1932

Abstract

Biological soil crusts are thin, inconspicuous communities along the soil atmosphere ecotone that, until recently, were unrecognized by ecologists and even more so by microbiologists. In its broadest meaning, the term biological soil crust (or biocrust) encompasses a variety of communities that develop on soil surfaces and are powered by photosynthetic primary producers other than higher plants: cyanobacteria, microalgae, and cryptogams like lichens and mosses. Arid land biocrusts are the most studied, but biocrusts also exist in other settings where plant development is constrained. The minimal requirement is that light impinge directly on the soil; this is impeded by the accumulation of plant litter where plants abound. Since scientists started paying attention, much has been learned about their microbial communities, their composition, ecological extent, and biogeochemical roles, about how they alter the physical behavior of soils, and even how they inform an understanding of early life on land. This has opened new avenues for ecological restoration and agriculture.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032521-015202
2023-09-15
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032521-015202.html?itemId=/content/journals/10.1146/annurev-micro-032521-015202&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abed RMM, Lam P, de Beer D, Stief P. 2013. High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman. ISME J. 7:1862–75
    [Google Scholar]
  2. 2.
    Abed RMM, Tamm A, Hassenrück C, Al-Rawahi AN, Rodríguez-Caballero E et al. 2019. Habitat-dependent composition of bacterial and fungal communities in biological soil crusts from Oman. Sci. Rep. 9:6468
    [Google Scholar]
  3. 3.
    Angel R, Matthies D, Conrad R. 2011. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLOS ONE 6:e20453
    [Google Scholar]
  4. 4.
    Antonaru LA, Cardona T, Larkum AWD, Nürnberg DJ. 2020. Global distribution of a chlorophyll f cyanobacterial marker. ISME J. 14:2275–87. Erratum. 2022 ISME J. 16:1680
    [Google Scholar]
  5. 5.
    Bar-Eyal L, Eisenberg I, Faust A, Raanan H, Nevo R et al. 2015. An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation. Biochim. Biophys. Acta Bioenerget. 1847:1267–73
    [Google Scholar]
  6. 6.
    Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, da Rocha UN et al. 2015. Exometabolite niche partitioning among sympatric soil bacteria. Nat. Commun. 6:8289
    [Google Scholar]
  7. 7.
    Baran R, Ivanova NN, Jose N, Garcia-Pichel F, Kyrpides NC et al. 2013. Functional genomics of novel secondary metabolites from diverse cyanobacteria using untargeted metabolomics. Mar. Drugs 11:3617–31
    [Google Scholar]
  8. 8.
    Baran R, Lau R, Bowen BP, Diamond S, Jose N et al. 2017. Extensive turnover of compatible solutes in cyanobacteria revealed by deuterium oxide (D2O) stable isotope probing. ACS Chem. Biol. 12:674–81
    [Google Scholar]
  9. 9.
    Barger NN, Castle SC, Dean GN. 2013. Denitrification from nitrogen-fixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecol. Process. 2:16
    [Google Scholar]
  10. 10.
    Barger NN, Weber B, Garcia-Pichel F, Zaady E, Belnap J. 2016. Patterns and controls on nitrogen cycling of biological soil crusts. See Ref. 141 257–85
  11. 11.
    Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N. 2011. Bacterial communities associated with the lichen symbiosis. Appl. Environ. Microbiol. 77:1309–14
    [Google Scholar]
  12. 12.
    Bates ST, Garcia-Pichel F. 2009. A culture-independent study of free-living fungi in biological soil crusts of the Colorado Plateau: their diversity and relative contribution to microbial biomass. Environ. Microbiol. 11:56–67
    [Google Scholar]
  13. 13.
    Bates ST, Nash TH III, Sweat KG, Garcia-Pichel F 2010. Fungal communities of lichen-dominated biological soil crusts: diversity, relative microbial biomass, and their relationship to disturbance and crust cover. J. Arid Environ. 74:1192–99
    [Google Scholar]
  14. 14.
    Bates ST, Reddy GS, Garcia-Pichel F. 2006. Exophiala crusticola anam. nov. (affinity Herpotrichiellaceae), a novel black yeast from biological soil crusts in the Western United States. Int. J. Systemat. Evol. Microbiol. 56:2697–702
    [Google Scholar]
  15. 15.
    Bay SK, Waite DW, Dong X, Gillor O, Chown SL et al. 2021. Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. ISME J. 15:3339–56
    [Google Scholar]
  16. 16.
