1932

Abstract

is a multidrug-resistant fungal pathogen that presents a serious threat to global human health. Since the first reported case in 2009 in Japan, infections have been reported in more than 40 countries, with mortality rates between 30% and 60%. In addition, has the potential to cause outbreaks in health care settings, especially in nursing homes for elderly patients, owing to its efficient transmission via skin-to-skin contact. Most importantly, is the first fungal pathogen to show pronounced and sometimes untreatable clinical drug resistance to all known antifungal classes, including azoles, amphotericin B, and echinocandins. In this review, we explore the causes of the rapid spread of . We also highlight its genome organization and drug resistance mechanisms and propose future research directions that should be undertaken to curb the spread of this multidrug-resistant pathogen.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032521-015858
2023-09-15
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032521-015858.html?itemId=/content/journals/10.1146/annurev-micro-032521-015858&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alanio A, Snell HM, Cordier C, Desnos-Olivier M, Delliere S et al. 2022. First patient-to-patient intrahospital transmission of clade I Candida auris in France revealed after a two-month incubation period. Microbiol. Spectr. 10:e0183322
    [Google Scholar]
  2. 2.
    Aguilar-Zapata D, Petraitiene R, Petraitis V. 2015. Echinocandins: the expanding antifungal armamentarium. Clin. Infect. Dis. 61:Suppl. 6S604–11
    [Google Scholar]
  3. 3.
    Alex LA, Korch C, Selitrennikoff CP, Simon MI. 1998. COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. PNAS 95:7069–73
    [Google Scholar]
  4. 4.
    Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS et al. 2014. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 10:400–6
    [Google Scholar]
  5. 5.
    Aoyama K, Aiba H, Mizuno T. 2001. Genetic analysis of the His-to-Asp phosphorelay implicated in mitotic cell cycle control: involvement of histidine-kinase genes of Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 65:2347–52
    [Google Scholar]
  6. 6.
    Arensman K, Miller JL, Chiang A, Mai N, Levato J et al. 2020. Clinical outcomes of patients treated for Candida auris infections in a multisite health system, Illinois, USA. Emerg. Infect. Dis. 26:876–80
    [Google Scholar]
  7. 7.
    Arora P, Singh P, Wang Y, Yadav A, Pawar K et al. 2021. Environmental isolation of Candida auris from the coastal wetlands of Andaman Islands, India. mBio 12:e03181
    [Google Scholar]
  8. 8.
    Baginski M, Czub J. 2009. Amphotericin B and its new derivatives—mode of action. Curr. Drug Metab. 10:459–69
    [Google Scholar]
  9. 9.
    Barber C, Crank K, Papp K, Innes GK, Schmitz BW et al. 2023. Community-scale wastewater surveillance of Candida auris during an ongoing outbreak in Southern Nevada. Environ. Sci. Technol. 57:1755–63
    [Google Scholar]
  10. 10.
    Begum N, Lee S, Portlock TJ, Pellon A, Nasab SDS et al. 2022. Integrative functional analysis uncovers metabolic differences between Candida species. Commun. Biol. 5:1013
    [Google Scholar]
  11. 11.
    Bellmann R, Smuszkiewicz P. 2017. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection 45:737–79
    [Google Scholar]
  12. 12.
    Berkow EL, Lockhart SR. 2017. Fluconazole resistance in Candida species: a current perspective. Infect. Drug Resist. 10:237–45
    [Google Scholar]
  13. 13.
    Bidaud AL, Chowdhary A, Dannaoui E. 2018. Candida auris: an emerging drug resistant yeast—a mini-review. J. Mycol. Med. 28:568–73
    [Google Scholar]
  14. 14.
    Bing J, Hu T, Zheng Q, Munoz JF, Cuomo CA, Huang G. 2020. Experimental evolution Identifies Adaptive aneuploidy as a mechanism of fluconazole resistance in Candida auris. Antimicrob. Agents Chemother. 65:e01466
    [Google Scholar]
  15. 15.
    Bing J, Wang S, Xu H, Fan S, Du H et al. 2022. A case of Candida auris candidemia in Xiamen, China, and a comparative analysis of clinical isolates in China. Mycology 13:68–75
    [Google Scholar]
  16. 16.
