1932

Abstract

The metabolism of a bacterial cell stretches beyond its boundaries, often connecting with the metabolism of other cells to form extended metabolic networks that stretch across communities, and even the globe. Among the least intuitive metabolic connections are those involving cross-feeding of canonically intracellular metabolites. How and why are these intracellular metabolites externalized? Are bacteria simply leaky? Here I consider what it means for a bacterium to be leaky, and I review mechanisms of metabolite externalization from the context of cross-feeding. Despite common claims, diffusion of most intracellular metabolites across a membrane is unlikely. Instead, passive and active transporters are likely involved, possibly purging excess metabolites as part of homeostasis. Re-acquisition of metabolites by a producer limits the opportunities for cross-feeding. However, a competitive recipient can stimulate metabolite externalization and initiate a positive-feedback loop of reciprocal cross-feeding.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032521-023815
2023-09-15
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032521-023815.html?itemId=/content/journals/10.1146/annurev-micro-032521-023815&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abe K, Ohnishi F, Yagi K, Nakajima T, Higuchi T et al. 2002. Plasmid-encoded asp operon confers a proton motive metabolic cycle catalyzed by an aspartate-alanine exchange reaction. J. Bacteriol. 184:2906–13
    [Google Scholar]
  2. 2.
    Adebusuyi AA, Foght JM. 2011. An alternative physiological role for the EmhABC efflux pump in Pseudomonas fluorescens cLP6a. BMC Microbiol. 11:252
    [Google Scholar]
  3. 3.
    Bar-Even A, Flamholz A, Noor E, Milo R. 2012. Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat. Chem. Biol. 8:509–17
    [Google Scholar]
  4. 4.
    Bar-Even A, Noor E, Flamholz A, Buescher JM, Milo R. 2011. Hydrophobicity and charge shape cellular metabolite concentrations. PLOS Comput. Biol. 7:e1002166
    [Google Scholar]
  5. 5.
    Barney BM, Eberhart LJ, Ohlert JM, Knutson CM, Plunkett MH. 2015. Gene deletions resulting in increased nitrogen release by Azotobacter vinelandii: application of a novel nitrogen biosensor. Appl. Environ. Microbiol. 81:4316–28
    [Google Scholar]
  6. 6.
    Becker M, Börngen K, Nomura T, Battle AR, Marin K et al. 2013. Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim. Biophys. Acta Biomembr. 1828:1230–40
    [Google Scholar]
  7. 7.
    Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD. 2009. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5:593–99
    [Google Scholar]
  8. 8.
    Benz R, Schmid A, Hancock RE. 1985. Ion selectivity of gram-negative bacterial porins. J. Bacteriol. 162:722–27
    [Google Scholar]
  9. 9.
    Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. 2014. Bacterial vesicles in marine ecosystems. Science 343:183–86
    [Google Scholar]
  10. 10.
    Borchert E, Hammerschmidt K, Hentschel U, Deines P. 2021. Enhancing microbial pollutant degradation by integrating eco-evolutionary principles with environmental biotechnology. Trends Microbiol. 29:908–18
    [Google Scholar]
  11. 11.
    Bröer S, Krämer R. 1990. Lysine uptake and exchange in Corynebacterium glutamicum. J. Bacteriol. 172:7241–48
    [Google Scholar]
  12. 12.
    Bunbury F, Deery E, Sayer AP, Bhardwaj V, Harrison EL et al. 2022. Exploring the onset of B12-based mutualisms using a recently evolved Chlamydomonas auxotroph and B12-producing bacteria. Environ. Microbiol. 24:3134–47
    [Google Scholar]
  13. 13.
    Burkovski A, Krämer R. 2002. Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl. Microbiol. Biotechnol. 58:265–74
    [Google Scholar]
  14. 14.
    Cafiso DS, Hubbell WL. 1983. Electrogenic H+/OH movement across phospholipid vesicles measured by spin-labeled hydrophobic ions. Biophys. J. 44:49–57
    [Google Scholar]
  15. 15.