    Belnap J. 2003. The world at your feet: desert biological soil crusts. Front. Ecol. Environ. 1:181–89
    [Google Scholar]
  17. 17.
    Belnap J. 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process. Int. J. 20:3159–78
    [Google Scholar]
  18. 18.
    Belnap J, Büdel B. 2016. Biological soil crusts as soil stabilizers. See Ref. 141 305–20
  19. 19.
    Belnap J, Lange OL, eds. 2001. Biological Soil Crusts: Structure, Function, and Management Berlin: Springer
  20. 20.
    Belnap J, Weber B, Büdel B. 2016. Biological soil crusts as an organizing principle in drylands. See Ref. 141 3–13
  21. 21.
    Beraldi-Campesi H, Farmer JD, Garcia-Pichel F. 2014. Modern terrestrial sedimentary biostructures and their fossil analogs in Mesoproterozoic subaerial deposits. Palaios 29:45–54
    [Google Scholar]
  22. 22.
    Beraldi-Campesi H, Hartnett H, Anbar A, Gordon G, Garcia-Pichel F. 2009. Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land. Geobiology 7:348–59
    [Google Scholar]
  23. 23.
    Beraldi-Campesi H, Retallack GJ. 2016. Terrestrial ecosystems in the Precambrian. See Ref. 141 37–54
  24. 24.
    Bethany J, Johnson SL, Garcia-Pichel F. 2022. High impact of bacterial predation on cyanobacteria in soil biocrusts. Nat. Commun. 13:4835
    [Google Scholar]
  25. 25.
    Bowker MA, Belnap J, Büdel B, Sannier C, Pietrasiak N et al. 2016. Controls on distribution patterns of biological soil crusts at micro- to global scales. See Ref. 141 173–97
  26. 26.
    Brankatschk R, Fischer T, Veste M, Zeyer J. 2013. Succession of N cycling processes in biological soil crusts on a Central European inland dune. FEMS Microbiol. Ecol. 83:149–60
    [Google Scholar]
  27. 27.
    Büdel B, Karsten U, Garcia-Pichel F. 1997. Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives in exposed, rock-inhabiting cyanobacterial lichens. Oecologia 112:165–72
    [Google Scholar]
  28. 28.
    Calabria LM, Petersen KS, Bidwell A, Hamman ST. 2020. Moss-cyanobacteria associations as a novel source of biological N2-fixation in temperate grasslands. Plant Soil 456:307–21
    [Google Scholar]
  29. 29.
    Cania B, Vestergaard G, Kublik S, Köhne JM, Fischer T et al. 2020. Biological soil crusts from different soil substrates harbor distinct bacterial groups with the potential to produce exopolysaccharides and lipopolysaccharides. Microb. Ecol. 79:326–41
    [Google Scholar]
  30. 30.
    Carvajal Janke N, Coe KK 2021. Evidence for a fungal loop in shrublands. J. Ecol. 109:1842–57
    [Google Scholar]
  31. 31.
    Chamizo S, Belnap J, Eldridge DJ, Cantón Y, Malam Issa O. 2016. The role of biocrusts in arid land hydrology. See Ref. 141 321–46
  32. 32.
    Chamizo S, Cantón Y, Lázaro R, Solé-Benet A, Domingo F. 2012. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems 15:148–61
    [Google Scholar]
  33. 33.
    Chen N, Yu K, Jia R, Teng J, Zhao C. 2020. Biocrust as one of multiple stable states in global drylands. Sci. Adv. 6:eaay3763
    [Google Scholar]
  34. 34.
    Chilton AM, Neilan BA, Eldridge DJ. 2018. Biocrust morphology is linked to marked differences in microbial community composition. Plant Soil 429:65–75
    [Google Scholar]
  35. 35.
    Chilton AM, Nguyen STT, Nelson TM, Pearson LA, Neilan BA. 2022. Climate dictates microbial community composition and diversity in Australian biological soil crusts (biocrusts). Environ. Microbiol. 24:5467–82
    [Google Scholar]
  36. 36.
    Colesie C, Williams L, Büdel B. 2017. Water relations in the soil crust lichen Psora decipiens are optimized via anatomical variability. Lichenologist 49:483–92
    [Google Scholar]
  37. 37.
    Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A et al. 2008. Pulse dynamics and microbial processes in aridland ecosystems. J. Ecol. 96:413–20
    [Google Scholar]
  38. 38.
    Concostrina-Zubiri L, Berdugo M, Valencia E, Mendoza BJ, Maestre FT. 2022. Decomposition of dryland biocrust-forming lichens and mosses contributes to soil nutrient cycling. Plant Soil 481:23–34
    [Google Scholar]
  39. 39.
    Conrad R, Seiler W. 1982. Arid soils as a source of atmospheric carbon monoxide. Geophys. Res. Lett. 9:1353–56
    [Google Scholar]
  40. 40.
    Couradeau E, Felde VJMNL, Parkinson D, Uteau D, Rochet A et al. 2018. In situ X-ray tomography imaging of soil water and cyanobacteria from biological soil crusts undergoing desiccation. Front. Environ. Sci. 6:65
    [Google Scholar]
  41. 41.
    Couradeau E, Giraldo-Silva A, De Martini F, Garcia-Pichel F 2019. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome 7:155
    [Google Scholar]
  42. 42.
    Couradeau E, Karaoz U, Lim HC, da Rocha UN, Northen T et al. 2016. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7:10373
    [Google Scholar]
  43. 43.
    da Rocha UN, Cadillo-Quiroz H, Karaoz U, Rajeev L, Klitgord N et al. 2015. Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust. Front. Microbiol. 6:277
    [Google Scholar]
  44. 44.
    Dou W, Xiao B, Wang Y, Kidron GJ. 2022. Contributions of three types of biocrusts to soil carbon stock and annual efflux in a small watershed of Northern Chinese Loess Plateau. Appl. Soil Ecol. 179:104596
    [Google Scholar]
  45. 45.
    Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B et al. 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5:459–62
    [Google Scholar]
  46. 46.
    Eldridge DJ, Reed S, Travers SK, Bowker MA, Maestre FT et al. 2020. The pervasive and multifaceted influence of biocrusts on water in the world's drylands. Glob. Change Biol. 26:6003–14
    [Google Scholar]
  47. 47.
    Evans R, Johansen J. 1999. Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 18:183–225
    [Google Scholar]
  48. 48.
    Evans RD, Belnap J, Garcia-Pichel E, Phillips SL. 2001. Global change and the future of biological soil crusts. See Ref. 19 417–29
  49. 49.
    Fernandes VM, Machado de Lima NM, Roush D, Rudgers J, Collins SL, Garcia-Pichel F. 2018. Exposure to predicted precipitation patterns decreases population size and alters community structure of cyanobacteria in biological soil crusts from the Chihuahuan Desert. Environ. Microbiol. 20:259–69
    [Google Scholar]
  50. 50.
    Fernandes VM, Rudgers JA, Collins SL, Garcia-Pichel F. 2022. Rainfall pulse regime drives biomass and community composition in biological soil crusts. Ecology 103:e3744
    [Google Scholar]
  51. 51.
    Fernandes VMC, Giraldo-Silva A, Roush D, Garcia-Pichel F 2021. Coleofasciculaceae, a monophyletic home for the Microcoleus steenstrupii complex and other desiccation-tolerant filamentous cyanobacteria. J. Phycol. 57:1563–79
    [Google Scholar]
  52. 52.
    Finn DR, Maldonado J, de Martini F, Yu J, Penton CR et al. 2021. Agricultural practices drive biological loads, seasonal patterns and potential pathogens in the aerobiome of a mixed-land-use dryland. Sci. Total Environ. 798:149239
    [Google Scholar]
  53. 53.
    Fulton JM, Arthur MA, Freeman KH. 2012. Subboreal aridity and scytonemin in the Holocene Black Sea. Org. Geochem. 49:47–55
    [Google Scholar]
  54. 54.
    Gao L, Bowker MA, Xu M, Sun H, Tuo D, Zhao Y. 2017. Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biol. Biochem. 105:49–58
    [Google Scholar]
  55. 55.
    Gao Q, Garcia-Pichel F. 2011. Microbial ultraviolet sunscreens. Nat. Rev. Microbiol. 9:791–802
    [Google Scholar]
  56. 56.
    Garcia-Pichel F. 1995. A scalar irradiance fiber-optic microprobe for the measurement of ultraviolet radiation at high spatial resolution. Photochem. Photobiol. 61:248–54
    [Google Scholar]
  57. 57.