    Borman AM, Fraser M, Johnson EM. 2021. CHROMagar™ Candida Plus: a novel chromogenic agar that permits the rapid identification of Candida auris. Med. Mycol. 59:253–58
    [Google Scholar]
  17. 17.
    Borman AM, Szekely A, Johnson EM 2016. Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. mSphere 1:e00189
    [Google Scholar]
  18. 18.
    Bravo Ruiz G, Lorenz A. 2021. What do we know about the biology of the emerging fungal pathogen of humans Candida auris?. Microbiol. Res. 242:126621
    [Google Scholar]
  19. 19.
    Bravo Ruiz G, Ross ZK, Gow NAR, Lorenz A 2020. Pseudohyphal growth of the emerging pathogen Candida auris is triggered by genotoxic stress through the S phase checkpoint. mSphere 5:e00151
    [Google Scholar]
  20. 20.
    Bravo Ruiz G, Ross ZK, Holmes E, Schelenz S, Gow NAR, Lorenz A. 2019. Rapid and extensive karyotype diversification in haploid clinical Candida auris isolates. Curr. Genet. 65:1217–28
    [Google Scholar]
  21. 21.
    Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4:165rv13
    [Google Scholar]
  22. 22.
    Briano F, Magnasco L, Sepulcri C, Dettori S, Dentone C et al. 2022. Candida auris candidemia in critically ill, colonized patients: cumulative incidence and risk factors. Infect. Dis. Ther. 11:1149–60
    [Google Scholar]
  23. 23.
    Bruno M, Kersten S, Bain JM, Jaeger M, Rosati D et al. 2020. Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nat. Microbiol. 5:1516–31
    [Google Scholar]
  24. 24.
    Casadevall A, Kontoyiannis DP, Robert V 2019. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 10:e01397
    [Google Scholar]
  25. 25.
    Casadevall A, Kontoyiannis DP, Robert V 2021. Environmental Candida auris and the global warming emergence hypothesis. mBio 12:e00360
    [Google Scholar]
  26. 26.
    Chatterjee P, Choi H, Ochoa B, Garmon G, Coppin JD et al. 2020. Clade-specific variation in susceptibility of Candida auris to broad-spectrum ultraviolet C light (UV-C). Infect. Control Hosp. Epidemiol. 41:1384–87
    [Google Scholar]
  27. 27.
    Chauhan N, Inglis D, Roman E, Pla J, Li D et al. 2003. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot. Cell 2:1018–24
    [Google Scholar]
  28. 28.
    Chen H, Zhou X, Ren B, Cheng L 2020. The regulation of hyphae growth in Candida albicans. Virulence 11:337–48
    [Google Scholar]
  29. 29.
    Chow NA, de Groot T, Badali H, Abastabar M, Chiller TM, Meis JF. 2019. Potential fifth clade of Candida auris, Iran, 2018. Emerg. Infect. Dis. 25:1780–81
    [Google Scholar]
  30. 30.
    Chow NA, Munoz JF, Gade L, Berkow EL, Li X et al. 2020. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio 11:e03364
    [Google Scholar]
  31. 31.
    Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A et al. 2018. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 73:891–99
    [Google Scholar]
  32. 32.
    Chowdhary A, Sharma C, Duggal S, Agarwal K, Prakash A et al. 2013. New clonal strain of Candidaauris, Delhi, India. Emerg. Infect. Dis. 19:1670–73
    [Google Scholar]
  33. 33.
    Chowdhary A, Tarai B, Singh A, Sharma A. 2020. Multidrug-resistant Candida auris infections in critically ill coronavirus disease patients, India, April–July 2020. Emerg. Infect. Dis. 26:2694–96
    [Google Scholar]
  34. 34.
    Chowdhary A, Voss A, Meis JF. 2016. Multidrug-resistant Candida auris: ‘new kid on the block’ in hospital-associated infections?. J. Hosp. Infect. 94:209–12
    [Google Scholar]
  35. 35.
    Cormack BP, Ghori N, Falkow S. 1999. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578–82
    [Google Scholar]
  36. 36.
    Cortegiani A, Misseri G, Fasciana T, Giammanco A, Giarratano A, Chowdhary A. 2018. Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J. Intensive Care 6:69
    [Google Scholar]
  37. 37.
    de Groot PW, Bader O, de Boer AD, Weig M, Chauhan N. 2013. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot. Cell 12:470–81
    [Google Scholar]
  38. 38.
