1932

Abstract

Mobile genetic elements are key to the evolution of bacteria and traits that affect host and ecosystem health. Here, we use a framework of a hierarchical and modular system that scales from genes to populations to synthesize recent findings on mobile genetic elements (MGEs) of bacteria. Doing so highlights the role that emergent properties of flexibility, robustness, and genetic capacitance of MGEs have on the evolution of bacteria. Some of their traits can be stored, shared, and diversified across different MGEs, taxa of bacteria, and time. Collectively, these properties contribute to maintaining functionality against perturbations while allowing changes to accumulate in order to diversify and give rise to new traits. These properties of MGEs have long challenged our abilities to study them. Implementation of new technologies and strategies allows for MGEs to be analyzed in new and powerful ways.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032521-022006
2023-09-15
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032521-022006.html?itemId=/content/journals/10.1146/annurev-micro-032521-022006&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acman M, van Dorp L, Santini JM, Balloux F. 2020. Large-scale network analysis captures biological features of bacterial plasmids. Nat. Commun. 11:12452
    [Google Scholar]
  2. 2.
    Acman M, Wang R, van Dorp L, Shaw LP, Wang Q et al. 2022. Role of mobile genetic elements in the global dissemination of the carbapenem resistance gene blaNDM. Nat. Commun. 13:11131
    [Google Scholar]
  3. 3.
    Al-Shayeb B, Schoelmerich MC, West-Roberts J, Valentin-Alvarado LE, Sachdeva R et al. 2022. Borgs are giant genetic elements with potential to expand metabolic capacity. Nature 610:731–36
    [Google Scholar]
  4. 4.
    Alonso-del Valle A, León-Sampedro R, Rodríguez-Beltrán J, DelaFuente J, Hernández-García M et al. 2021. Variability of plasmid fitness effects contributes to plasmid persistence in bacterial communities. Nat. Commun. 12:12653
    [Google Scholar]
  5. 5.
    Ayukawa Y, Asai S, Gan P, Tsushima A, Ichihashi Y et al. 2021. A pair of effectors encoded on a conditionally dispensable chromosome of Fusarium oxysporum suppress host-specific immunity. Commun. Biol. 4:707
    [Google Scholar]
  6. 6.
    Baker S, Thomson N, Weill F-X, Holt KE. 2018. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science 360:6390733–38
    [Google Scholar]
  7. 7.
    Balalovski P, Grainge I. 2020. Mobilization of pdif modules in Acinetobacter: a novel mechanism for antibiotic resistance gene shuffling?. Mol. Microbiol. 114:5699–709
    [Google Scholar]
  8. 8.
    Baltazar M, Bourgeois-Nicolaos N, Larroudé M, Couet W, Uwajeneza S et al. 2022. Activation of class 1 integron integrase is promoted in the intestinal environment. PLOS Genet. 18:4e1010177
    [Google Scholar]
  9. 9.
    Baltrus DA, Feng Q, Kvitko BH. 2022. Genome context influences evolutionary flexibility of nearly identical type III effectors in two phytopathogenic pseudomonads. Front. Microbiol. 13:826365
    [Google Scholar]
  10. 10.
    Barrat-Charlaix P, Vaughan TG, Neher RA. 2022. TreeKnit: inferring ancestral reassortment graphs of influenza viruses. PLOS Comput. Biol. 18:8e1010394
    [Google Scholar]
  11. 11.
    Barrett RDH, Schluter D. 2008. Adaptation from standing genetic variation. Trends Ecol. Evol. 23:138–44
    [Google Scholar]
  12. 12.
    Batstone RT. 2022. Genomes within genomes: nested symbiosis and its implications for plant evolution. New Phytol. 234:128–34
    [Google Scholar]
  13. 13.
    Bean EL, Herman C, Anderson ME, Grossman AD. 2022. Biology and engineering of integrative and conjugative elements: Construction and analyses of hybrid ICEs reveal element functions that affect species-specific efficiencies. PLOS Genet. 18:5e1009998
    [Google Scholar]
  14. 14.