    Garcia-Pichel F. 2003. Desert environments: biological soil crusts. Encyclopedia of Environmental Microbiology G Bitton 1019–23. New York: Wiley
    [Google Scholar]
  58. 58.
    Garcia-Pichel F, Belnap J. 1996. Microenvironments and microscale productivity of cyanobacterial desert crusts. J. Phycol. 32:774–82
    [Google Scholar]
  59. 59.
    Garcia-Pichel F, Belnap J. 2001. Small-scale environments and distribution of biological soil crusts. See Ref. 19 193–201
  60. 60.
    Garcia-Pichel F, Belnap J 2021. Cyanobacteria and algae. Principles and Applications of Soil Microbiology TJ Gentry, JJ Fuhrmann, DA Zuberer 171–89. Amsterdam: Elsevier. , 3rd ed..
    [Google Scholar]
  61. 61.
    Garcia-Pichel F, Belnap J, Neuer S, Schanz F. 2003. Estimates of global cyanobacterial biomass and its distribution. Arch. Hydrobiol Suppl. Algol. Stud. 109:213–27
    [Google Scholar]
  62. 62.
    Garcia-Pichel F, Johnson S, Youngkin D, Belnap J 2003. Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb. Ecol. 46:312–21
    [Google Scholar]
  63. 63.
    Garcia-Pichel F, López-Cortés A, Nübel U. 2001. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl. Environ. Microbiol. 67:1902–10
    [Google Scholar]
  64. 64.
    Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM. 2013. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–77
    [Google Scholar]
  65. 65.
    Garcia-Pichel F, Pringault O. 2001. Cyanobacteria track water in desert soils. Nature 413:380–81
    [Google Scholar]
  66. 66.
    Garcia-Pichel F, Sala O. 2022. Expanding the pulse–reserve paradigm to microorganisms on the basis of differential reserve management strategies. BioScience 72:638–50
    [Google Scholar]
  67. 67.
    Garcia-Pichel F, Wojciechowski MF. 2009. The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLOS ONE 4:e7801
    [Google Scholar]
  68. 68.
    Giraldo-Silva A, Fernandes V, Bethany J, Garcia-Pichel F 2020. Niche partitioning with temperature among heterocystous cyanobacteria (Scytonema spp., Nostoc spp., and Tolypothrix spp.) from biological soil crusts. Microorganisms 8:396
    [Google Scholar]
  69. 69.
    Giraldo-Silva A, Nelson C, Penfold C, Barger NN, Garcia-Pichel F 2020. Effect of preconditioning to the soil environment on the performance of 20 cyanobacterial strains used as inoculum for biocrust restoration. Restor. Ecol. 28:S187–93
    [Google Scholar]
  70. 70.
    González-Cabaleiro R, Curtis TP, Ofiţeru ID. 2019. Bioenergetics analysis of ammonia-oxidizing bacteria and the estimation of their maximum growth yield. Water Res. 154:238–45
    [Google Scholar]
  71. 71.
    Gonzalez-de-Salceda L, Garcia-Pichel F. 2021. The allometry of cellular DNA and ribosomal gene content among microbes and its use for the assessment of microbiome community structure. Microbiome 9:1173
    [Google Scholar]
  72. 72.
    Green TA, Pintado A, Raggio J, Sancho LG. 2018. The lifestyle of lichens in soil crusts. Lichenologist 50:397–410
    [Google Scholar]
  73. 73.
    Havrilla CA, Chaudhary VB, Ferrenberg S, Antoninka AJ, Belnap J et al. 2019. Towards a predictive framework for biocrust mediation of plant performance: a meta-analysis. J. Ecol. 107:2789–807
    [Google Scholar]
  74. 74.
    Hoffmann D, Maldonado J, Wojciechowski MF, Garcia-Pichel F. 2015. Hydrogen export from intertidal cyanobacterial mats: sources, fluxes and the influence of community composition. Environ. Microbiol. 17:3738–53
    [Google Scholar]
  75. 75.
    Holst J, Butterbach-Bahl K, Liu C, Zheng X, Kaiser AJ et al. 2009. Dinitrogen fixation by biological soil crusts in an Inner Mongolian steppe. Biol. Fertility Soils 45:679–90
    [Google Scholar]
  76. 76.
    Hu R, Wang X, Pan Y, Zhang Y, Zhang H, Chen N. 2015. Seasonal variation of net N mineralization under different biological soil crusts in Tengger Desert, North China. CATENA 127:9–16
    [Google Scholar]
  77. 77.