    Campbell K, Herrera-Dominguez L, Coreia-Melo C, Zelezniak A, Ralser M. 2018. Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Curr. Opin. Syst. Biol. 8:97–108
    [Google Scholar]
  16. 16.
    Carneiro S, Villas-Boas SG, Ferreira EC, Rocha I. 2011. Metabolic footprint analysis of recombinant Escherichia coli strains during fed-batch fermentations. Mol. Biosyst. 7:899–910
    [Google Scholar]
  17. 17.
    Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M et al. 2020. The MetaCyc database of metabolic pathways and enzymes—a 2019 update. Nucleic Acids Res. 48:D445–53
    [Google Scholar]
  18. 18.
    Cava F, Lam H, de Pedro MA, Waldor MK. 2011. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cell Mol. Life Sci. 68:817–31
    [Google Scholar]
  19. 19.
    Chacón JM, Hammarlund SP, Martinson JNV, Smith LB, Harcombe WR. 2021. The ecology and evolution of model microbial mutualisms. Annu. Rev. Ecol. Evol. Syst. 52:363–84
    [Google Scholar]
  20. 20.
    Chakrabarti AC. 1994. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation. Amino Acids 6:213–29
    [Google Scholar]
  21. 21.
    Chakrabarti AC, Deamer DW. 1992. Permeability of lipid bilayers to amino acids and phosphate. Biochim. Biophys. Acta Biomembr. 1111:171–77
    [Google Scholar]
  22. 22.
    Chubiz LM, Rao CV. 2010. Aromatic acid metabolites of Escherichia coli K-12 can induce the marRAB operon. J. Bacteriol. 192:4786–89
    [Google Scholar]
  23. 23.
    Copley SD. 2017. Shining a light on enzyme promiscuity. Curr. Opin. Struct. Biol. 47:167–75
    [Google Scholar]
  24. 24.
    Cox CD, Bavi N, Martinac B. 2018. Bacterial mechanosensors. Annu. Rev. Physiol. 80:71–93
    [Google Scholar]
  25. 25.
    Dal Co A, van Vliet S, Kiviet DJ, Schlegel S, Ackermann M 2020. Short-range interactions govern the dynamics and functions of microbial communities. Nat. Ecol. Evol. 4:366–75. Erratum 2021. Nat. Ecol. Evol. 5:701
    [Google Scholar]
  26. 26.
    Daßler T, Maier T, Winterhalter C, Böck A. 2000. Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Mol. Microbiol. 36:1101–12
    [Google Scholar]
  27. 27.
    Deamer DW, Bramhall J. 1986. Permeability of lipid bilayers to water and ionic solutes. Chem. Phys. Lipids 40:167–88
    [Google Scholar]
  28. 28.
    Delmar JA, Yu EW. 2016. The AbgT family: a novel class of antimetabolite transporters. Protein Sci. 25:322–37
    [Google Scholar]
  29. 29.
    Demchick P, Koch AL. 1996. The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J. Bacteriol. 178:768–73
    [Google Scholar]
  30. 30.
    Díaz-Pascual F, Lempp M, Nosho K, Jeckel H, Jo JK et al. 2021. Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies. eLife 10:e70794
    [Google Scholar]
  31. 31.
    Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, Mashko S. 2007. YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol. Lett. 275:312–18
    [Google Scholar]
  32. 32.
    Driessen AJ, Hellingwerf KJ, Konings WN. 1987. Mechanism of energy coupling to entry and exit of neutral and branched chain amino acids in membrane vesicles of Streptococcus cremoris. J. Biol. Chem. 262:12438–43
    [Google Scholar]
  33. 33.
    D'Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. 2018. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35:455–88
    [Google Scholar]
  34. 34.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. Science 297:1183–86
    [Google Scholar]
  35. 35.
    Evans CR, Kempes CP, Price-Whelan A, Dietrich LEP. 2020. Metabolic heterogeneity and cross-feeding in bacterial multicellular systems. Trends Microbiol. 28:732–43
    [Google Scholar]
  36. 36.