    Beard S, Ossandon FJ, Rawlings DE, Quatrini R. 2021. The flexible genome of acidophilic prokaryotes. Curr. Issues Mol. Biol. 40:1231–66
    [Google Scholar]
  15. 15.
    Benler S, Faure G, Altae-Tran H, Shmakov S, Zhang F, Koonin E. 2021. Cargo genes of Tn7-like transposons comprise an enormous diversity of defense systems, mobile genetic elements, and antibiotic resistance genes. mBio 12:6e0293821
    [Google Scholar]
  16. 16.
    Blackwell GA, Hall RM. 2017. The tet39 determinant and the msrE-mphE genes in Acinetobacter plasmids are each part of discrete modules flanked by inversely oriented pdif (XerC-XerD) sites. Antimicrob. Agents Chemother. 61:8e00780–17
    [Google Scholar]
  17. 17.
    Bobay L-M, Rocha EPC, Touchon M. 2013. The adaptation of temperate bacteriophages to their host genomes. Mol. Biol. Evol. 30:4737–51
    [Google Scholar]
  18. 18.
    Borgeaud S, Metzger LC, Scrignari T, Blokesch M. 2015. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347:621763–67
    [Google Scholar]
  19. 19.
    Botelho J, Cazares A, Schulenburg H. 2023. The ESKAPE mobilome contributes to the spread of antimicrobial resistance and CRISPR-mediated conflict between mobile genetic elements. Nucleic Acids Res. 51:1236–52
    [Google Scholar]
  20. 20.
    Botelho J, Tüffers L, Fuss J, Buchholz F, Utpatel C et al. 2023. Phylogroup-specific variation shapes the clustering of antimicrobial resistance genes and defence systems across regions of genome plasticity in Pseudomonas aeruginosa. eBioMedicine 90:104532
    [Google Scholar]
  21. 21.
    Bouet J-Y, Nordström K, Lane D. 2007. Plasmid partition and incompatibility—The focus shifts. Mol. Microbiol. 65:61405–14
    [Google Scholar]
  22. 22.
    Brockhurst MA, Harrison E. 2022. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol. 30:6534–43
    [Google Scholar]
  23. 23.
    Brown CT, Irber L. 2016. sourmash: a library for MinHash sketching of DNA. J. Open Source Softw. 1:527
    [Google Scholar]
  24. 24.
    Brüssow H, Canchaya C, Hardt W-D. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:3560–602
    [Google Scholar]
  25. 25.
    Burrus V, Waldor MK. 2004. Shaping bacterial genomes with integrative and conjugative elements. Res. Microbiol. 155:5376–86
    [Google Scholar]
  26. 26.
    Carrilero L, Kottara A, Guymer D, Harrison E, Hall JPJ, Brockhurst MA. 2021. Positive selection inhibits plasmid coexistence in bacterial genomes. mBio 12:3e00558–21
    [Google Scholar]
  27. 27.
    Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B et al. 2000. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35:3490–516
    [Google Scholar]
  28. 28.
    Cazares A, Moore MP, Hall JPJ, Wright LL, Grimes M et al. 2020. A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nat. Commun. 11:11370
    [Google Scholar]
  29. 29.
    Che Y, Yang Y, Xu X, Břinda K, Polz MF et al. 2021. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. PNAS 118:6e2008731118
    [Google Scholar]
  30. 30.
    Chiang YN, Penadés JR, Chen J. 2019. Genetic transduction by phages and chromosomal islands: the new and noncanonical. PLOS Pathog. 15:8e1007878
    [Google Scholar]
  31. 31.
    Colombi E, Perry BJ, Sullivan JT, Bekuma AA, Terpolilli JJ et al. 2021. Comparative analysis of integrative and conjugative mobile genetic elements in the genus Mesorhizobium. Microb. Genom. 7:10000657
    [Google Scholar]
  32. 32.