    Delmas G, Park S, Chen ZW, Tan F, Kashiwazaki R et al. 2002. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob. Agents Chemother. 46:2704–7
    [Google Scholar]
  39. 39.
    Dismukes WE, Cloud G, Gallis HA, Kerkering TM, Medoff G et al. 1987. Treatment of cryptococcal meningitis with combination amphotericin B and flucytosine for four as compared with six weeks. N. Engl. J. Med. 317:334–41
    [Google Scholar]
  40. 40.
    Dudiuk C, Gamarra S, Jimenez-Ortigosa C, Leonardelli F, Macedo D et al. 2015. Quick detection of FKS1 mutations responsible for clinical echinocandin resistance in Candida albicans. J. Clin. Microbiol. 53:2037–41
    [Google Scholar]
  41. 41.
    Escandon P, Chow NA, Caceres DH, Gade L, Berkow EL et al. 2019. Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance. Clin. Infect. Dis. 68:15–21
    [Google Scholar]
  42. 42.
    Escandon P. 2022. Novel environmental niches for Candida auris: isolation from a coastal habitat in Colombia. J. Fungi 8:748
    [Google Scholar]
  43. 43.
    Eyre DW, Sheppard AE, Madder H, Moir I, Moroney R et al. 2018. A Candida auris outbreak and its control in an intensive care setting. N. Engl. J. Med. 379:1322–31
    [Google Scholar]
  44. 44.
    Fan S, Li C, Bing J, Huang G, Du H. 2020. Discovery of the diploid form of the emerging fungal pathogen Candida auris. ACS Infect. Dis. 6:2641–46
    [Google Scholar]
  45. 45.
    Forsberg K, Woodworth K, Walters M, Berkow EL, Jackson B et al. 2019. Candida auris: the recent emergence of a multidrug-resistant fungal pathogen. Med. Mycol. 57:e7
    [Google Scholar]
  46. 46.
    Geber A, Hitchcock CA, Swartz JE, Pullen FS, Marsden KE et al. 1995. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob. Agents Chemother. 39:2708–17
    [Google Scholar]
  47. 47.
    Goughenour KD, Rappleye CA. 2017. Antifungal therapeutics for dimorphic fungal pathogens. Virulence 8:211–21
    [Google Scholar]
  48. 48.
    Guo X, Zhang J, Li X, Xiao E, Lange JD et al. 2021. Sterol sponge mechanism is conserved for glycosylated polyene macrolides. ACS Cent. Sci. 7:781–91
    [Google Scholar]
  49. 49.
    Healey KR, Zhao Y, Perez WB, Lockhart SR, Sobel JD et al. 2016. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat. Commun. 7:11128
    [Google Scholar]
  50. 50.
    Heaney H, Laing J, Paterson L, Walker AW, Gow NAR et al. 2020. The environmental stress sensitivities of pathogenic Candida species, including Candida auris, and implications for their spread in the hospital setting. Med. Mycol. 58:744–55
    [Google Scholar]
  51. 51.
    Huang X, Hurabielle C, Drummond RA, Bouladoux N, Desai JV et al. 2020. Murine model of colonization with fungal pathogen Candida auris to explore skin tropism, host risk factors and therapeutic strategies. Cell Host Microbe 29:210–21.e6
    [Google Scholar]
  52. 52.
    Irinyi L, Roper M, Malik R, Meyer W. 2022. Finding a needle in a haystack—in silico search for environmental traces of Candida auris. Jpn. J. Infect. Dis. 75:490–95
    [Google Scholar]
  53. 53.
    Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM et al. 2018. Candida auris: a review of the literature. Clin. Microbiol. Rev. 31:e00029
    [Google Scholar]
  54. 54.
    Jensen RH, Astvad KM, Silva LV, Sanglard D, Jorgensen R et al. 2015. Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations. J. Antimicrob. Chemother. 70:2551–55
    [Google Scholar]
  55. 55.
    Jenull S, Shivarathri R, Tsymala I, Penninger P, Trinh PC et al. 2022. Transcriptomics and phenotyping define genetic signatures associated with echinocandin resistance in Candida auris. mBio 13:e0079922
    [Google Scholar]
  56. 56.