    Fazzino L, Anisman J, Chacon JM, Heineman RH, Harcombe WR. 2020. Lytic bacteriophage have diverse indirect effects in a synthetic cross-feeding community. ISME J. 14:123–34
    [Google Scholar]
  37. 37.
    Feirer N, Fuqua C. 2017. Pterin function in bacteria. Pteridines 28:23–36
    [Google Scholar]
  38. 38.
    Franke I, Resch A, Daßler T, Maier T, Böck A. 2003. YfiK from Escherichia coli promotes export of O-acetylserine and cysteine. J. Bacteriol. 185:1161–66
    [Google Scholar]
  39. 39.
    Fritts RK, Bird JT, Behringer MG, Lipzen A, Martin J et al. 2020. Enhanced nutrient uptake is sufficient to drive emergent cross-feeding between bacteria in a synthetic community. ISME J. 14:2816–28
    [Google Scholar]
  40. 40.
    Fritts RK, McCully AL, McKinlay JB. 2021. Extracellular metabolism sets the table for microbial cross-feeding. Microbiol. Mol. Biol. Rev. 85:e00135–20
    [Google Scholar]
  41. 41.
    Giri S, Oña L, Waschina S, Shitut S, Yousif G et al. 2021. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr. Biol. 31:5547–57.e6
    [Google Scholar]
  42. 42.
    Giri S, Yousif G, Shitut S, Oña L, Kost C. 2022. Prevalent emergence of reciprocity among cross-feeding bacteria. ISME Commun. 2:71
    [Google Scholar]
  43. 43.
    Goodell EW, Schwarz U. 1985. Release of cell wall peptides into culture medium by exponentially growing Escherichia coli. J. Bacteriol. 162:391–97
    [Google Scholar]
  44. 44.
    Gordon GC, McKinlay JB. 2014. Calvin cycle mutants of photoheterotrophic purple nonsulfur bacteria fail to grow due to an electron imbalance rather than toxic metabolite accumulation. J. Bacteriol. 196:1231–37
    [Google Scholar]
  45. 45.
    Gowda K, Ping D, Mani M, Kuehn S. 2022. Genomic structure predicts metabolite dynamics in microbial communities. Cell 185:530–46.e25
    [Google Scholar]
  46. 46.
    Grant MAA, Kazamia E, Cicuta P, Smith AG. 2014. Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures. ISME J. 8:1418–27
    [Google Scholar]
  47. 47.
    Gronskiy SV, Zakataeva NP, Vitushkina MV, Ptitsyn LR, Altman IB et al. 2005. The yicM (nepI) gene of Escherichia coli encodes a major facilitator superfamily protein involved in efflux of purine ribonucleosides. FEMS Microbiol. Lett. 250:39–47
    [Google Scholar]
  48. 48.
    Gude S, Pherribo GJ, Taga ME. 2020. Emergence of metabolite provisioning as a by-product of evolved biological functions. mSystems 5:e00259–20
    [Google Scholar]
  49. 49.
    Gumbart JC, Beeby M, Jensen GJ, Roux B. 2014. Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations. PLOS Comput. Biol. 10:e1003475
    [Google Scholar]
  50. 50.
    Halsall DM. 1975. Overproduction of lysine by mutant strains of Escherichia coli with defective lysine transport systems. Biochem. Genet. 13:109–24
    [Google Scholar]
  51. 51.
    Hashimoto K, Murata J, Konishi T, Yabe I, Nakamatsu T, Kawasaki H. 2012. Glutamate is excreted across the cytoplasmic membrane through the NCgl1221 channel of Corynebacterium glutamicum by passive diffusion. Biosci. Biotechnol. Biochem. 76:1422–24
    [Google Scholar]
  52. 52.
    Helling RB, Janes BK, Kimball H, Tran T, Bundesmann M et al. 2002. Toxic waste disposal in Escherichia coli. J. Bacteriol. 184:3699–703
    [Google Scholar]
  53. 53.
    Hemberger S, Pedrolli DB, Stolz J, Vogl C, Lehmann M, Mack M. 2011. RibM from Streptomyces davawensis is a riboflavin/roseoflavin transporter and may be useful for the optimization of riboflavin production strains. BMC Biotechnol. 11:119
    [Google Scholar]
  54. 54.