    Inman RE, Ingersoll RB, Levy EA. 1971. Soil: a natural sink for carbon monoxide. Science 172:1229–31
    [Google Scholar]
  78. 78.
    Johnson SL, Budinoff CR, Belnap J, Garcia-Pichel F. 2005. Relevance of ammonium oxidation within biological soil crust communities. Environ. Microbiol. 7:1–12
    [Google Scholar]
  79. 79.
    Johnson SL, Neuer S, Garcia-Pichel F. 2007. Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands. Environ. Microbiol. 9:680–89
    [Google Scholar]
  80. 80.
    Karaoz U, Couradeau E, da Rocha UN, Lim H-C, Northen T et al. 2018. Large blooms of Bacillales (Firmicutes) underlie the response to wetting of cyanobacterial biocrusts at various stages of maturity. mBio 9:e01366–16
    [Google Scholar]
  81. 81.
    Kasia C, Darwyn C, Paul S. 2013. Seasonal patterns of nitrogen fixation in biological soil crusts from British Columbia's Chilcotin grasslands. Botany 91:631–41
    [Google Scholar]
  82. 82.
    Kidron GJ, Kronenfeld R. 2022. Dew and fog as possible evolutionary drivers? The expansion of crustose and fruticose lichens in the Negev is respectively mainly dictated by dew and fog. Planta 255:32
    [Google Scholar]
  83. 83.
    Kidron GJ, Lichner L, Fischer T, Starinsky A, Or D. 2022. Mechanisms for biocrust-modulated runoff generation—a review. Earth-Sci. Rev. 231:104100
    [Google Scholar]
  84. 84.
    Kidron GJ, Posmanik R, Brunner T, Nejidat A. 2015. Spatial abundance of microbial nitrogen-transforming genes and inorganic nitrogen in biocrusts along a transect of an arid sand dune in the Negev Desert. Soil Biol. Biochem. 83:150–59
    [Google Scholar]
  85. 85.
    Kim M, Or D. 2017. Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts. Biogeosciences 14:5403–24
    [Google Scholar]
  86. 86.
    Kim M, Or D. 2019. Microscale pH variations during drying of soils and desert biocrusts affect HONO and NH3 emissions. Nat. Commun. 10:3944
    [Google Scholar]
  87. 87.
    Klicki K, Ferreira D, Risser D, Garcia-Pichel F. 2022. A regulatory linkage between scytonemin production and hormogonia differentiation in Nostoc punctiforme. iScience 25:104361
    [Google Scholar]
  88. 88.
    Lebre PH, De Maayer P, Cowan DA. 2017. Xerotolerant bacteria: surviving through a dry spell. Nat. Rev. Microbiol. 15:285–96
    [Google Scholar]
  89. 89.
    Li J-Y, Jin X-Y, Zhang X-C, Chen L, Liu J-L et al. 2020. Comparative metagenomics of two distinct biological soil crusts in the Tengger Desert, China. Soil Biol. Biochem. 140:107637
    [Google Scholar]
  90. 90.
    Li Y, Hu C. 2021. Biogeographical patterns and mechanisms of microbial community assembly that underlie successional biocrusts across northern China. npj Biofilms Microbiomes 7:115
    [Google Scholar]
  91. 91.
    Lu S, Liu X, Liu C, Cheng G, Shen H. 2020. Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems. Rev. Environ. Sci. Bio/Technol. 19:531–42
    [Google Scholar]
  92. 92.
    Machado-de-Lima NM, Fernandes VMC, Roush D, Velasco Ayuso S, Rigonato J et al. 2019. The compositionally distinct cyanobacterial biocrusts from Brazilian savanna and their environmental drivers of community diversity. Front. Microbiol. 10:2798
    [Google Scholar]
  93. 93.
    Maestre FT, Escolar C, de Guevara ML, Quero JL, Lázaro R et al. 2013. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob. Change Biol. 19:3835–47
    [Google Scholar]
  94. 94.
    Maier S, Kratz A, Weber J, Prass M, Liu F et al. 2022. Water-driven microbial nitrogen transformations in biological soil crusts causing atmospheric nitrous acid and nitric oxide emissions. ISME J. 16:1012–24
    [Google Scholar]
  95. 95.