    Jenull S, Tscherner M, Kashko N, Shivarathri R, Stoiber A et al. 2021. Transcriptome signatures predict phenotypic variations of Candida auris. Front. Cell Infect. Microbiol. 11:662563
    [Google Scholar]
  57. 57.
    Kathuria S, Singh PK, Sharma C, Prakash A, Masih A, Kumar A et al. 2015. Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by VITEK 2, CLSI broth microdilution, and Etest method. J. Clin. Microbiol. 53:1823–30
    [Google Scholar]
  58. 58.
    Kean R, Delaney C, Sherry L, Borman A, Johnson EM et al. 2018. Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere 3:e00334
    [Google Scholar]
  59. 59.
    Kim MN, Shin JH, Sung H, Lee K, Kim EC et al. 2009. Candida haemulonii and closely related species at 5 university hospitals in Korea: identification, antifungal susceptibility, and clinical features. Clin. Infect. Dis. 48:e57–61
    [Google Scholar]
  60. 60.
    Kim SH, Iyer KR, Pardeshi L, Munoz JF, Robbins N et al. 2019. Genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance. mBio 10:e02529
    [Google Scholar]
  61. 61.
    Kordalewska M, Lee A, Park S, Berrio I, Chowdhary A et al. 2018. Understanding echinocandin resistance in the emerging pathogen Candida auris. Antimicrob. Agents Chemother. 62:e00238
    [Google Scholar]
  62. 62.
    Kordalewska M, Perlin DS. 2019. Identification of drug resistant Candida auris. Front. Microbiol. 10:1918
    [Google Scholar]
  63. 63.
    Kwon YJ, Shin JH, Byun SA, Choi MJ, Won EJ et al. 2019. Candida auris clinical isolates from South Korea: identification, antifungal susceptibility, and genotyping. J. Clin. Microbiol. 57:e01624
    [Google Scholar]
  64. 64.
    Ledwoch K, Maillard JY. 2018. Candida auris Dry Surface Biofilm (DSB) for disinfectant efficacy testing. Materials 12:18
    [Google Scholar]
  65. 65.
    Lee WG, Shin JH, Uh Y, Kang MG, Kim SH et al. 2011. First three reported cases of nosocomial fungemia caused by Candida auris. J. Clin. Microbiol. 49:3139–42
    [Google Scholar]
  66. 66.
    Leenders AC, Reiss P, Portegies P, Clezy K, Hop WC et al. 1997. Liposomal amphotericin B (AmBisome) compared with amphotericin B both followed by oral fluconazole in the treatment of AIDS-associated cryptococcal meningitis. AIDS 11:1463–71
    [Google Scholar]
  67. 67.
    Lepak AJ, Zhao M, Andes DR. 2018. Pharmacodynamic evaluation of rezafungin (CD101) against Candida auris in the neutropenic mouse invasive candidiasis model. Antimicrob. Agents Chemother. 62:e01572
    [Google Scholar]
  68. 68.
    Lewis RE, Kontoyiannis DP. 2013. Epidemiology and treatment of mucormycosis. Future Microbiol 8:1163–75
    [Google Scholar]
  69. 69.
    Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A et al. 2017. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 64:134–40
    [Google Scholar]
  70. 70.
    Lyman M, Forsberg K, Reuben J, Dang T, Free R et al. 2021. Notes from the field: transmission of pan-resistant and echinocandin-resistant Candida auris in health care facilities—Texas and the district of Columbia, January–April 2021. Morb. Mortal. Wkly. Rep. 70:1022–23
    [Google Scholar]
  71. 71.
    Magobo RE, Corcoran C, Seetharam S, Govender NP 2014. Candida auris–associated candidemia, South Africa. Emerg. Infect. Dis 20:1250–51
    [Google Scholar]
  72. 72.
    Mavrianos J, Berkow EL, Desai C, Pandey A, Batish M et al. 2013. Mitochondrial two-component signaling systems in Candida albicans. Eukaryot. Cell 12:913–22
    [Google Scholar]
  73. 73.
    Meis JF, Chowdhary A. 2018. Candida auris: a global fungal public health threat. Lancet Infect. Dis. 18:1298–99
    [Google Scholar]
  74. 74.
    Mesa-Arango AC, Scorzoni L, Zaragoza O. 2012. It only takes one to do many jobs: amphotericin B as antifungal and immunomodulatory drug. Front. Microbiol. 3:286
    [Google Scholar]
  75. 75.