    Holtje JV. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. . Mol. Biol. Rev. 62:181–203
    [Google Scholar]
  55. 55.
    Holyoake LV, Hunt S, Sanguinetti G, Cook GM, Howard MJ et al. 2016. CydDC-mediated reductant export in Escherichia coli controls the transcriptional wiring of energy metabolism and combats nitrosative stress. Biochem. J. 473:693–701
    [Google Scholar]
  56. 56.
    Hori H, Yoneyama H, Tobe R, Ando T, Isogai E, Katsumata R 2011. Inducible L-alanine exporter encoded by the novel gene ygaW (alaE) in Escherichia coli. Appl. Environ. Microbiol. 77:4027–34
    [Google Scholar]
  57. 57.
    Hosie AH, Poole PS. 2001. Bacterial ABC transporters of amino acids. Res. Microbiol. 152:259–70
    [Google Scholar]
  58. 58.
    Huang JJ, Han J-I, Zhang L-H, Leadbetter JR. 2003. Utilization of acyl-homoserine lactone quorum signals for growth by a soil Pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 69:5941–49
    [Google Scholar]
  59. 59.
    Ingraham JL, Maalie O, Neidhardt FC. 1983. Growth of the Bacterial Cell Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  60. 60.
    Jeffryes JG, Lerma-Ortiz C, Liu F, Golubev A, Niehaus TD et al. 2022. Chemical-damage MINE: a database of curated and predicted spontaneous metabolic reactions. Metab. Eng. 69:302–12
    [Google Scholar]
  61. 61.
    Johnson JW, Fisher JF, Mobashery S. 2013. Bacterial cell-wall recycling. Ann. N.Y. Acad. Sci. 1277:54–75
    [Google Scholar]
  62. 62.
    Jones CM, Hernandez Lozada NJ, Pfleger BF. 2015. Efflux systems in bacteria and their metabolic engineering applications. Appl. Microbiol. Biotechnol. 99:9381–93
    [Google Scholar]
  63. 63.
    Kazamia E, Czesnick H, Nguyen TT, Croft MT, Sherwood E et al. 2012. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. 14:1466–76
    [Google Scholar]
  64. 64.
    Kennerknecht N, Sahm H, Yen MR, Pátek M, Saier MH Jr., Eggeling L. 2002. Export of l-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J. Bacteriol. 184:3947–56
    [Google Scholar]
  65. 65.
    Kim M, Zhang Z, Okano H, Yan D, Groisman A, Hwa T. 2012. Need-based activation of ammonium uptake in Escherichia coli. Mol. Syst. Biol. 8:616
    [Google Scholar]
  66. 66.
    Kim S, Ihara K, Katsube S, Hori H, Ando T et al. 2015. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives. MicrobiologyOpen 4:632–43
    [Google Scholar]
  67. 67.
    Koita K, Rao CV. 2012. Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli. PLOS ONE 7:e43700
    [Google Scholar]
  68. 68.
    Konings WN, Poolman B, Driessen AJM. 1992. Can the excretion of metabolites by bacteria be manipulated?. FEMS Microbiol. Rev. 8:93–108
    [Google Scholar]
  69. 69.
    Kotloski NJ, Gralnick JA. 2013. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4:e00553–12
    [Google Scholar]
  70. 70.
    Krämer R. 1994. Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol. Rev. 13:75–94
    [Google Scholar]
  71. 71.
    Kutukova EA, Livshits VA, Altman IP, Ptitsyn LR, Zyiatdinov MH et al. 2005. The yeaS (leuE) gene of Escherichia coli encodes an exporter of leucine, and the Lrp protein regulates its expression. FEBS Lett. 579:4629–34
    [Google Scholar]
  72. 72.
    Lam H, Oh DC, Cava F, Takacs CN, Clardy J et al. 2009. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science 325:1552–55
    [Google Scholar]
  73. 73.
