1932

Abstract

, the human malaria parasite, infects two hosts and various cell types, inducing distinct morphological and physiological changes in the parasite in response to different environmental conditions. These variations required the parasite to adapt and develop elaborate molecular mechanisms to ensure its spread and transmission. Recent findings have significantly improved our understanding of the regulation of gene expression in . Here, we provide an up-to-date overview of technologies used to highlight the transcriptomic adjustments occurring in the parasite throughout its life cycle. We also emphasize the complementary and complex epigenetic mechanisms regulating gene expression in malaria parasites. This review concludes with an outlook on the chromatin architecture, the remodeling systems, and how this 3D genome organization is critical in various biological processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032521-041554
2023-09-15
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032521-041554.html?itemId=/content/journals/10.1146/annurev-micro-032521-041554&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Amit-Avraham I, Pozner G, Eshar S, Fastman Y, Kolevzon N et al. 2015. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum. PNAS 112:9E982–91
    [Google Scholar]
  2. 2.
    Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J et al. 2014. Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res. 24:6974–88
    [Google Scholar]
  3. 3.
    Balaji S, Madan Babu M, Iyer LM, Aravind L 2005. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res. 33:133994–4006
    [Google Scholar]
  4. 4.
    Barcons-Simon A, Cordon-Obras C, Guizetti J, Bryant JM, Scherf A. 2020. CRISPR interference of a clonally variant GC-rich noncoding RNA family leads to general repression of var genes in Plasmodium falciparum. mBio 11:1e03054–19
    [Google Scholar]
  5. 5.
    Barral A, Déjardin J. 2020. Telomeric chromatin and TERRA. J. Mol. Biol. 432:154244–56
    [Google Scholar]
  6. 6.
    Bártfai R, Hoeijmakers WAM, Salcedo-Amaya AM, Smits AH, Janssen-Megens E et al. 2010. H2A.Z demarcates intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLOS Pathog. 6:12e1001223
    [Google Scholar]
  7. 7.
    Batugedara G, Lu XM, Abel S, Chahine Z, Hristov B et al. 2022. Deciphering the non-coding code of pathogenicity and sexual differentiation in the human malaria parasite. bioRxiv 2022.10.12.511630, Oct. 14
  8. 8.
    Batugedara G, Lu XM, Saraf A, Sardiu ME, Cort A et al. 2020. The chromatin bound proteome of the human malaria parasite. Microb. Genom. 6:2e000327
    [Google Scholar]
  9. 9.
    Baum J, Papenfuss AT, Mair GR, Janse CJ, Vlachou D et al. 2009. Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res. 37:113788–98
    [Google Scholar]
  10. 10.
    Bhartiya D, Chawla V, Ghosh S, Shankar R, Kumar N. 2016. Genome-wide regulatory dynamics of G-quadruplexes in human malaria parasite Plasmodium falciparum. Genomics 108:5–6224–31
    [Google Scholar]
  11. 11.
    Boltryk SD, Passecker A, Alder A, Carrington E, van de Vegte-Bolmer M et al. 2021. CRISPR/Cas9-engineered inducible gametocyte producer lines as a valuable tool for Plasmodium falciparum malaria transmission research. Nat. Commun. 12:14806
    [Google Scholar]
  12. 12.
    Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. 2003. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLOS Biol. 1:1e5
    [Google Scholar]
  13. 13.
    Brancucci NMB, de Niz M, Straub TJ, Ravel D, Sollelis L et al. 2018. Probing Plasmodium falciparum sexual commitment at the single-cell level. Wellcome Open Res. 3:70
    [Google Scholar]
  14. 14.
    Briquet S, Boschet C, Gissot M, Tissandié E, Sevilla E et al. 2006. High-mobility-group box nuclear factors of Plasmodium falciparum. Eukaryot. Cell 5:4672–82
    [Google Scholar]
  15. 15.
    Broadbent KM, Broadbent JC, Ribacke U, Wirth D, Rinn JL, Sabeti PC. 2015. Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genom. 16:1454
    [Google Scholar]
  16. 16.
    Broadbent KM, Park D, Wolf AR, van Tyne D, Sims JS et al. 2011. A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biol. 12:6R56
    [Google Scholar]
  17. 17.
    Bryant JM, Regnault C, Benatar CS, Baumgarten S, Guizetti J, Scherf A. 2017. CRISPR/Cas9 genome editing reveals that the intron is not essential for var2csa gene activation or silencing in Plasmodium falciparum. mBio 8:4729–46
    [Google Scholar]
  18. 18.
    Bunnik EM, Cook KB, Varoquaux N, Batugedara G, Prudhomme J et al. 2018. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nat. Commun. 9:11910
    [Google Scholar]
  19. 19.
    Bunnik EM, Polishko A, Prudhomme J, Ponts N, Gill SS et al. 2014. DNA-encoded nucleosome occupancy is associated with transcription levels in the human malaria parasite Plasmodium falciparum. BMC Genom. 15:1347
    [Google Scholar]
  20. 20.