    Coluzzi C, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. 2022. Evolution of plasmid mobility: origin and fate of conjugative and nonconjugative plasmids. Mol. Biol. Evol. 39:6msac115
    [Google Scholar]
  33. 33.
    Cury J, Oliveira PH, de la Cruz F, Rocha EPC. 2018. Host range and genetic plasticity explain the coexistence of integrative and extrachromosomal mobile genetic elements. Mol. Biol. Evol. 35:92230–39
    [Google Scholar]
  34. 34.
    David S, Cohen V, Reuter S, Sheppard AE, Giani T et al. 2020. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. PNAS 117:4025043–54
    [Google Scholar]
  35. 35.
    Davis KP, Grossman AD. 2021. Specificity and selective advantage of an exclusion system in the integrative and conjugative element ICEBs1 of Bacillus subtilis. J. Bacteriol. 203:10e00700–20
    [Google Scholar]
  36. 36.
    De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA et al. 2020. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33:3e00181–19
    [Google Scholar]
  37. 37.
    Dedrick RM, Aull HG, Jacobs-Sera D, Garlena RA, Russell DA et al. 2021. The prophage and plasmid mobilome as a likely driver of Mycobacterium abscessus diversity. mBio 12:2e03441–20
    [Google Scholar]
  38. 38.
    DelaFuente J, Toribio-Celestino L, Santos-Lopez A, León-Sampedro R, Valle AAA et al. 2022. Within-patient evolution of plasmid-mediated antimicrobial resistance. Nat. Ecol. Evol. 6:1980–91
    [Google Scholar]
  39. 39.
    Dimitriu T, Matthews AC, Buckling A. 2021. Increased copy number couples the evolution of plasmid horizontal transmission and plasmid-encoded antibiotic resistance. PNAS 118:31e2107818118
    [Google Scholar]
  40. 40.
    Dunn S, Carrilero L, Brockhurst M, McNally A. 2021. Limited and strain-specific transcriptional and growth responses to acquisition of a multidrug resistance plasmid in genetically diverse Escherichia coli lineages. mSystems 6:2e00083–21
    [Google Scholar]
  41. 41.
    Ellis JG, Kerr A, Petit A, Tempe J. 1982. Conjugal transfer of nopaline and agropine Ti-plasmids—the role of agrocinopines. Mol. Gen. Genet. 186:2269–74
    [Google Scholar]
  42. 42.
    Esnault E, Valens M, Espéli O, Boccard F. 2007. Chromosome structuring limits genome plasticity in Escherichia coli. PLOS Genet. 3:12e226
    [Google Scholar]
  43. 43.
    Evans DR, Griffith MP, Sundermann AJ, Shutt KA, Saul MI et al. 2020. Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. eLife 9:e53886
    [Google Scholar]
  44. 44.
    Fitzgerald SF, Lupolova N, Shaaban S, Dallman TJ, Greig D et al. 2021. Genome structural variation in Escherichia coli O157:H7. Microb. Genom. 7:11000682
    [Google Scholar]
  45. 45.
    Forster SC, Liu J, Kumar N, Gulliver EL, Gould JA et al. 2022. Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome. Nat. Commun. 13:11445
    [Google Scholar]
  46. 46.
    Frost LS, Leplae R, Summers AO, Toussaint A. 2005. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3:9722–32
    [Google Scholar]
  47. 47.
    Garcillán-Barcia MP, de la Cruz F. 2008. Why is entry exclusion an essential feature of conjugative plasmids?. Plasmid 60:11–18
    [Google Scholar]
  48. 48.
    Gluck-Thaler E, Ralston T, Konkel Z, Ocampos CG, Ganeshan VD et al. 2022. Giant starship elements mobilize accessory genes in fungal genomes. Mol. Biol. Evol. 39:5msac109
    [Google Scholar]
  49. 49.
    Gori K, Suchan T, Alvarez N, Goldman N, Dessimoz C. 2016. Clustering genes of common evolutionary history. Mol. Biol. Evol. 33:61590–605
    [Google Scholar]
  50. 50.
    Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL. 2006. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu. Rev. Microbiol. 60:425–49
    [Google Scholar]
  51. 51.
    Greenlon A, Chang PL, Damtew ZM, Muleta A, Carrasquilla-Garcia N et al. 2019. Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. PNAS 116:3015200–9
    [Google Scholar]
  52. 52.
    Grimm D, Elias AF, Tilly K, Rosa PA. 2003. Plasmid stability during in vitro propagation of Borrelia burgdorferi assessed at a clonal level. Infect. Immun. 71:63138–45
    [Google Scholar]
  53. 53.
    Guerin É, Cambray G, Sanchez-Alberola N, Campoy S, Erill I et al. 2009. The SOS response controls integron recombination. Science 324:59301034
    [Google Scholar]
  54. 54.
    Guglielmini J, Quintais L, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. 2011. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLOS Genet. 7:8e1002222
    [Google Scholar]
  55. 55.
    Gully D, Teulet A, Busset N, Nouwen N, Fardoux J et al. 2017. Complete genome sequence of Bradyrhizobium sp. ORS285, a photosynthetic strain able to establish nod factor-dependent or nod factor-independent symbiosis with Aeschynomene legumes. Genome Announc. 5:30e00421–17
    [Google Scholar]
  56. 56.
    Hall JPJ, Botelho J, Cazares A, Baltrus DA. 2022. What makes a megaplasmid?. Philos. Trans. R. Soc. B 377:184220200472
    [Google Scholar]
  57. 57.
    Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ et al. 2021. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLOS Biol. 19:10e3001225
    [Google Scholar]
  58. 58.
    Harmer CJ, Lebreton F, Stam J, McGann PT, Hall RM. 2022. Mechanisms of IS26-mediated amplification of the aphA1 gene leading to tobramycin resistance in an Acinetobacter baumannii isolate. Microbiol. Spectrum. 10:5e0228722
    [Google Scholar]
  59. 59.
    Haryono M, Cho S-T, Fang M-J, Chen A-P, Chou S-J et al. 2019. Differentiations in gene content and expression response to virulence induction between two Agrobacterium strains. Front. Microbiol. 10:1554
    [Google Scholar]
  60. 60.
    Haskett TL, Terpolilli JJ, Bekuma A, O'Hara GW, Sullivan JT et al. 2016. Assembly and transfer of tripartite integrative and conjugative genetic elements. PNAS 113:4312268–73
    [Google Scholar]
  61. 61.
    Haskett TL, Terpolilli JJ, Ramachandran VK, Verdonk CJ, Poole PS et al. 2018. Sequential induction of three recombination directionality factors directs assembly of tripartite integrative and conjugative elements. PLOS Genet. 14:3e1007292
    [Google Scholar]
  62. 62.
    Hegstad K, Mylvaganam H, Janice J, Josefsen E, Sivertsen A, Skaare D. 2020. Role of horizontal gene transfer in the development of multidrug resistance in Haemophilus influenzae. mSphere 5:1e00969–19
    [Google Scholar]
  63. 63.
    Hernández-Beltrán JCR, San Millán A, Fuentes-Hernández A, Peña-Miller R 2021. Mathematical models of plasmid population dynamics. Front. Microbiol. 12:3389
    [Google Scholar]
  64. 64.
    Hu Y, Moran RA, Blackwell GA, McNally A, Zong Z. 2022. Fine-scale reconstruction of the evolution of FII-33 multidrug resistance plasmids enables high-resolution genomic surveillance. mSystems 7:1e0083121
    [Google Scholar]
  65. 65.
    Huang C-T, Cho S-T, Lin Y-C, Tan C-M, Chiu Y-C et al. 2022. Comparative genome analysis of ‘Candidatus Phytoplasma luffae’ reveals the influential roles of potential mobile units in phytoplasma evolution. Front. Microbiol. 13:773608
    [Google Scholar]
  66. 66.
    Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23:2254–67
    [Google Scholar]
  67. 67.
    Hussain FA, Dubert J, Elsherbini J, Murphy M, VanInsberghe D et al. 2021. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 374:6566488–92
    [Google Scholar]
  68. 68.
    Hwang H-H, Yu M, Lai E-M 2017. Agrobacterium-mediated plant transformation: biology and applications. Arabidopsis Book 2017:15e0186
    [Google Scholar]
  69. 69.
    Jaskólska M, Adams DW, Blokesch M. 2022. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 604:323–29
    [Google Scholar]
  70. 70.
    Jaskólska M, Stutzmann S, Stoudmann C, Blokesch M. 2018. QstR-dependent regulation of natural competence and type VI secretion in Vibrio cholerae. Nucleic Acids Res. 46:2010619–34
    [Google Scholar]
  71. 71.
    Johnson CM, Grossman AD. 2015. Integrative and conjugative elements (ICEs): what they do and how they work. Annu. Rev. Genet. 49:577–601
    [Google Scholar]
  72. 72.
    Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:7117323–29
    [Google Scholar]
  73. 73.
    Jordt H, Stalder T, Kosterlitz O, Ponciano JM, Top EM, Kerr B. 2020. Coevolution of host-plasmid pairs facilitates the emergence of novel multidrug resistance. Nat. Ecol. Evol. 4:6863–69
    [Google Scholar]
  74. 74.
    Joubert PM, Krasileva KV. 2022. The extrachromosomal circular DNAs of the rice blast pathogen Magnaporthe oryzae contain a wide variety of LTR retrotransposons, genes, and effectors. BMC Biol. 20:260
    [Google Scholar]
  75. 75.
    Kanai Y, Tsuru S, Furusawa C. 2022. Experimental demonstration of operon formation catalyzed by insertion sequence. Nucleic Acids Res. 50:31673–86
    [Google Scholar]
  76. 76.
    Kaufman JH, Terrizzano I, Nayar G, Seabolt E, Agarwal A et al. 2020. Integrative and conjugative elements (ICE) and associated cargo genes within and across hundreds of bacterial genera. bioRxiv 2020.04.07.030320. https://doi.org/10.1101/2020.04.07.030320
  77. 77.
    Kitano H. 2004. Biological robustness. Nat. Rev. Genet. 5:11826–37
    [Google Scholar]
  78. 78.
    Kitano H. 2007. Biological robustness in complex host-pathogen systems. Prog. Drug Res. 64:239–63
    [Google Scholar]
  79. 79.
    Kitano H. 2007. Towards a theory of biological robustness. Mol. Syst. Biol. 3:137
    [Google Scholar]
  80. 80.
    Kitano H. 2010. Violations of robustness trade-offs. Mol. Syst. Biol. 6:384
    [Google Scholar]
  81. 81.
    Köstlbacher S, Collingro A, Halter T, Domman D, Horn M. 2021. Coevolving plasmids drive gene flow and genome plasticity in host-associated intracellular bacteria. Curr. Biol. 31:2346–57.e3
    [Google Scholar]
  82. 82.
    Kottara A, Hall JPJ, Brockhurst MA. 2021. The proficiency of the original host species determines community-level plasmid dynamics. FEMS Microbiol. Ecol. 97:4fiab026
    [Google Scholar]
  83. 83.
    Langner T, Harant A, Gomez-Luciano LB, Shrestha RK, Malmgren A et al. 2021. Genomic rearrangements generate hypervariable mini-chromosomes in host-specific isolates of the blast fungus. PLOS Genet. 17:2e1009386
    [Google Scholar]
  84. 84.
    LeGault KN, Hays SG, Angermeyer A, McKitterick AC, Johura F et al. 2021. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science 373:6554eabg2166
    [Google Scholar]
  85. 85.
    León-Sampedro R, DelaFuente J, Díaz-Agero C, Crellen T, Musicha P et al. 2021. Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients. Nat. Microbiol. 6:5606–16
    [Google Scholar]
  86. 86.