    LaSarre B, Deutschbauer AM, Love CE, McKinlay JB. 2020. Covert cross-feeding revealed by genome-wide analysis of fitness determinants in a synthetic bacterial mutualism. Appl. Environ. Microbiol. 86:e00543–20
    [Google Scholar]
  74. 74.
    LaSarre B, McCully AL, Lennon JT, McKinlay JB. 2017. Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients. ISME J. 11:337–48
    [Google Scholar]
  75. 75.
    Lennen RM, Politz MG, Kruziki MA, Pfleger BF. 2013. Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J. Bacteriol. 195:135–44
    [Google Scholar]
  76. 76.
    Lin H, Hoffmann F, Rozkov A, Enfors SO, Rinas U, Neubauer P. 2004. Change of extracellular cAMP concentration is a sensitive reporter for bacterial fitness in high-cell-density cultures of Escherichia coli. Biotechnol. Bioeng. 87:602–13
    [Google Scholar]
  77. 77.
    Liu JY, Miller PF, Willard J, Olson ER. 1999. Functional and biochemical characterization of Escherichia coli sugar efflux transporters. J. Biol. Chem. 274:22977–84
    [Google Scholar]
  78. 78.
    Lopez JG, Wingreen NS. 2022. Noisy metabolism can promote microbial cross-feeding. eLife 11:e70694
    [Google Scholar]
  79. 79.
    Lundstedt E, Kahne D, Ruiz N. 2021. Assembly and maintenance of lipids at the bacterial outer membrane. Chem. Rev. 121:5098–123
    [Google Scholar]
  80. 80.
    Lüthi E, Baur H, Gamper M, Brunner F, Villeval D et al. 1990. The arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa contains an additional gene, arcD, encoding a membrane protein. Gene 87:37–43
    [Google Scholar]
  81. 81.
    Marin K, Krämer R. 2007. Amino acid transport systems in biotechnologically relevant bacteria. Amino Acid Biosynthesis—Pathways, Regulation and Metabolic Engineering VF Wendisch 290–327. Berlin: Springer-Verlag
    [Google Scholar]
  82. 82.
    May KL, Silhavy TJ. 2018. The Escherichia coli phospholipase PldA regulates outer membrane homeostasis via lipid signaling. mBio 9:e00379–18
    [Google Scholar]
  83. 83.
    McAnulty MJ, Wood TK. 2014. YeeO from Escherichia coli exports flavins. Bioengineered 5:386–92
    [Google Scholar]
  84. 84.
    McCully AL, LaSarre B, McKinlay JB. 2017. Recipient-biased competition for an intracellularly generated cross-fed nutrient is required for coexistence of microbial mutualists. mBio 8:e01620–17
    [Google Scholar]
  85. 85.
    McInerney MJ, Sieber JR, Gunsalus RP. 2009. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 20:623–32
    [Google Scholar]
  86. 86.
    McKinlay JB, Cook GM, Hards K. 2020. Microbial energy management—a product of three broad tradeoffs. Adv. Microb. Physiol. 77:139–85
    [Google Scholar]
  87. 87.
    Mee MT, Collins JJ, Church GM, Wang HH. 2014. Syntrophic exchange in synthetic microbial communities. PNAS 111:E2149–56
    [Google Scholar]
  88. 88.
    Milo R, Jorgensen P, Moran U, Weber G, Springer M. 2010. BioNumbers–the database of key numbers in molecular and cell biology. Nucleic Acids Res. 38:D750–53
    [Google Scholar]
  89. 89.
    Milo R, Phillips R. 2015. Cell Biology by the Numbers New York: Garland Science
    [Google Scholar]
  90. 90.
    Miot M, Betton JM. 2004. Protein quality control in the bacterial periplasm. Microb. Cell Fact. 3:4
    [Google Scholar]
  91. 91.
    Momeni B, Chen C-C, Hillesland KL, Waite A, Shou W. 2011. Using artificial systems to explore the ecology and evolution of symbioses. Cell Mol. Life Sci. 68:1353–68
    [Google Scholar]
  92. 92.