    Maier S, Schmidt TS, Zheng L, Peer T, Wagner V, Grube M. 2014. Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities. Biodivers. Conserv. 23:1735–55
    [Google Scholar]
  96. 96.
    Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B 2018. Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J. 12:1032–46
    [Google Scholar]
  97. 97.
    Marusenko Y, Bates ST, Anderson I, Johnson SL, Soule T, Garcia-Pichel F 2013. Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecol. Process. 2:9
    [Google Scholar]
  98. 98.
    Meier DV, Imminger S, Gillor O, Woebken D, Lax S. 2021. Distribution of mixotrophy and desiccation survival mechanisms across microbial genomes in an arid biological soil crust community. mSystems 6:e00786–20
    [Google Scholar]
  99. 99.
    Metcalf JS, Banack SA, Richer R, Cox PA. 2015. Neurotoxic amino acids and their isomers in desert environments. J. Arid Environ. 112:140–44
    [Google Scholar]
  100. 100.
    Miralles I, Domingo F, García-Campos E, Trasar-Cepeda C, Leirós MC, Gil-Sotres F. 2012. Biological and microbial activity in biological soil crusts from the Tabernas desert, a sub-arid zone in SE Spain. Soil Biol. Biochem. 55:113–21
    [Google Scholar]
  101. 101.
    Moreira-Grez B, Tam K, Cross AT, Yong JW, Kumaresan D et al. 2019. The bacterial microbiome associated with arid biocrusts and the biogeochemical influence of biocrusts upon the underlying soil. Front. Microbiol. 10:2143
    [Google Scholar]
  102. 102.
    Mugnai G, Stuknytė M, Arioli S, Gargari G, Adessi A, Mora D. 2021. Virus-like particles isolated from reactivated biological soil crusts. Biol. Fertil. Soils 57:863–68
    [Google Scholar]
  103. 103.
    Nagy ML, Pérez A, Garcia-Pichel F. 2005. The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol. Ecol. 54:233–45
    [Google Scholar]
  104. 104.
    Navarro-Noya YE, Jiménez-Aguilar A, Valenzuela-Encinas C, Alcántara-Hernández RJ, Ruíz-Valdiviezo VM et al. 2014. Bacterial communities in soil under moss and lichen-moss crusts. Geomicrobiol. J. 31:152–60
    [Google Scholar]
  105. 105.
    Nelson C, Garcia-Pichel F. 2021. Beneficial cyanosphere heterotrophs accelerate establishment of cyanobacterial biocrust. Appl. Environ. Microbiol. 87:e01236–21
    [Google Scholar]
  106. 106.
    Nelson C, Giraldo-Silva A, Garcia-Pichel F 2020. A fog-irrigated soil substrate system unifies and optimizes cyanobacterial biocrust inoculum production. Appl. Environ. Microbiol. 86:e00624–20
    [Google Scholar]
  107. 107.
    Nelson C, Giraldo-Silva A, Garcia-Pichel F 2021. A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus. ISME J. 15:282–92
    [Google Scholar]
  108. 108.
    Nelson C, Giraldo-Silva A, Warsop Thomas F, Garcia-Pichel F 2022. Spatial self-segregation of pioneer cyanobacterial species drives microbiome organization in biocrusts. ISME Commun. 2:1114
    [Google Scholar]
  109. 109.
    Nevins CJ, Inglett PW, Reardon CL, Strauss SL. 2022. Seasonality drives microbiome composition and nitrogen cycling in soil below biocrusts. Soil Biol. Biochem. 166:108551
    [Google Scholar]
  110. 110.
    Nevins CJ, Inglett PW, Strauss SL. 2021. Biological soil crusts structure the subsurface microbiome in a sandy agroecosystem. Plant Soil 462:311–29
    [Google Scholar]
  111. 111.
    Oren N, Raanan H, Kedem I, Turjeman A, Bronstein M et al. 2019. Desert cyanobacteria prepare in advance for dehydration and rewetting: the role of light and temperature sensing. Mol. Ecol. 28:2305–20
    [Google Scholar]
  112. 112.
    Pan Z, Pitt WG, Zhang Y, Wu N, Tao Y, Truscott TT. 2016. The upside-down water collection system of Syntrichia caninervis. Nat. Plants 2:16076
    [Google Scholar]
  113. 113.
    Pepe-Ranney C, Koechli C, Potrafka R, Andam C, Eggleston E et al. 2016. Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. ISME J. 10:287–98
    [Google Scholar]
  114. 114.