    Liu H, Moran RA, Chen Y, Doughty EL, Hua X et al. 2021. Transferable Acinetobacter baumannii plasmid pDETAB2 encodes OXA-58 and NDM-1 and represents a new class of antibiotic resistance plasmids. J. Antimicrob. Chemother. 76:51130–34
    [Google Scholar]
  87. 87.
    Liu S, Lin G, Ramachandran SR, Cruppe G, Cook D et al. 2022. Rapid mini-chromosome divergence among fungal isolates causing wheat blast outbreaks in Bangladesh and Zambia. bioRxiv 2022.06.18.496690. https://doi.org/10.1101/2022.06.18.496690
  88. 88.
    Low WW, Wong JLC, Beltran LC, Seddon C, David S et al. 2022. Mating pair stabilization mediates bacterial conjugation species specificity. Nat. Microbiol. 7:1016–27
    [Google Scholar]
  89. 89.
    Malaka De Silva P, Stenhouse GE, Blackwell GA, Bengtsson RJ, Jenkins C et al. 2022. A tale of two plasmids: contributions of plasmid associated phenotypes to epidemiological success among Shigella. Proc. R. Soc. B 289:198020220581
    [Google Scholar]
  90. 90.
    Marimuthu K, Venkatachalam I, Koh V, Harbarth S, Perencevich E et al. 2022. Whole genome sequencing reveals hidden transmission of carbapenemase-producing Enterobacterales. Nat. Commun. 13:13052
    [Google Scholar]
  91. 91.
    Martin DP, Varsani A, Roumagnac P, Botha G, Maslamoney S et al. 2021. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 7:1veaa087
    [Google Scholar]
  92. 92.
    Masel J, Siegal ML. 2009. Robustness: mechanisms and consequences. Trends Genet. 25:9395–403
    [Google Scholar]
  93. 93.
    Masson-Boivin C, Sachs JL. 2018. Symbiotic nitrogen fixation by rhizobia—the roots of a success story. Curr. Opin. Plant Biol. 44:7–15
    [Google Scholar]
  94. 94.
    Matlock W, Chau KK, Abu Oun M, Stubberfield E, Barker L et al. 2021. Genomic network analysis of environmental and livestock F-type plasmid populations. ISME J. 15:82322–35
    [Google Scholar]
  95. 95.
    Matlock W, Lipworth S, Chau KK, Abu Oun M, Barker L et al. 2022. Plasmid overlap and evolution between Enterobacterales isolates from bloodstream infections and non-human compartments. bioRxiv 2022.05.06.490774. https://doi.org/10.1101/2022.05.06.490774
  96. 96.
    Mayer C, Hansen TF. 2017. Evolvability and robustness: a paradox restored. J. Theor. Biol. 430:78–85
    [Google Scholar]
  97. 97.
    Minkin I, Pham S, Medvedev P. 2017. TwoPaCo: an efficient algorithm to build the compacted de Bruijn graph from many complete genomes. Bioinformatics 33:244024–32
    [Google Scholar]
  98. 98.
    Möller M, Habig M, Freitag M, Stukenbrock EH. 2018. Extraordinary genome instability and widespread chromosome rearrangements during vegetative growth. Genetics 210:2517–29
    [Google Scholar]
  99. 99.
    Moran RA, Liu H, Doughty EL, Hua X, Cummins EA et al. 2022. GR13-type plasmids in Acinetobacter potentiate the accumulation and horizontal transfer of diverse accessory genes. Microb. Genom. 8:6000840
    [Google Scholar]
  100. 100.
    Norberg P, Bergström M, Jethava V, Dubhashi D, Hermansson M. 2011. The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat. Commun. 2:268
    [Google Scholar]
  101. 101.
    Oger P, Farrand SK. 2002. Two opines control conjugal transfer of an Agrobacterium plasmid by regulating expression of separate copies of the quorum-sensing activator gene traR. J. Bacteriol. 184:41121–31
    [Google Scholar]
  102. 102.