    Morris JJ, Lenski RE, Zinser ER. 2012. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3:e00036–12
    [Google Scholar]
  93. 93.
    Nandineni MR, Gowrishankar J. 2004. Evidence for an arginine exporter encoded by yggA (argO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli. J. Bacteriol. 186:3539–46
    [Google Scholar]
  94. 94.
    Nichols JW, Deamer DW. 1980. Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique. PNAS 77:2038–42
    [Google Scholar]
  95. 95.
    Niehaus TD, Hillmann KB. 2020. Enzyme promiscuity, metabolite damage, and metabolite damage control systems of the tricarboxylic acid cycle. FEBS J. 287:1343–58
    [Google Scholar]
  96. 96.
    Nikaido H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67:593–656
    [Google Scholar]
  97. 97.
    Nikaido H, Rosenberg EY. 1981. Effect on solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli. J. Gen. Physiol. 77:121–35
    [Google Scholar]
  98. 98.
    Ohtsu I, Kawano Y, Suzuki M, Morigasaki S, Saiki K et al. 2015. Uptake of L-cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli. PLOS ONE 10:e0120619
    [Google Scholar]
  99. 99.
    Ohtsu I, Wiriyathanawudhiwong N, Morigasaki S, Nakatani T, Kadokura H, Takagi H. 2010. The L-cysteine/L-cystine shuttle system provides reducing equivalents to the periplasm in Escherichia coli. J. Biol. Chem. 285:17479–87
    [Google Scholar]
  100. 100.
    Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S. 2012. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb. Cell Fact. 11:122
    [Google Scholar]
  101. 101.
    Pande S, Kost C. 2017. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 25:349–61
    [Google Scholar]
  102. 102.
    Pande S, Merker H, Bohl K, Reichelt M, Schuster S et al. 2013. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8:953–62
    [Google Scholar]
  103. 103.
    Park JH, Lee KH, Kim TY, Lee SY. 2007. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. PNAS 104:7797–802
    [Google Scholar]
  104. 104.
    Park JH, Oh JE, Lee KH, Kim JY, Lee SY. 2012. Rational design of Escherichia coli for L-isoleucine production. ACS Synth. Biol. 1:532–40
    [Google Scholar]
  105. 105.
    Pathania A, Sardesai AA. 2015. Distinct paths for basic amino acid export in Escherichia coli: YbjE (LysO) mediates export of L-lysine. J. Bacteriol. 197:2036–47
    [Google Scholar]
  106. 106.
    Perruzza L, Gargari G, Proietti M, Fosso B, D'Erchia AM et al. 2017. T follicular helper cells promote a beneficial gut ecosystem for host metabolic homeostasis by sensing microbiota-derived extracellular ATP. Cell Rep. 18:2566–75
    [Google Scholar]
  107. 107.
    Pinu FR, Granucci N, Daniell J, Han TL, Carneiro S et al. 2018. Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test. Metabolomics 14:43
    [Google Scholar]
  108. 108.
    Pittman MS, Corker H, Wu G, Binet MB, Moir AJ, Poole RK. 2002. Cysteine is exported from the Escherichia coli cytoplasm by CydDC, an ATP-binding cassette-type transporter required for cytochrome assembly. J. Biol. Chem. 277:49841–49
    [Google Scholar]
  109. 109.
    Poole RK, Cozens AG, Shepherd M. 2019. The CydDC family of transporters. Res. Microbiol. 170:407–16
    [Google Scholar]
  110. 110.
    Prats R, de Pedro MA. 1989. Normal growth and division of Escherichia coli with a reduced amount of murein. J. Bacteriol. 171:3740–45
    [Google Scholar]
  111. 111.
    Pribat A, Blaby IK, Lara-Nunez A, Gregory JF 3rd, de Crecy-Lagard V, Hanson AD. 2010. FolX and FolM are essential for tetrahydromonapterin synthesis in Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 192:475–82
    [Google Scholar]
  112. 112.
    Proietti M, Perruzza L, Scribano D, Pellegrini G, D'Antuono R et al. 2019. ATP released by intestinal bacteria limits the generation of protective IgA against enteropathogens. Nat. Commun. 10:250
    [Google Scholar]
  113. 113.
