1932

Abstract

Bacteria are single-celled organisms that carry a comparatively small set of genetic information, typically consisting of a few thousand genes that can be selectively activated or repressed in an energy-efficient manner and transcribed to encode various biological functions in accordance with environmental changes. Research over the last few decades has uncovered various ingenious molecular mechanisms that allow bacterial pathogens to sense and respond to different environmental cues or signals to activate or suppress the expression of specific genes in order to suppress host defenses and establish infections. In the setting of infection, pathogenic bacteria have evolved various intelligent mechanisms to reprogram their virulence to adapt to environmental changes and maintain a dominant advantage over host and microbial competitors in new niches. This review summarizes the bacterial virulence programming mechanisms that enable pathogens to switch from acute to chronic infection, from local to systemic infection, and from infection to colonization. It also discusses the implications of these findings for the development of new strategies to combat bacterial infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032521-025954
2023-09-15
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032521-025954.html?itemId=/content/journals/10.1146/annurev-micro-032521-025954&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J et al. 2007. Type VII secretion—Mycobacteria show the way. Nat. Rev. Microbiol. 5:883–91
    [Google Scholar]
  2. 2.
    Ahator SD, Zhang LH. 2019. Small is mighty—chemical communication systems in Pseudomonas aeruginosa. Annu. Rev. Microbiol. 73:559–78
    [Google Scholar]
  3. 3.
    Aldon D, Brito B, Boucher C, Genin S. 2000. A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO J. 19:2304–14
    [Google Scholar]
  4. 4.
    Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L et al. 2008. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol. 146:703–15
    [Google Scholar]
  5. 5.
    Aznar A, Chen NW, Rigault M, Riache N, Joseph D et al. 2014. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores. Plant Physiol. 164:2167–83
    [Google Scholar]
  6. 6.
    Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U et al. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461–72
    [Google Scholar]
  7. 7.
    Barton IS, Fuqua C, Platt TG. 2018. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ. Microbiol. 20:16–29
    [Google Scholar]
  8. 8.
    Ben Haj Khalifa A, Moissenet D, Vu Thien H, Khedher M. 2011. Virulence factors in Pseudomonas aeruginosa: mechanisms and modes of regulation. Ann. Biol. Clin. 69:393–403
    [Google Scholar]
  9. 9.
    Berne C, Ducret A, Hardy GG, Brun YV. 2015. Adhesins involved in attachment to abiotic surfaces by gram-negative bacteria. Microbiol. Spectr. 3:10
    [Google Scholar]
  10. 10.
    Bernier SP, Ha DG, Khan W, Merritt JH, O'Toole GA 2011. Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res. Microbiol. 162:680–88
    [Google Scholar]
  11. 11.
    Bhate MP, Molnar KS, Goulian M, DeGrado WF. 2015. Signal transduction in histidine kinases: insights from new structures. Structure 23:981–94
    [Google Scholar]
  12. 12.
    Bogdanove AJ, Bauer DW, Beer SV. 1998. Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the Hrp (type III secretion) pathway. J. Bacteriol. 180:2244–47
    [Google Scholar]
  13. 13.
    Braun AC, Mandle RJ. 1948. Studies on the inactivation of the tumor-inducing principle in crown gall. Growth 12:255–69
    [Google Scholar]
  14. 14.
    Brencic A, Winans SC. 2005. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol. Mol. Biol. Rev. 69:155–94
    [Google Scholar]
  15. 15.
    Broder UN, Jaeger T, Jenal U. 2016. LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa. Nat. Microbiol. 2:16184
    [Google Scholar]
  16. 16.
    Bylund J, Burgess LA, Cescutti P, Ernst RK, Speert DP. 2006. Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J. Biol. Chem. 281:2526–32
    [Google Scholar]
  17. 17.
    Calum H, Trøstrup H, Laulund AS, Thomsen K, Christophersen L et al. 2022. Murine burn lesion model for studying acute and chronic wound infections. APMIS 130:477–90
    [Google Scholar]
  18. 18.