    Pringault O, Garcia-Pichel F. 2004. Hydrotaxis of cyanobacteria in desert crusts. Microb. Ecol. 47:366–73
    [Google Scholar]
  115. 115.
    Raanan H, Felde VJMNL, Peth S, Drahorad S, Ionescu D et al. 2016. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust. Environ. Microbiol. 18:372–83
    [Google Scholar]
  116. 116.
    Rajeev L, da Rocha UN, Klitgord N, Luning EG, Fortney J et al. 2013. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J. 7:2178–91
    [Google Scholar]
  117. 117.
    Raymond JA. 2016. Dependence on epiphytic bacteria for freezing protection in an Antarctic moss, Bryum argenteum. Environ. Microbiol. Rep. 8:14–19
    [Google Scholar]
  118. 118.
    Reddy G, Garcia-Pichel F. 2007. Sphingomonas mucosissima sp. nov. and Sphingomonas desiccabilis sp. nov., from biological soil crusts in the Colorado Plateau, USA. Int. J. Systemat. Evol. Microbiol. 57:1028–34
    [Google Scholar]
  119. 119.
    Reddy GS, Garcia-Pichel F. 2009. Description of Patulibacter americanus sp. nov., isolated from biological soil crusts, emended description of the genus Patulibacter Takahashi et al. 2006 and proposal of Solirubrobacterales ord. nov. and Thermoleophilales ord. nov. Int. J. Systemat. Evol. Microbiol. 59:87–94
    [Google Scholar]
  120. 120.
    Reddy GS, Nagy M, Garcia-Pichel F. 2006. Belnapia moabensis gen. nov., sp. nov., an alphaproteobacterium from biological soil crusts in the Colorado Plateau, USA. Int. J. Systemat. Evol. Microbiol. 56:51–58
    [Google Scholar]
  121. 121.
    Reddy GS, Potrafka RM, Garcia-Pichel F. 2007. Modestobacter versicolor sp. nov., an actinobacterium from biological soil crusts that produces melanins under oligotrophy, with emended descriptions of the genus Modestobacter and Modestobacter multiseptatus Mevs et al. 2000. Int. J. Systemat. Evol. Microbiol. 57:2014–20
    [Google Scholar]
  122. 122.
    Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J. 2012. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Climate Change 2:752–55
    [Google Scholar]
  123. 123.
    Reed SC, Delgado-Baquerizo M, Ferrenberg S. 2019. Biocrust science and global change. New Phytol. 223:1047–51
    [Google Scholar]
  124. 124.
    Roberson EB, Firestone MK. 1992. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58:1284–91
    [Google Scholar]
  125. 125.
    Rodriguez-Caballero E, Belnap J, Büdel B, Crutzen PJ, Andreae MO et al. 2018. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11:185–89
    [Google Scholar]
  126. 126.
    Rodríguez-Caballero E, Castro AJ, Chamizo S, Quintas-Soriano C, Garcia-Llorente M et al. 2018. Ecosystem services provided by biocrusts: from ecosystem functions to social values. J. Arid Environ. 159:45–53
    [Google Scholar]
  127. 127.
    Román JR, Roncero-Ramos B, Chamizo S, Rodríguez-Caballero E, Cantón Y. 2018. Restoring soil functions by means of cyanobacteria inoculation: importance of soil conditions and species selection. Land Degrad. Dev. 29:3184–93
    [Google Scholar]
  128. 128.
    Rothrock MJ Jr., Garcia-Pichel F. 2005. Microbial diversity of benthic mats along a tidal desiccation gradient. Environ. Microbiol. 7:593–601
    [Google Scholar]
  129. 129.
    Scherer S, Zhong Z-P. 1991. Desiccation independence of terrestrial Nostoc commune ecotypes (cyanobacteria). Microb. Ecol. 22:271–83
    [Google Scholar]
  130. 130.
    Soule T, Anderson IJ, Johnson SL, Bates ST, Garcia-Pichel F. 2009. Archaeal populations in biological soil crusts from arid lands in North America. Soil Biol. Biochem. 41:2069–74
    [Google Scholar]
  131. 131.
    Stewart KJ, Coxson D, Grogan P. 2011. Nitrogen inputs by associative cyanobacteria across a low arctic tundra landscape. Arct. Antarct. Alp. Res. 43:267–78
    [Google Scholar]
  132. 132.