    Rancourt DE, Stephenson JT, Vickell GA, Wood JM. 1984. Proline excretion by Escherichia coli K12. Biotechnol. Bioeng. 26:74–80
    [Google Scholar]
  114. 114.
    Reaves ML, Young BD, Hosios AM, Xu YF, Rabinowitz JD. 2013. Pyrimidine homeostasis is accomplished by directed overflow metabolism. Nature 500:237–41
    [Google Scholar]
  115. 115.
    Roe AJ, O'Byrne C, McLaggan D, Booth IR. 2002. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148:2215–22
    [Google Scholar]
  116. 116.
    Romine MF, Rodionov DA, Maezato Y, Osterman AL, Nelson WC. 2017. Underlying mechanisms for syntrophic metabolism of essential enzyme cofactors in microbial communities. ISME J. 11:1434–46
    [Google Scholar]
  117. 117.
    Rosner JL, Martin RG. 2009. An excretory function for the Escherichia coli outer membrane pore TolC: upregulation of marA and soxS transcription and Rob activity due to metabolites accumulated in tolC mutants. J. Bacteriol. 191:5283–92
    [Google Scholar]
  118. 118.
    Rozen DE, Philippe N, Arjan de Visser J, Lenski RE, Schneider D 2009. Death and cannibalism in a seasonal environment facilitate bacterial coexistence. Ecol. Lett. 12:34–44
    [Google Scholar]
  119. 119.
    Ruhrmann J, Sprenger GA, Kramer R. 1994. Mechanism of alanine excretion in recombinant strains of Zymomonas mobilis. Biochim. Biophys. Acta Biomembr. 1196:14–20
    [Google Scholar]
  120. 120.
    Russel JB, Strobel HJ. 1987. Concentration of ammonia across cell membranes of mixed rumen bacteria. J. Dairy Sci. 70:970–76
    [Google Scholar]
  121. 121.
    Saha S, Lach SR, Konovalova A. 2021. Homeostasis of the Gram-negative cell envelope. Curr. Opin. Microbiol. 61:99–106
    [Google Scholar]
  122. 122.
    Saparov SM, Liu K, Agre P, Pohl P. 2007. Fast and selective ammonia transport by aquaporin-8. J. Biol. Chem. 282:5296–301
    [Google Scholar]
  123. 123.
    Schaechter M, Maaloe O, Kjeldgaard NO. 1958. Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19:592–606
    [Google Scholar]
  124. 124.
    Shou W, Ram S, Vilar JMG. 2007. Synthetic cooperation in engineered yeast populations. PNAS 104:1877–82
    [Google Scholar]
  125. 125.
    Sidiq KR, Chow MW, Zhao Z, Daniel RA. 2021. Alanine metabolism in Bacillus subtilis. Mol. Microbiol. 115:739–57
    [Google Scholar]
  126. 126.
    Simic P, Sahm H, Eggeling L. 2001. L-threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum. J. Bacteriol. 183:5317–24
    [Google Scholar]
  127. 127.
    Smid EJ, Konings WN. 1990. Relationship between utilization of proline and proline-containing peptides and growth of Lactococcus lactis. J. Bacteriol. 172:5286–92
    [Google Scholar]
  128. 128.
    Spari D, Beldi G. 2020. Extracellular ATP as an inter-kingdom signaling molecule: release mechanisms by bacteria and its implication on the host. Int. J. Mol. Sci. 21:155590
    [Google Scholar]
  129. 129.
    Stuart RK, Mayali X, Lee JZ, Everroad RC, Hwang M et al. 2016. Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J. 10:1240–51
    [Google Scholar]
  130. 130.
    Sun Y, Vanderpool CK. 2011. Regulation and function of Escherichia coli sugar efflux transporter A (SetA) during glucose-phosphate stress. J. Bacteriol. 193:143–53
    [Google Scholar]
  131. 131.
