrel proteins tether the outer membrane in many Gram-negative bacteria. Nat. Microbiol. 6:19–26
    [Google Scholar]
  108. 108.
    Schaper S, Yau HCL, Krol E, Skotnicka D, Heimerl T et al. 2018. Seven-transmembrane receptor protein RgsP and cell wall-binding protein RgsM promote unipolar growth in Rhizobiales. PLOS Genet. 14:e1007594
    [Google Scholar]
  109. 109.
    Scholz H, Banai M, Cloeckaert A, Kampfer P, Whatmore A 2018. Brucella. In Bergey's Manual of Systematics of Archaea and Bacteria ME Trujillo, S Dedysh, P DeVos, B Hedlund, P Kämpfer, et al Hoboken, NJ: John Wiley https://doi.org/10.1002/9781118960608.gbm00807.pub2
    [Google Scholar]
  110. 110.
    Servais C, Vassen V, Verhaeghe A, Kuster NS, Carlier E et al. 2022. Lipopolysaccharide synthesis and traffic in the envelope of the pathogen Brucella abortus. bioRxiv 2022.05.19.492625, May 19
  111. 111.
    Silhavy TJ, Kahne D, Walker S. 2010. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2:a000414
    [Google Scholar]
  112. 112.
    Smith SC, Joshi KK, Zik JJ, Trinh K, Kamajaya A et al. 2014. Cell cycle-dependent adaptor complex for ClpXP-mediated proteolysis directly integrates phosphorylation and second messenger signals. PNAS 111:14229–34
    [Google Scholar]
  113. 113.
    Sohlenkamp C, Lopez-Lara IM, Geiger O. 2003. Biosynthesis of phosphatidylcholine in bacteria. Prog. Lipid Res. 42:115–62
    [Google Scholar]
  114. 114.
    Sola-Landa A, Pizarro-Cerda J, Grillo MJ, Moreno E, Moriyon I et al. 1998. A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol. Microbiol. 29:125–38
    [Google Scholar]
  115. 115.
    Sperandeo P, Deho G, Polissi A. 2009. The lipopolysaccharide transport system of Gram-negative bacteria. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1791:594–602
    [Google Scholar]
  116. 116.
    Sternon JF, Godessart P, Goncalves de Freitas R, Van der Henst M, Poncin K et al. 2018. Transposon sequencing of Brucella abortus uncovers essential genes for growth in vitro and inside macrophages. Infect. Immun. 86:e00312–18
    [Google Scholar]
  117. 117.
    Stranahan LW, Arenas-Gamboa AM. 2021. When the going gets rough: the significance of Brucella lipopolysaccharide phenotype in host-pathogen interactions. Front. Microbiol. 12:713157
    [Google Scholar]
  118. 118.
    Sutcliffe IC, Harrington DJ, Hutchings MI. 2012. A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell 3:163–70
    [Google Scholar]
  119. 119.
    Sycz G, Carrica MC, Tseng TS, Bogomolni RA, Briggs WR et al. 2015. LOV histidine kinase modulates the general stress response system and affects the virB operon expression in Brucella abortus. PLOS ONE 10:e0124058
    [Google Scholar]
  120. 120.
    Tan Y, Kagan JC. 2014. A cross-disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide. Mol. Cell 54:212–23
    [Google Scholar]
  121. 121.
    Tartilan-Choya B, Sidhu-Munoz RS, Vizcaino N. 2021. The transcriptional regulator MucR, but not its controlled acid-activated chaperone HdeA, is essential for virulence and modulates surface architecture and properties in Brucella ovis PA. Front. Vet. Sci. 8:814752
    [Google Scholar]
  122. 122.
    Thiele OW, Schwinn G. 1973. The free lipids of Brucella melitensis and Bordetella pertussis. Eur. J. Biochem. 34:333–44
    [Google Scholar]
  123. 123.