    Cascales E. 2008. The type VI secretion toolkit. EMBO Rep. 9:735–41
    [Google Scholar]
  19. 19.
    Castelli ME, García Véscovi E, Soncini FC 2000. The phosphatase activity is the target for Mg2+ regulation of the sensor protein PhoQ in Salmonella. J. Biol. Chem. 275:22948–54
    [Google Scholar]
  20. 20.
    Chagnot C, Zorgani MA, Astruc T, Desvaux M. 2013. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective. Front. Microbiol. 4:303
    [Google Scholar]
  21. 21.
    Chan JH, Urbach JM, Law TF, Arnold LW, Hu A et al. 2005. A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. PNAS 102:2549–54
    [Google Scholar]
  22. 22.
    Chapmen MR, Kao CC. 1998. EpsR modulates production of extracellular polysaccharides in the bacterial wilt pathogen Ralstonia (Pseudomonas) solanacearum. J. Bacteriol. 180:27–34
    [Google Scholar]
  23. 23.
    Chatterjee AK, Starr MP. 1980. Genetics of Erwinia species. Annu. Rev. Microbiol. 34:645–76
    [Google Scholar]
  24. 24.
    Chen AI, Dolben EF, Okegbe C, Harty CE, Golub Y et al. 2014. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR–controlled biofilm formation as part of a cyclic relationship involving phenazines. PLOS Pathog. 10:e1004480
    [Google Scholar]
  25. 25.
    Chen LQ. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol. 201:1150–55
    [Google Scholar]
  26. 26.
    Chen Z, Klessig DF. 1991. Identification of a soluble salicylic acid–binding protein that may function in signal transduction in the plant disease-resistance response. PNAS 88:8179–83
    [Google Scholar]
  27. 27.
    Choi J, Groisman EA. 2016. Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence. Mol. Microbiol. 101:1024–38
    [Google Scholar]
  28. 28.
    Choi J, Groisman EA. 2017. Activation of master virulence regulator PhoP in acidic pH requires the Salmonella-specific protein UgtL. Sci. Signal. 10:eaan6284
    [Google Scholar]
  29. 29.
    Choi J, Groisman EA. 2020. Horizontally acquired regulatory gene regulates ancestral regulatory system to promote Salmonella virulence. Nucleic Acids Res. 48:10832–47
    [Google Scholar]
  30. 30.
    Chowdhury R, Pavinski Bitar PD, Keresztes I, Condo AM Jr., Altier C 2021. A diffusible signal factor of the intestine dictates Salmonella invasion through its direct control of the virulence activator HilD. PLOS Pathog. 17:e1009357
    [Google Scholar]
  31. 31.
    Christie PJ, Cascales E. 2005. Structural and dynamic properties of bacterial type IV secretion systems. Mol. Membr. Biol. 22:51–61
    [Google Scholar]
  32. 32.
    Chua SL, Sivakumar K, Rybtke M, Yuan M, Andersen JB et al. 2015. c-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth. Sci. Rep. 20:10052
    [Google Scholar]
  33. 33.
    Clark MA, Reed KA, Lodge J, Stephen J, Hirst BH et al. 1996. Invasion of murine intestinal M cells by Salmonella typhimurium inv. mutants severely deficient for invasion of cultured cells. Infect. Immun. 64:4363–68
    [Google Scholar]
  34. 34.
    Coggan KA, Wolfgang MC. 2012. Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr. Issues Mol. Biol. 14:47–70
    [Google Scholar]
  35. 35.
    D'Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Déziel E et al. 2007. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol. Microbiol. 64:512–33
    [Google Scholar]
  36. 36.
    Dautin N, Bernstein HD. 2007. Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu. Rev. Microbiol. 61:89–12
    [Google Scholar]
  37. 37.
    De Nisco NJ, Rivera-Cancel G, Orth K. 2018. The biochemistry of sensing: enteric pathogens regulate type III secretion in response to environmental and host cues. mBio 9:e02122
    [Google Scholar]
  38. 38.