    Teelucksingh T, Thompson LK, Cox G. 2020. The evolutionary conservation of Escherichia coli drug efflux pumps supports physiological functions. J. Bacteriol. 202:e00367–20
    [Google Scholar]
  132. 132.
    Teelucksingh T, Thompson LK, Zhu S, Kuehfuss NM, Goetz JA et al. 2022. A genetic platform to investigate the functions of bacterial drug efflux pumps. Nat. Chem. Biol. 18:1399–409
    [Google Scholar]
  133. 133.
    Trötschel C, Deutenberg D, Bathe B, Burkovski A, Krämer R. 2005. Characterization of methionine export in Corynebacterium glutamicum. J. Bacteriol. 187:3786–94
    [Google Scholar]
  134. 134.
    Ude J, Tripathi V, Buyck JM, Söderholm S, Cunrath O et al. 2021. Outer membrane permeability: Antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa. PNAS 118:31e2107644118
    [Google Scholar]
  135. 135.
    Van Dyk TK, Templeton LJ, Cantera KA, Sharpe PL, Sariaslani FS. 2004. Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve?. J. Bacteriol. 186:7196–204
    [Google Scholar]
  136. 136.
    Vazquez-Laslop N, Lee H, Hu R, Neyfakh AA. 2001. Molecular sieve mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli. J. Bacteriol. 183:2399–404
    [Google Scholar]
  137. 137.
    Vollmer W, Seligman SJ. 2010. Architecture of peptidoglycan: more data and more models. Trends Microbiol. 18:59–66
    [Google Scholar]
  138. 138.
    Vrljic M, Sahm H, Eggeling L. 1996. A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol. Microbiol. 22:815–26
    [Google Scholar]
  139. 139.
    Walker CB, Redding-Johanson AM, Baidoo EE, Rajeev L, He Z et al. 2012. Functional responses of methanogenic archaea to syntrophic growth. ISME J. 6:2045–55
    [Google Scholar]
  140. 140.
    Walter A, Gutknecht J. 1986. Permeability of small nonelectrolytes through lipid bilayer membranes. J. Membr. Biol. 90:207–17
    [Google Scholar]
  141. 141.
    Wang Y, Liu Y, Deberg HA, Nomura T, Hoffman MT et al. 2014. Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. eLife 3:e01834
    [Google Scholar]
  142. 142.
    Wilks JC, Slonczewski JL. 2007. pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J. Bacteriol. 189:5601–7
    [Google Scholar]
  143. 143.
    Wintermute EH, Silver PA. 2010. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6:407
    [Google Scholar]
  144. 144.
    Wiriyathanawudhiwong N, Ohtsu I, Li ZD, Mori H, Takagi H. 2009. The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli. Appl. Microbiol. Biotechnol. 81:903–13
    [Google Scholar]
  145. 145.
    Wood JM. 1999. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63:230–62
    [Google Scholar]
  146. 146.
    Yakunin AF, Hallenbeck PC. 2002. AmtB is necessary for NH4+-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. J. Bacteriol. 184:4081–88
    [Google Scholar]
  147. 147.
    Yamada S, Awano N, Inubushi K, Maeda E, Nakamori S et al. 2006. Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Appl. Environ. Microbiol. 72:4735–42
    [Google Scholar]
  148. 148.
    Zakataeva NP, Aleshin VV, Tokmakova IL, Troshin PV, Livshits VA. 1999. The novel transmembrane Escherichia coli proteins involved in the amino acid efflux. FEBS Lett. 452:228–32
    [Google Scholar]
  149. 149.
    Zhang T, Yan Y, He S, Ping S, Alam KM et al. 2012. Involvement of the ammonium transporter AmtB in nitrogenase regulation and ammonium excretion in Pseudomonas stutzeri A1501. Res. Microbiol. 163:332–39
    [Google Scholar]
  150. 150.
    Zuroff TR, Curtis WR. 2012. Developing symbiotic consortia for lignocellulosic biofuel production. Appl. Microbiol. Biotechnol. 93:1423–35
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032521-023815
Loading
/content/journals/10.1146/annurev-micro-032521-023815
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error