    Valguarnera E, Spera JM, Czibener C, Fulgenzi FR, Casabuono AC et al. 2018. RomA, a periplasmic protein involved in the synthesis of the lipopolysaccharide, tunes down the inflammatory response triggered by Brucella. J. Infect. Dis. 217:1257–66
    [Google Scholar]
  124. 124.
    Van der Henst M, De Bolle X. 2022. Brucella abortus, a pathogenic rhizobiale with a complex cell cycle. Cell Cycle Regulation and Development in Alphaproteobacteria EG Biondi 287–301. Cham, Switz: Springer
    [Google Scholar]
  125. 125.
    van Teeseling MCF, Thanbichler M. 2020. Generating asymmetry in a changing environment: cell cycle regulation in dimorphic alphaproteobacteria. Biol. Chem. 401:1349–63
    [Google Scholar]
  126. 126.
    Varesio LM, Willett JW, Fiebig A, Crosson S. 2019. A carbonic anhydrase pseudogene sensitizes select Brucella lineages to low CO2 tension. J. Bacteriol. 201:e00509–19
    [Google Scholar]
  127. 127.
    Vassen V, Valotteau C, Feuillie C, Formosa-Dague C, Dufrene YF, De Bolle X. 2019. Localized incorporation of outer membrane components in the pathogen Brucella abortus. EMBO J. 38:e100323
    [Google Scholar]
  128. 128.
    Verger JM, Grimont F, Grimont PAD, Grayon M. 1985. Brucella, a monospecific genus as shown by deoxyribonucleic-acid hybridization. Int. J. Syst. Bacteriol. 35:292–95
    [Google Scholar]
  129. 129.
    Verstreate DR, Creasy MT, Caveney NT, Baldwin CL, Blab MW, Winter AJ. 1982. Outer membrane proteins of Brucella abortus: isolation and characterization. Infect. Immun. 35:979–89
    [Google Scholar]
  130. 130.
    Wattam AR, Inzana TJ, Williams KP, Mane SP, Shukla M et al. 2012. Comparative genomics of early-diverging Brucella strains reveals a novel lipopolysaccharide biosynthesis pathway. mBio 3:e00246–12
    [Google Scholar]
  131. 131.
    Weissenmayer B, Gao JL, Lopez-Lara IM, Geiger O. 2002. Identification of a gene required for the biosynthesis of ornithine-derived lipids. Mol. Microbiol. 45:721–33
    [Google Scholar]
  132. 132.
    Whatmore AM. 2009. Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. Infect. Genet. Evol. 9:1168–84
    [Google Scholar]
  133. 133.
    Whatmore AM, Foster JT. 2021. Emerging diversity and ongoing expansion of the genus Brucella. Infect. Genet. Evol. 92:104865
    [Google Scholar]
  134. 134.
    Willett JW, Herrou J, Briegel A, Rotskoff G, Crosson S. 2015. Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen. PNAS 112:E3709–18
    [Google Scholar]
  135. 135.
    Wu Q, Pei J, Turse C, Ficht TA. 2006. Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol 6:102
    [Google Scholar]
  136. 136.
    Xue S, Biondi EG. 2019. Coordination of symbiosis and cell cycle functions in Sinorhizobium meliloti. Biochim. Biophys. Acta Gene Regul. Mech. 1862:691–96
    [Google Scholar]
  137. 137.
    Zhao Y, Arce-Gorvel V, Conde-Alvarez R, Moriyon I, Gorvel JP. 2018. Vaccine development targeting lipopolysaccharide structure modification. Microbes Infect. 20:455–60
    [Google Scholar]
  138. 138.
    Zygmunt MS, Jacques I, Bernardet N, Cloeckaert A. 2012. Lipopolysaccharide heterogeneity in the atypical group of novel emerging Brucella species. Clin. Vaccine Immunol. 19:1370–73
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032521-013159
Loading
/content/journals/10.1146/annurev-micro-032521-013159
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error