    Deng Y, Wu J, Tao F, Zhang LH. 2011. Listening to a new language: DSF-based quorum sensing in gram-negative bacteria. Chem. Rev. 111:160–73
    [Google Scholar]
  39. 39.
    De Smet J, Wagemans J, Hendrix H, Staes I, Visnapuu A et al. 2021. Bacteriophage-mediated interference of the c-di-GMP signalling pathway in Pseudomonas aeruginosa. Microb. Biotechnol. 14:967–78
    [Google Scholar]
  40. 40.
    Diard M, Hardt WD. 2017. Evolution of bacterial virulence. FEMS Microbiol. Rev. 41:679–97
    [Google Scholar]
  41. 41.
    Duarté X, Anderson CT, Grimson M, Barabote RD, Strauss RE et al. 2000. Erwinia chrysanthemi strains cause death of human gastrointestinal cells in culture and express an intimin-like protein. FEMS Microbiol. Lett. 190:81–86
    [Google Scholar]
  42. 42.
    Dunne WM. 2002. Bacterial adhesion: Seen any good biofilms lately?. Clin. Microbiol. Rev. 15:155–66
    [Google Scholar]
  43. 43.
    Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH et al. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–49
    [Google Scholar]
  44. 44.
    Elsner HA, Sobottka I, Mack D, Claussen M, Laufs R et al. 2000. Virulence factors of Enterococcus faecalis and Enterococcus faecium blood culture isolates. Eur. J. Microbiol. Infect. Dis. 19:39–42
    [Google Scholar]
  45. 45.
    Federle MJ, Bassler BL. 2003. Interspecies communication in bacteria. J. Clin. Investig. 112:1291–99
    [Google Scholar]
  46. 46.
    Feinbaum RL, Urbach JM, Liberati NT, Djonovic S, Adonizio A et al. 2012. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLOS Pathog. 8:e1002813
    [Google Scholar]
  47. 47.
    Flavier AB, Clough SJ, Schell MA, Denny TP. 1997. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol. Microbiol. 26:251–59
    [Google Scholar]
  48. 48.
    Fortune DR, Suyemoto M, Altier C. 2006. Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect. Immun. 74:331–39
    [Google Scholar]
  49. 49.
    Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density–responsive transcriptional regulators. J. Bacteriol. 176:269–75
    [Google Scholar]
  50. 50.
    Furukawa S, Kuchma SL, O'Toole GA 2006. Keeping their options open: acute versus persistent infections. J. Bacteriol. 188:1211–17
    [Google Scholar]
  51. 51.
    Galán JE, Curtiss R III. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. PNAS 86:6383–87
    [Google Scholar]
  52. 52.
    Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. 2014. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68:415–38
    [Google Scholar]
  53. 53.
    Gao R, Bouillet S, Stock AM. 2019. Structural basis of response regulator function. Annu. Rev. Microbiol. 73:175–97
    [Google Scholar]
  54. 54.
    Gao R, Stock AM. 2009. Biological insights from structures of two-component proteins. Annu. Rev. Microbiol. 63:133–54
    [Google Scholar]
  55. 55.
    García-Betancur JC, Goñi-Moreno A, Horger T, Schott M, Sharan M et al. 2017. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus. eLife 6:e28023
    [Google Scholar]
  56. 56.
    Gelvin SB. 2017. Integration of Agrobacterium T-DNA into the plant genome. Annu. Rev. Genet. 51:195–217
    [Google Scholar]
  57. 57.
    Groisman EA, Duprey A, Choi J. 2021. How the PhoP/PhoQ system controls virulence and Mg2+ homeostasis: lessons in signal transduction, pathogenesis, physiology, and evolution. Microbiol. Mol. Biol. Rev. 85:e0017620
    [Google Scholar]
  58. 58.
    Gomez JE, McKinney JD. 2004. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis 84:29–44
    [Google Scholar]
  59. 59.