    Mulet Bayona JV, Tormo Palop N, Salvador García C, Herrero Rodríguez P, Abril López de Medrano V et al. 2020. Characteristics and management of candidaemia episodes in an established Candida auris outbreak. Antibiotics 9:558
    [Google Scholar]
  76. 76.
    Munoz JF, Gade L, Chow NA, Loparev VN, Juieng P et al. 2018. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat. Commun. 9:5346
    [Google Scholar]
  77. 77.
    Munoz JF, Welsh RM, Shea T, Batra D, Gade L et al. 2021. Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris. Genetics 218:iyab029
    [Google Scholar]
  78. 78.
    Niimi K, Maki K, Ikeda F, Holmes AR, Lamping E et al. 2006. Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrob. Agents Chemother. 50:1148–55
    [Google Scholar]
  79. 79.
    Ostrowsky B, Greenko J, Adams E, Quinn M, O'Brien B et al. 2020. Candida auris isolates resistant to three classes of antifungal medications—New York; 2019. Morb. Mortal. Wkly. Rep. 69:6–9
    [Google Scholar]
  80. 80.
    Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA et al. 2016. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 62:e1–50
    [Google Scholar]
  81. 81.
    Pathirana RU, Friedman J, Norris HL, Salvatori O, McCall AD et al. 2018. Fluconazole-resistant Candida auris is susceptible to salivary histatin 5 killing and to intrinsic host defenses. Antimicrob. Agents Chemother. 62:e01872
    [Google Scholar]
  82. 82.
    Perfect JR. 2017. The antifungal pipeline: a reality check. Nat. Rev. Drug. Discov. 16:603–16
    [Google Scholar]
  83. 83.
    Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. 2017. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect. Dis. 17:e383–92
    [Google Scholar]
  84. 84.
    Perlin DS. 2011. Current perspectives on echinocandin class drugs. Future Microbiol 6:441–57
    [Google Scholar]
  85. 85.
    Perlin DS. 2015. Echinocandin resistance in Candida. Clin. Infect. Dis. 61:Suppl. 6S612–17
    [Google Scholar]
  86. 86.
    Pfaller MA, Carvalhaes C, Messer SA, Rhomberg PR, Castanheira M. 2020. Activity of a long-acting echinocandin, rezafungin, and comparator antifungal agents tested against contemporary invasive fungal isolates (SENTRY Program, 2016 to 2018). Antimicrob. Agents Chemother. 64:e00099
    [Google Scholar]
  87. 87.
    Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD et al. 2011. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist. Update 14:164–76
    [Google Scholar]
  88. 88.
    Piedrahita CT, Cadnum JL, Jencson AL, Shaikh AA, Ghannoum MA, Donskey CJ. 2017. Environmental surfaces in healthcare facilities are a potential source for transmission of Candida auris and other Candida species. Infect. Control Hosp. Epidemiol. 38:1107–9
    [Google Scholar]
  89. 89.
    Polvi EJ, Averette AF, Lee SC, Kim T, Bahn YS et al. 2016. Metal chelation as a powerful strategy to probe cellular circuitry governing fungal drug resistance and morphogenesis. PLOS Genet 12:e1006350
    [Google Scholar]
  90. 90.
    Prestel C, Anderson E, Forsberg K, Lyman M, de Perio MA et al. 2021. Candida auris outbreak in a COVID-19 specialty care unit—Florida, July–August 2020. Morb. Mortal. Wkly. Rep. 70:56–57
    [Google Scholar]
  91. 91.
    Proctor DM, Dangana T, Sexton DJ, Fukuda C, Yelin RD et al. 2021. Integrated genomic, epidemiologic investigation of Candida auris skin colonization in a skilled nursing facility. Nat. Med. 27:1401–9
    [Google Scholar]
  92. 92.
    Rajni E, Singh A, Tarai B, Jain K, Shankar R et al. 2021. A high frequency of Candida auris blood stream infections in coronavirus disease 2019 patients admitted to intensive care units, northwestern India: a case control study. Open Forum Infect. Dis. 8:ofab452
    [Google Scholar]
  93. 93.
    Revie NM, Cowen LE. 2021. Glycosylated polyene macrolides kill fungi via a conserved sterol sponge mechanism of action. ACS Cent. Sci. 7:706–8
    [Google Scholar]
  94. 94.