    Orlek A, Phan H, Sheppard AE, Doumith M, Ellington M et al. 2017. Ordering the mob: insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids. Plasmid 91:42–52
    [Google Scholar]
  103. 103.
    Pan SQ, Jin S, Boulton MI, Hawes M, Gordon MP, Nester EW 1995. An Agrobacterium virulence factor encoded by a Ti plasmid gene or a chromosomal gene is required for T-DNA transfer into plants. Mol. Microbiol. 17:2259–69
    [Google Scholar]
  104. 104.
    Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N et al. 2003. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35:132–40
    [Google Scholar]
  105. 105.
    Perry BJ, Sullivan JT, Colombi E, Murphy RJT, Ramsay JP, Ronson CW. 2020. Symbiosis islands of Loteae-nodulating Mesorhizobium comprise three radiating lineages with concordant nod gene complements and nodulation host-range groupings. Microb. Genom. 6:9mgen000426
    [Google Scholar]
  106. 106.
    Piel D, Bruto M, Labreuche Y, Blanquart F, Goudenège D et al. 2022. Phage-host coevolution in natural populations. Nat. Microbiol. 7:1075–86
    [Google Scholar]
  107. 107.
    Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA et al. 2021. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res. 50:64315–28
    [Google Scholar]
  108. 108.
    Prensky H, Gomez-Simmonds A, Uhlemann A-C, Lopatkin AJ. 2021. Conjugation dynamics depend on both the plasmid acquisition cost and the fitness cost. Mol. Syst. Biol. 17:3e9913
    [Google Scholar]
  109. 109.
    Preska Steinberg A, Lin M, Kussell E 2022. Core genes can have higher recombination rates than accessory genes within global microbial populations. eLife 11:e78533
    [Google Scholar]
  110. 110.
    Rangel LT, Soucy SM, Setubal JC, Gogarten JP, Fournier GP. 2021. An efficient, nonphylogenetic method for detecting genes sharing evolutionary signals in phylogenomic data sets. Genome Biol. Evol. 13:9evab187
    [Google Scholar]
  111. 111.
    Rasmussen DA, Guo F. 2022. Espalier: efficient tree reconciliation and ARG reconstruction using maximum agreement forests. bioRxiv 2022.01.17.476639. https://doi.org/10.1101/2022.01.17.476639
  112. 112.
    Redondo-Salvo S, Fernández-López R, Ruiz R, Vielva L, de Toro M et al. 2020. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 11:13602
    [Google Scholar]
  113. 113.
    Richardson EJ, Bacigalupe R, Harrison EM, Weinert LA, Lycett S et al. 2018. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2:91468–78
    [Google Scholar]
  114. 114.
    Rocha EPC. 2004. Order and disorder in bacterial genomes. Curr. Opin. Microbiol. 7:5519–27
    [Google Scholar]
  115. 115.
    Rocha EPC, Bikard D. 2022. Microbial defenses against mobile genetic elements and viruses: Who defends whom from what?. PLOS Biol. 20:1e3001514
    [Google Scholar]
  116. 116.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:112498–504
    [Google Scholar]
  117. 117.
    Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A et al. 2016. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blaKPC. Antimicrob. Agents Chemother. 60:63767–78
    [Google Scholar]
  118. 118.
    Siguier P, Gourbeyre E, Chandler M. 2014. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38:5865–91
    [Google Scholar]
  119. 119.
    Souque C, Escudero JA, MacLean RC. 2021. Integron activity accelerates the evolution of antibiotic resistance. eLife 10:e62474
    [Google Scholar]
  120. 120.
    Stalder T, Press MO, Sullivan S, Liachko I, Top EM. 2019. Linking the resistome and plasmidome to the microbiome. ISME J. 13:102437–46
    [Google Scholar]
  121. 121.
    Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW. 1995. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. PNAS 92:198985–89
    [Google Scholar]
  122. 122.