    Grant SS, Hung DT. 2013. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4:273–83
    [Google Scholar]
  60. 60.
    Green ER, Mecsas J. 2016. Bacterial secretion systems: an overview. Microbiol. Spectr. 4:215–39
    [Google Scholar]
  61. 61.
    Hall KM, Pursell ZF, Morici LA. 2022. The role of the Pseudomonas aeruginosa hypermutator phenotype on the shift from acute to chronic virulence during respiratory infection. Front. Cell Infect. Microbiol. 12:943346
    [Google Scholar]
  62. 62.
    Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D. 2004. Type V protein secretion pathway: the autotransporter story. Microbiol. Mol. Biol. Rev. 68:692–44
    [Google Scholar]
  63. 63.
    Hoboth C, Hoffmann R, Eichner A, Henke C, Schmoldt S et al. 2009. Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J. Infect. Dis. 200:118–30
    [Google Scholar]
  64. 64.
    Hoffman LR, Kulasekara HD, Emerson J, Houston LS, Burns JL et al. 2009. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J. Cyst. Fibros. 8:66–70
    [Google Scholar]
  65. 65.
    Hu A, Hu M, Chen S, Xue Y, Xu T, Zhou J. 2022. Five plant natural products are potential type III secretion system inhibitors to effectively control the soft rot disease caused by Dickeya. Front. Microbiol. 13:839025
    [Google Scholar]
  66. 66.
    Huang FC, Hwang HH. 2020. Arabidopsis RETICULON-LIKE4 (RTNLB4) protein participates in Agrobacterium infection and VirB2 peptide–induced plant defense response. Int. J. Mol. Sci. 21:1722
    [Google Scholar]
  67. 67.
    Huang JJ, Han JI, Zhang LH, Leadbetter JR. 2003. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 69:5941–49
    [Google Scholar]
  68. 68.
    Huang JJ, Petersen A, Whiteley M, Leadbetter JR. 2006. Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 72:1190–97
    [Google Scholar]
  69. 69.
    Inda ME, Almada JC, Vazquez DB, Bortolotti A, Fernández A et al. 2020. Driving the catalytic activity of a transmembrane thermosensor kinase. Cell Mol. Life Sci. 77:3905–12
    [Google Scholar]
  70. 70.
    Irie Y, Borlee BR, O'Connor JR, Hill PJ, Harwood CS et al. 2012. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. PNAS 109:20632–36
    [Google Scholar]
  71. 71.
    Ishii E, Eguchi Y. 2021. Diversity in sensing and signaling of bacterial sensor histidine kinases. Biomolecules 11:1524
    [Google Scholar]
  72. 72.
    Jiang X, Yu T, Xu Y, Wang H, Korkeala H et al. 2019. MdrL, a major facilitator superfamily efflux pump of Listeria monocytogenes involved in tolerance to benzalkonium chloride. Appl. Microbiol. Biotechnol. 103:1339–50
    [Google Scholar]
  73. 73.
    Katharios-Lanwermeyer S, Koval SA, Barrack KE, O'Toole GA 2022. The diguanylate cyclase YfiN of Pseudomonas aeruginosa regulates biofilm maintenance in response to peroxide. J. Bacteriol. 204:e0039621
    [Google Scholar]
  74. 74.
    Kato J, Hashimoto M. 2007. Construction of consecutive deletions of the Escherichia coli chromosome. Mol. Syst. Biol. 3:132
    [Google Scholar]
  75. 75.
    Kim K, Palmer AD, Vanderpool CK, Slauch JM. 2019. The small RNA PinT contributes to PhoP-mediated regulation of the Salmonella pathogenicity island 1 type III secretion system in Salmonella enterica serovar Typhimurium. J. Bacteriol. 201:e00312
    [Google Scholar]
  76. 76.
    Klebensberger J, Birkenmaier A, Geffers R, Kjelleberg S, Philipp B. 2009. SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. Environ. Microbiol. 11:3073–86
    [Google Scholar]
  77. 77.