    Rossow J, Ostrowsky B, Adams E, Greenko J, McDonald R et al. 2021. Factors associated with Candida auris colonization and transmission in skilled nursing facilities with ventilator units, New York, 2016–2018. Clin. Infect. Dis. 72:e753–60
    [Google Scholar]
  95. 95.
    Rudramurthy SM, Chakrabarti A, Paul RA, Sood P, Kaur H et al. 2017. Candida auris candidaemia in Indian ICUs: analysis of risk factors. J. Antimicrob. Chemother. 72:1794–801
    [Google Scholar]
  96. 96.
    Rybak JM, Barker KS, Munoz JF, Parker JE, Ahmad S et al. 2022. In vivo emergence of high-level resistance during treatment reveals the first identified mechanism of amphotericin B resistance in Candida auris. Clin. Microbiol. Infect. 28:838–43
    [Google Scholar]
  97. 97.
    Rybak JM, Cuomo CA, Rogers PD. 2022. The molecular and genetic basis of antifungal resistance in the emerging fungal pathogen Candida auris. Curr. Opin. Microbiol. 70:102208
    [Google Scholar]
  98. 98.
    Rybak JM, Munoz JF, Barker KS, Parker JE, Esquivel BD et al. 2020. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio 11:e00365
    [Google Scholar]
  99. 99.
    Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J. 2003. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob. Agents Chemother. 47:2404–12
    [Google Scholar]
  100. 100.
    Santana DJ, O'Meara TR 2021. Forward and reverse genetic dissection of morphogenesis identifies filament-competent Candida auris strains. Nat. Commun. 12:7197
    [Google Scholar]
  101. 101.
    Santos MA, Keith G, Tuite MF. 1993. Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5′-CAG-3′ (leucine) anticodon. EMBO J 12:607–16
    [Google Scholar]
  102. 102.
    Sasoni N, Maidana M, Latorre-Rapela MG, Morales-Lopez S, Berrio I et al. 2022. Candida auris and some Candida parapsilosis strains exhibit similar characteristics on CHROMagarTM Candida Plus. Med. Mycol. 60:myac062
    [Google Scholar]
  103. 103.
    Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. 2009. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 53:41–44
    [Google Scholar]
  104. 104.
    Schuetzer-Muehlbauer M, Willinger B, Krapf G, Enzinger S, Presterl E, Kuchler K. 2003. The Candida albicans Cdr2p ATP-binding cassette (ABC) transporter confers resistance to caspofungin. Mol. Microbiol. 48:225–35
    [Google Scholar]
  105. 105.
    Sexton DJ, Welsh RM, Bentz ML, Forsberg K, Jackson B et al. 2020. Evaluation of nine surface disinfectants against Candida auris using a quantitative disk carrier method: EPA SOP-MB-35. Infect. Control Hosp. Epidemiol. 41:1219–21
    [Google Scholar]
  106. 106.
    Shastri PS, Shankarnarayan SA, Oberoi J, Rudramurthy SM, Wattal C, Chakrabarti A. 2020. Candida auris candidaemia in an intensive care unit—prospective observational study to evaluate epidemiology, risk factors, and outcome. J. Crit. Care 57:42–48
    [Google Scholar]
  107. 107.
    Shivarathri R, Jenull S, Chauhan M, Singh A, Mazumdar R et al. 2022. Comparative transcriptomics reveal possible mechanisms of amphotericin B resistance in Candida auris. Antimicrob. Agents Chemother. 66:e0227621
    [Google Scholar]
  108. 108.
    Shivarathri R, Jenull S, Stoiber A, Chauhan M, Mazumdar R et al. 2020. The two-component response regulator Ssk1 and the mitogen-activated protein kinase Hog1 control antifungal drug resistance and cell wall architecture of Candida auris. mSphere 5:e00973
    [Google Scholar]
  109. 109.
    Shor E, Chauhan N. 2015. A case for two-component signaling systems as antifungal drug targets. PLOS Pathog. 11:e1004632
    [Google Scholar]
  110. 110.
    Singh P, Chauhan N, Ghosh A, Dixon F, Calderone R. 2004. SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect. Immun. 72:2390–94
    [Google Scholar]
  111. 111.