    Strauss SL, Day TA, Garcia-Pichel F. 2012. Nitrogen cycling in desert biological soil crusts across biogeographic regions in the Southwestern United States. Biogeochemistry 108:171–82
    [Google Scholar]
  133. 133.
    Thiet RK, Boerner REJ, Nagy M, Jardine R. 2005. The effect of biological soil crusts on throughput of rainwater and N into Lake Michigan sand dune soils. Plant Soil 278:235–51
    [Google Scholar]
  134. 134.
    Thomazo C, Couradeau E, Garcia-Pichel F. 2018. Possible nitrogen fertilization of the early Earth Ocean by microbial continental ecosystems. Nat. Commun. 9:12530
    [Google Scholar]
  135. 135.
    Tian C, Pang J, Bu C, Wu S, Bai Het al 2023. The microbiomes in lichen and moss biocrust contribute differently to carbon and nitrogen cycles in arid ecosystems. Microb. Ecol. 86:497–508
    [Google Scholar]
  136. 136.
    Tian C, Xi J, Ju M, Li Y, Guo Q et al. 2021. Biocrust microbiomes influence ecosystem structure and function in the Mu Us Sandland, northwest China. Ecol. Informat. 66:101441
    [Google Scholar]
  137. 137.
    Van Goethem MW, Osborn AR, Bowen BP, Andeer PF, Swenson TL et al. 2021. Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics. Commun. Biol. 4:1302
    [Google Scholar]
  138. 138.
    Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR, Martiny JBH. 2019. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. mBio 10:e02287–19
    [Google Scholar]
  139. 139.
    Velasco Ayuso S, Giraldo Silva A, Nelson C, Barger NN, Garcia-Pichel F 2018. Microbial nursery production of high-quality biological soil crust biomass for restoration of degraded dryland soils. Appl. Environ. Microbiol. 83:e02179–16
    [Google Scholar]
  140. 140.
    Wang W, Wang B-Z, Zhou R, Ullah A, Zhao Z-Y et al. 2022. Biocrusts as a nature-based strategy (NbS) improve soil carbon and nitrogen stocks and maize productivity in semiarid environment. Agric. Water Manag. 270:107742
    [Google Scholar]
  141. 141.
    Weber B, Büdel B, Belnap J, eds. 2016. Biological Soil Crusts: An Organizing Principle in Drylands Cham, Switz.: Springer
  142. 142.
    Weber B, Wu D, Tamm A, Ruckteschler N, Rodríguez-Caballero E et al. 2015. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. PNAS 112:15384–89
    [Google Scholar]
  143. 143.
    Woo C, Yamamoto N. 2020. Falling bacterial communities from the atmosphere. Environ. Microbiome 15:122
    [Google Scholar]
  144. 144.
    Xiao B, Bowker MA. 2020. Moss-biocrusts strongly decrease soil surface albedo, altering land-surface energy balance in a dryland ecosystem. Sci. Total Environ. 741:140425
    [Google Scholar]
  145. 145.
    Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-Pichel F et al. 2007. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol. Ecol. 60:85–97
    [Google Scholar]
  146. 146.
    Young KE, Ferrenberg S, Reibold R, Reed SC, Swenson T et al. 2022. Vertical movement of soluble carbon and nutrients from biocrusts to subsurface mineral soils. Geoderma 405:115495
    [Google Scholar]
  147. 147.
    Zhang B, Kong W, Wu N, Zhang Y. 2016. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China. J. Basic Microbiol. 56:670–79
    [Google Scholar]
  148. 148.
    Zhao Y, Bowker MA, Zhang Y, Zaady E. 2016. Enhanced recovery of biological soil crusts after disturbance. See Ref. 141 499–523
  149. 149.
    Zhao Y, Zhang Z, Hu Y, Chen Y. 2016. The seasonal and successional variations of carbon release from biological soil crust-covered soil. J. Arid Environ. 127:148–53
    [Google Scholar]
  150. 150.
    Zhou X, Smith H, Giraldo Silva A, Belnap J, Garcia-Pichel F 2016. Differential responses of dinitrogen fixation, diazotrophic cyanobacteria and ammonia oxidation reveal a potential warming-induced imbalance of the N-cycle in biological soil crusts. PLOS ONE 11:e0164932
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032521-015202
Loading
/content/journals/10.1146/annurev-micro-032521-015202
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error