    Kurz CL, Chauvet S, Andrès E, Aurouze M, Vallet I et al. 2003. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J. 22:1451–60
    [Google Scholar]
  78. 78.
    La Rosa R, Rossi E, Feist AM, Johansen HK, Molin S 2021. Compensatory evolution of Pseudomonas aeruginosa’s slow growth phenotype suggests mechanisms of adaptation in cystic fibrosis. Nat. Commun. 12:3186
    [Google Scholar]
  79. 79.
    Lee J, Wu J, Deng Y, Wang J, Wang C et al. 2013. A cell-cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol. 9:339–43
    [Google Scholar]
  80. 80.
    Lee J, Zhang LH. 2015. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41
    [Google Scholar]
  81. 81.
    Leonard S, Hommais F, Nasser W, Reverchon S. 2017. Plant–phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ. Microbiol. 19:1689–716
    [Google Scholar]
  82. 82.
    Lewis KA, Baker AE, Chen AI, Harty CE, Kuchma SL 2019. Ethanol decreases Pseudomonas aeruginosa flagellar motility through the regulation of flagellar stators. J. Bacteriol. 201:e00285
    [Google Scholar]
  83. 83.
    Lin Q, Wang H, Huang J, Liu Z, Chen Q et al. 2022. Spermidine is an intercellular signal modulating T3SS expression in Pseudomonas aeruginosa. Microbiol. Spectr. 10:e0064422
    [Google Scholar]
  84. 84.
    Louca S, Mazel F, Doebeli M, Parfrey LW. 2019. A census-based estimate of Earth's bacterial and archaeal diversity. PLOS Biol. 17:e3000106
    [Google Scholar]
  85. 85.
    Lv M, Hu M, Li P, Jiang Z, Zhang L et al. 2019. A two-component regulatory system VfmIH modulates multiple virulence traits in Dickeya zeae. Mol. Microbiol. 111:1493–99
    [Google Scholar]
  86. 86.
    Luk CH, Enninga J, Valenzuela C. 2022. Fit to dwell in many places—the growing diversity of intracellular Salmonella niches. Front. Cell Infect. Microbiol. 12:989451
    [Google Scholar]
  87. 87.
    Luo H, Lin Y, Liu T, Lai FL, Zhang CT et al. 2021. DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Res. 49:D677–86
    [Google Scholar]
  88. 88.
    Malhotra S, Hayes D Jr., Wozniak DJ. 2019. Mucoid Pseudomonas aeruginosa and regional inflammation in the cystic fibrosis lung. J. Cyst. Fibros. 18:796–93
    [Google Scholar]
  89. 89.
    Malone M, Bjarnsholt T, McBain AJ, James GA, Stoodley P et al. 2017. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J. Wound Care 26:20–25
    [Google Scholar]
  90. 90.
    Maresso AW 2019. The practice of the microbe hunter. Bacterial VirulenceA Conceptual Primer AW Maresso 19–30. Cham, Switz: Springer
    [Google Scholar]
  91. 91.
    Martinez-Gutierrez CA, Aylward FO. 2022. Genome size distributions in bacteria and archaea are strongly linked to evolutionary history at broad phylogenetic scales. PLOS Genet. 18:e1010220
    [Google Scholar]
  92. 92.
    Matamouros S, Miller SI. 2015. S. typhimurium strategies to resist killing by cationic antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 1848:3021–25
    [Google Scholar]
  93. 93.
    Meyer T, Thiour-Mauprivez C, Wisniewski-Dyé F, Kerzaon I, Comte G et al. 2019. Ecological conditions and molecular determinants involved in Agrobacterium lifestyle in tumors. Front. Plant Sci. 10:978
    [Google Scholar]
  94. 94.
    Mills SD, Boland A, Sory MP, Van Der Smissen P, Kerbourch C et al. 1997. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. PNAS 94:12638–43
    [Google Scholar]
  95. 95.