    Spruijtenburg B, Badali H, Abastabar M, Mirhendi H, Khodavaisy S et al. 2022. Confirmation of fifth Candida auris clade by whole genome sequencing. Emerg. Microbes Infect. 11:2405–11
    [Google Scholar]
  112. 112.
    Stevens DA, Kan VL, Judson MA, Morrison VA, Dummer S et al. 2000. Practice guidelines for diseases caused by Aspergillus. Clin. Infect. Dis. 30:696–709
    [Google Scholar]
  113. 113.
    Taori SK, Khonyongwa K, Hayden I, Athukorala GDA, Letters A et al. 2019. Candida auris outbreak: mortality, interventions and cost of sustaining control. J. Infect. 79:601–11
    [Google Scholar]
  114. 114.
    Verweij PE, Arendrup MC, Alastruey-Izquierdo A, Gold JAW, Lockhart SR et al. 2022. Dual use of antifungals in medicine and agriculture: How do we help prevent resistance developing in human pathogens?. Drug Resist. Update 65:100885
    [Google Scholar]
  115. 115.
    Villanueva-Lozano H, Treviño-Rangel RJ, González GM, Ramírez-Elizondo MT, Lara-Medrano R et al. 2021. Outbreak of Candida auris infection in a COVID-19 hospital in Mexico. Clin. Microbiol. Infect. 8:813–16
    [Google Scholar]
  116. 116.
    Wang X, Bing J, Zheng Q, Zhang F, Liu J et al. 2018. The first isolate of Candida auris in China: clinical and biological aspects. Emerg. Microbes Infect. 7:93
    [Google Scholar]
  117. 117.
    Wang Y, Xu J. 2022. Population genomic analyses reveal evidence for limited recombination in the superbug Candida auris in nature. Comput. Struct. Biotechnol. J. 20:3030–40
    [Google Scholar]
  118. 118.
    Welsh RM, Bentz ML, Shams A, Houston H, Lyons A et al. 2017. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface. J. Clin. Microbiol. 55:2996–3005
    [Google Scholar]
  119. 119.
    WHO (World Health Organ.) 2022. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action Geneva: WHO
  120. 120.
    Yadav A, Jain K, Wang Y, Pawar K, Kaur H et al. 2022. Candida auris on apples: diversity and clinical significance. mBio 13:e0051822
    [Google Scholar]
  121. 121.
    Yadav A, Singh A, Wang Y, Haren MHV, Singh A et al. 2021. Colonisation and transmission dynamics of Candida auris among chronic respiratory diseases patients hospitalised in a chest hospital, Delhi, India: a comparative analysis of whole genome sequencing and microsatellite typing. J. Fungi 7:81
    [Google Scholar]
  122. 122.
    Yadav V, Heitman J. 2022. On fruits and fungi: a risk of antifungal usage in food storage and distribution in driving drug resistance in Candida auris. mBio 13:e0073922
    [Google Scholar]
  123. 123.
    Yamada-Okabe T, Mio T, Ono N, Kashima Y, Matsui M et al. 1999. Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J. Bacteriol. 181:7243–47
    [Google Scholar]
  124. 124.
    Yang F, Teoh F, Tan ASM, Cao Y, Pavelka N, Berman J. 2019. Aneuploidy enables cross-adaptation to unrelated drugs. Mol. Biol. Evol. 36:1768–82
    [Google Scholar]
  125. 125.
    Yang F, Zhang L, Wakabayashi H, Myers J, Jiang Y et al. 2017. Tolerance to caspofungin in Candida albicans is associated with at least three distinctive mechanisms that govern expression of FKS genes and cell wall remodeling. Antimicrob. Agents Chemother. 61:e00071
    [Google Scholar]
  126. 126.
    Yue H, Bing J, Zheng Q, Zhang Y, Hu T et al. 2018. Filamentation in Candida auris, an emerging fungal pathogen of humans: Passage through the mammalian body induces a heritable phenotypic switch. Emerg. Microbes Infect. 7:188
    [Google Scholar]
  127. 127.
    Zamith-Miranda D, Heyman HM, Cleare LG, Couvillion SP, Clair GC et al. 2019. Multi-omics signature of Candida auris, an emerging and multidrug-resistant pathogen. mSystems 11:e00257
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032521-015858
Loading
/content/journals/10.1146/annurev-micro-032521-015858
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error