    Tettelin H, Riley D, Cattuto C, Medini D. 2008. Comparative genomics: the bacterial pan-genome. Curr. Opin. Microbiol. 11:5472–77
    [Google Scholar]
  123. 123.
    Teulet A, Camuel A, Perret X, Giraud E 2022. The versatile roles of type III secretion systems in Rhizobium-legume symbioses. Annu. Rev. Microbiol. 76:45–65
    [Google Scholar]
  124. 124.
    The HC, Thanh DP, Holt KE, Thomson NR, Baker S. 2016. The genomic signatures of Shigella evolution, adaptation and geographical spread. Nat. Rev. Microbiol. 14:4235–50
    [Google Scholar]
  125. 125.
    Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. 2020. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 21:1180
    [Google Scholar]
  126. 126.
    Touchon M, Moura de Sousa JA, Rocha EPC. 2017. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr. Opin. Microbiol. 38:66–73
    [Google Scholar]
  127. 127.
    Toussaint A, Merlin C. 2002. Mobile elements as a combination of functional modules. Plasmid 47:126–35
    [Google Scholar]
  128. 128.
    Tria FDK, Martin WF. 2021. Gene duplications are at least 50 times less frequent than gene transfers in prokaryotic genomes. Genome Biol. Evol. 13:10evab224
    [Google Scholar]
  129. 129.
    Urquhart AS, Chong NF, Yang Y, Idnurm A. 2022. A large transposable element mediates metal resistance in the fungus Paecilomyces variotii. Curr. Biol. 32:5937–50.e5
    [Google Scholar]
  130. 130.
    van Vliet AHM, Charity OJ, Reuter M. 2022. A Campylobacter integrative and conjugative element with a CRISPR-Cas9 system targeting competing plasmids: a history of plasmid warfare?. Microb. Genom. 7:11000729
    [Google Scholar]
  131. 131.
    Vogan AA, Ament-Velásquez SL, Bastiaans E, Wallerman O, Saupe SJ et al. 2021. The Enterprise, a massive transposon carrying Spok meiotic drive genes. Genome Res. 31:5789–98
    [Google Scholar]
  132. 132.
    Wagner A. 2008. Robustness and evolvability: a paradox resolved. Proc. Biol. Sci. 275:163091–100
    [Google Scholar]
  133. 133.
    Wagner GP, Pavlicev M, Cheverud JM. 2007. The road to modularity. Nat. Rev. Genet. 8:12921–31
    [Google Scholar]
  134. 134.
    Weisberg AJ, Davis EW, Tabima J, Belcher MS, Miller M et al. 2020. Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science 368:6495eaba5256
    [Google Scholar]
  135. 135.
    Weisberg AJ, Grünwald NJ, Savory EA, Putnam ML, Chang JH. 2021. Genomic approaches to plant-pathogen epidemiology and diagnostics. Annu. Rev. Phytopathol. 59:311–32
    [Google Scholar]
  136. 136.
    Weisberg AJ, Miller M, Ream W, Grünwald NJ, Chang JH. 2022. Diversification of plasmids in a genus of pathogenic and nitrogen-fixing bacteria. Philos. Trans. R. Soc. B 377:184220200466
    [Google Scholar]
  137. 137.
    Weisberg AJ, Rahman A, Backus D, Tyavanagimatt P, Chang JH, Sachs JL. 2022. Pangenome evolution reconciles robustness and instability of rhizobial symbiosis. mBio 13:3e0007422
    [Google Scholar]
  138. 138.
    Weisberg AJ, Sachs JL, Chang JH. 2022. Dynamic interactions between mega symbiosis ICEs and bacterial chromosomes maintain genome architecture. Genome Biol. Evol. 14:6evac078
    [Google Scholar]
  139. 139.
    Yao Y, Maddamsetti R, Weiss A, Ha Y, Wang T et al. 2022. Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection. Nat. Ecol. Evol. 6:555–64
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032521-022006
Loading
/content/journals/10.1146/annurev-micro-032521-022006
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error