    Moglich A, Ayers RA, Moffat K. 2009. Design and signaling mechanism of light-regulated histidine kinases. J. Mol. Biol. 385:1433–44
    [Google Scholar]
  96. 96.
    Monack DM, Mueller A, Falkow S. 2004. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat. Rev. Microbiol. 2:747–65
    [Google Scholar]
  97. 97.
    Nasser W, Dorel C, Wawrzyniak J, Van Gijsegem F, Groleau MC et al. 2013. Vfm a new quorum sensing system controls the virulence of Dickeya dadantii. Environ. Microbiol. 15:865–80
    [Google Scholar]
  98. 98.
    Nester EW. 2015. Agrobacterium: nature's genetic engineer. Front. Plant Sci. 5:730
    [Google Scholar]
  99. 99.
    Ninfa AJ, Magasanik B. 1986. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. PNAS 83:5909–13
    [Google Scholar]
  100. 100.
    Ochman H, Soncini FC, Solomon F, Groisman EA. 1996. Identification of a pathogenicity island required for Salmonella survival in host cells. PNAS 93:7800–4
    [Google Scholar]
  101. 101.
    O'Neal L, Baraquet C, Suo Z, Dreifus JE, Peng Y et al. 2022. The Wsp system of Pseudomonas aeruginosa links surface sensing and cell envelope stress. PNAS 119:e2117633119
    [Google Scholar]
  102. 102.
    Palmer AD, Kim K, Slauch JM. 2019. PhoP-mediated repression of the SPI1 type 3 secretion system in Salmonella enterica serovar Typhimurium. J. Bacteriol. 201:e00264
    [Google Scholar]
  103. 103.
    Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in gram-negative bacteria. Nat. Rev. Microbiol. 14:576–88
    [Google Scholar]
  104. 104.
    Pazour GJ, Das A. 1990. Characterization of the VirG binding site of Agrobacterium tumefaciens. Nucleic Acids Res. 18:6909–13
    [Google Scholar]
  105. 105.
    Pettersson J, Nordfelth R, Dubinina E, Bergman T, Gustafsson M et al. 1996. Modulation of virulence factor expression by pathogen target cell contact. Science 273:1231–33
    [Google Scholar]
  106. 106.
    Peyraud R, Cottret L, Marmiesse L, Gouzy J, Genin S. 2016. A resource allocation trade-off between virulence and proliferation drives metabolic versatility in the plant pathogen Ralstonia solanacearum. PLOS Pathog. 12:e1005939
    [Google Scholar]
  107. 107.
    Platt TG, Bever JD, Fuqua C. 2012. A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis. Proc. Biol. Sci. 279:1691–99
    [Google Scholar]
  108. 108.
    Poh WH, Lin J, Colley B, Müller N, Goh BC et al. 2020. The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa. PLOS ONE 15:e0241019
    [Google Scholar]
  109. 109.
    Ramsden AE, Mota LJ, Munter S, Shorte SL, Holden DW. 2007. The SPI-2 type III secretion system restricts motility of Salmonella-containing vacuoles. Cell. Microbiol. 9:2517–29
    [Google Scholar]
  110. 110.
    Rathman M, Sjaastad MD, Falkow S. 1996. Acidification of phagosomes containing Salmonella Typhimurium in murine macrophages. Infect. Immun. 64:2765–73
    [Google Scholar]
  111. 111.
    Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W et al. 2011. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475:343–47
    [Google Scholar]
  112. 112.
    Saier MH Jr. 2015. The bacterial phosphotransferase system: new frontiers 50 years after its discovery. J. Mol. Microbiol. Biotechnol. 25:73–78
    [Google Scholar]
  113. 113.
    Schechter LM, Jain S, Akbar S, Lee CA. 2003. The small nucleoid-binding proteins H-NS, HU, and Fis affect hilA expression in Salmonella enterica serovar Typhimurium. Infect. Immun. 71:5432–35
    [Google Scholar]
  114. 114.
    Scherer CA, Miller SI. 2001. Molecular pathogenesis of salmonellae. Principles of Bacterial Pathogenesis EA Groisman 265–33. San Diego, CA: Academic
    [Google Scholar]
  115. 115.
    Schmidt A, Hammerbacher AS, Bastian M, Nieken KJ, Klockgether J 2016. Oxygen-dependent regulation of c-di-GMP synthesis by SadC controls alginate production in Pseudomonas aeruginosa. Environ. Microbiol. 18:3390–92
    [Google Scholar]
  116. 116.
    Schulz H, Jorgensen B. Big bacteria; 2001. Annu. Rev. Microbiol. 55:105–37
    [Google Scholar]
  117. 117.
    Schuster M, Lostroh CP, Ogi T, Greenberg EP. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185:2066–79
    [Google Scholar]
  118. 118.
    Shi Z, Wang Q, Li Y, Liang Z, Xu L et al. 2019. Putrescine is an intraspecies and interkingdom cell-cell communication signal modulating the virulence of Dickeya zeae. Front. Microbiol. 10:1950
    [Google Scholar]
  119. 119.
    Singkham-In U, Phuengmaung P, Makjaroen J, Saisorn W, Bhunyakarnjanarat T 2022. Chlorhexidine promotes psl expression in Pseudomonas aeruginosa that enhances cell aggregation with preserved pathogenicity demonstrates an adaptation against antiseptic. Int. J. Mol. Sci. 23:8308
    [Google Scholar]
  120. 120.
    Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR et al. 2006. Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients. PNAS 103:8487–92
    [Google Scholar]
  121. 121.
    Stachel SE, Nester EW, Zambryski PC. 1986. A plant-cell factor induces Agrobacterium tumefaciens vir gene expression. PNAS 83:379–83
    [Google Scholar]
  122. 122.
    Steele-Mortimer O, Brumell JH, Knodler LA, Méresse S, Lopes A et al. 2002. The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell Microbiol. 4:43–54
    [Google Scholar]
  123. 123.
    Tampakaki AP, Hatziloukas E, Panopoulos NJ. 2009. Plant pathogens, bacterial. Encyclopedia of Microbiology M Schaechter 655–77. Amsterdam: Elsevier. , 3rd ed..
    [Google Scholar]
  124. 124.
    Teixidó L, Carrasco B, Alonso JC, Barbé J, Campoy S. 2011. Fur activates the expression of Salmonella enterica pathogenicity island 1 by directly interacting with the hilD operator in vivo and in vitro. PLOS ONE 6:e19711
    [Google Scholar]
  125. 125.
    Tiwari M, Mishra AK, Chakrabarty D. 2022. Agrobacterium-mediated gene transfer: recent advancements and layered immunity in plants. Planta 256:37
    [Google Scholar]
  126. 126.
    Torres M, Jiquel A, Jeanne E, Naquin D, Dessaux Y et al. 2022. Agrobacterium tumefaciens fitness genes involved in the colonization of plant tumors and roots. New Phytol. 233:905–18
    [Google Scholar]
  127. 127.
    Valentini M, Filloux A. 2016. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem. 291:12547–55
    [Google Scholar]
  128. 128.
    Vasanthakrishnan RB, de Las Heras A, Scortti M, Deshayes C, Colegrave N et al. 2015. PrfA regulation offsets the cost of Listeria virulence outside the host. Environ. Microbiol. 17:4566–79
    [Google Scholar]
  129. 129.
    Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. 2003. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185:2080–95
    [Google Scholar]
  130. 130.
    Wahjudi M, Papaioannou E, Hendrawati O, van Assen AHG, van Merkerk R et al. 2011. PA0305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily. Microbiology 157:2042–55
    [Google Scholar]
  131. 131.
    Wang C, Ye F, Chang C, Liu X, Wang J et al. 2019. Agrobacteria reprogram virulence gene expression by controlled release of host conjugated signals. PNAS 116:22331–40
    [Google Scholar]
  132. 132.
    Wang J, Dong Y, Zhou T, Liu X, Deng Y et al. 2013. Pseudomonas aeruginosa cytotoxicity is attenuated at high cell density and associated with the accumulation of phenylacetic acid. PLOS ONE 8:e60187
    [Google Scholar]
  133. 133.
    Warr AR, Hubbard TP, Munera D, Blondel CJ, Abel zur Wiesch P et al. 2019. Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLOS Pathog. 15:e1007652
    [Google Scholar]
  134. 134.
    Westermann AJ, Forstner KU, Amman F, Barquist L, Chao Y et al. 2016. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529:496–91
    [Google Scholar]
  135. 135.
    Wetzel ME, Olsen GJ, Chakravartty V, Farrand SK. 2015. The repABC plasmids with quorum-regulated transfer systems in members of the Rhizobiales divide into two structurally and separately evolving groups. Genome Biol. Evol. 7:3337–57
    [Google Scholar]
  136. 136.
    Whiteley M, Diggle SP, Greenberg EP. 2017. Progress in and promise of bacterial quorum sensing research. Nature 551:313–20
    [Google Scholar]
  137. 137.
    Whitman W, Coleman D, Wiebe W 1998. Prokaryotes: the unseen majority. PNAS 95:6578–83
    [Google Scholar]
  138. 138.
    Williams P. 2007. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–38
    [Google Scholar]
  139. 139.
    Wu D, Ding W, Zhang Y, Liu X, Yang L. 2015. Oleanolic acid induces the type III secretion system of Ralstonia solanacearum. Front. Microbiol. 6:1466
    [Google Scholar]
  140. 140.
    Wu D, Lim SC, Dong Y, Wu J, Tao F et al. 2012. Structural basis of substrate binding specificity revealed by the crystal structures of polyamine receptors SpuD and SpuE from Pseudomonas aeruginosa. J. Mol. Biol. 416:697–12
    [Google Scholar]
  141. 141.
    Yang S, Zhang Q, Guo J, Charkowski AO, Glick BR et al. 2007. Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl. Environ. Microbiol. 73:1079–88
    [Google Scholar]
  142. 142.
    Ye F, Wang C, Fu Q, Yan XF, Bharath SR et al. 2020. Structural basis of a novel repressor, SghR, controlling Agrobacterium infection by cross-talking to plants. J. Biol. Chem. 295:12290–94
    [Google Scholar]
  143. 143.
    Yuan ZC, Edlind MP, Liu P, Saenkham P, Banta LM et al. 2007. The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. PNAS 104:11790–95
    [Google Scholar]
  144. 144.
    Zhang LH. 2003. Quorum quenching and proactive host defense. Trends Plant Sci. 8:238–44
    [Google Scholar]
  145. 145.
    Zhou D, Galán J. 2001. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect. 3:1293–98
    [Google Scholar]
  146. 146.
    Zhou J, Zhang H, Wu J, Liu Q, Xi P et al. 2011. A novel multi-domain polyketide synthase is essential for zeamine antibiotics production and the virulence of Dickeya zeae. Mol. Plant Microbe Interact. 24:1156–64
    [Google Scholar]
  147. 147.
    Zhou L, Lei XH, Bochner BR, Wanner BL. 2003. Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J. Bacteriol 185:4956–72
    [Google Scholar]
  148. 148.
    Zhou L, Wang J, Zhang LH. 2007. Modulation of bacterial type III secretion system by a spermidine transporter dependent signaling pathway. PLOS ONE 12:e1291
    [Google Scholar]
  149. 149.
    Zhou L, Zhang LH, Cámara M, He YW. 2017. The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover. Trends Microbiol. 25:293–303
    [Google Scholar]
  150. 150.
    Zou HS, Yuan L, Guo W, Li YR, Che YZ et al. 2011. Construction of a Tn5-tagged mutant library of Xanthomonas oryzae pv. oryzicola as an invaluable resource for functional genomics. Curr. Microbiol. 62:908–16
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032521-025954
Loading
/content/journals/10.1146/annurev-micro-032521-025954
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error