    Bunnik EM, Venkat A, Shao J, McGovern KE, Batugedara G et al. 2019. Comparative 3D genome organization in apicomplexan parasites. PNAS 116:83183–92
    [Google Scholar]
  21. 21.
    Callebaut I, Prat K, Meurice E, Mornon JP, Tomavo S. 2005. Prediction of the general transcription factors associated with RNA polymerase II in Plasmodium falciparum: conserved features and differences relative to other eukaryotes. BMC Genom. 6:100
    [Google Scholar]
  22. 22.
    Campbell TL, de Silva EK, Olszewski KL, Elemento O, Llinás M. 2010. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLOS Pathog. 6:10e1001165
    [Google Scholar]
  23. 23.
    Carrington E, Cooijmans RHM, Keller D, Toenhake CG, Bártfai R, Voss TS. 2021. The ApiAP2 factor PfAP2-HC is an integral component of heterochromatin in the malaria parasite Plasmodium falciparum. iScience 24:5102444
    [Google Scholar]
  24. 24.
    Chaal BK, Gupta AP, Wastuwidyaningtyas BD, Luah Y-H, Bozdech Z. 2010. Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle. PLOS Pathog. 6:1e1000737
    [Google Scholar]
  25. 25.
    Chappell L, Ross P, Orchard L, Russell TJ, Otto TD et al. 2020. Refining the transcriptome of the human malaria parasite Plasmodium falciparum using amplification-free RNA-seq. BMC Genom. 21:1395
    [Google Scholar]
  26. 26.
    Chookajorn T, Dzikowski R, Frank M, Li F, Jiwani AZ et al. 2007. Epigenetic memory at malaria virulence genes. PNAS 104:3899–902
    [Google Scholar]
  27. 27.
    Coetzee N, Sidoli S, van Biljon R, Painter H, Llinás M et al. 2017. Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites. Sci. Rep. 7:1607
    [Google Scholar]
  28. 28.
    Coetzee N, von Grüning H, Opperman D, van der Watt M, Reader J, Birkholtz LM. 2020. Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Sci. Rep. 10:12355
    [Google Scholar]
  29. 29.
    Connacher J, Josling GA, Orchard LM, Reader J, Llinás M, Birkholtz LM. 2021. H3K36 methylation reprograms gene expression to drive early gametocyte development in Plasmodium falciparum. Epigenet. Chromatin 14:119
    [Google Scholar]
  30. 30.
    Cui L, Fan Q, Cui L, Miao J. 2008. Histone lysine methyltransferases and demethylases in Plasmodium falciparum. Int. J. Parasitol. 38:101083–97
    [Google Scholar]
  31. 31.
    Cui L, Miao J, Furuya T, Li X, Su XZ, Cui L. 2007. PfGCN5-mediated histone H3 acetylation plays a key role in gene expression in Plasmodium falciparum. Eukaryot. Cell 6:71219–27
    [Google Scholar]
  32. 32.
    Dahan-Pasternak N, Nasereddin A, Kolevzon N, Pe'er M, Wong W et al. 2013. Pfsec13 is an unusual chromatin-associated nucleoporin of Plasmodium falciparum that is essential for parasite proliferation in human erythrocytes. J. Cell Sci. 126:143055–69
    [Google Scholar]
  33. 33.
    Duraisingh MT, Voss TS, Marty AJ, Duffy MF, Good RT et al. 2005. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum. Cell 121:113–24
    [Google Scholar]
  34. 34.
    Edwards-Smallbone J, Jensen AL, Roberts LE, Totañes FIG, Hart SR, Merrick CJ. 2022. Plasmodium falciparum gbp2 is a telomere-associated protein that binds to G-quadruplex DNA and RNA. Front. Cell Infect. Microbiol. 12:782537
    [Google Scholar]
  35. 35.
    Eksi S, Morahan BJ, Haile Y, Furuya T, Jiang H et al. 2012. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLOS Pathog. 8:10e1002964
    [Google Scholar]
  36. 36.
    Epp C, Li F, Howitt CA, Chookajorn T, Deitsch KW. 2009. Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum. RNA 15:1116–27
    [Google Scholar]
  37. 37.
    Filarsky M, Fraschka SA, Niederwieser I, Brancucci NMB, Carrington E et al. 2018. GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing. Science 359:63811259–63
    [Google Scholar]
  38. 38.
    Flueck C, Bartfai R, Niederwieser I, Witmer K, Alako BTF et al. 2010. A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLOS Pathog. 6:2e1000784
    [Google Scholar]
  39. 39.
    Freitas-Junior LH, Bottius E, Pirrit LA, Deitsch KW, Scheidig C et al. 2000. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407:68071018–22
    [Google Scholar]
  40. 40.
    Freitas-Junior LH, Hernandez-Rivas R, Ralph SA, Montiel-Condado D, Ruvalcaba-Salazar OK et al. 2005. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121:125–36
    [Google Scholar]
  41. 41.
    Furlan G, Galupa R. 2022. Mechanisms of choice in X-chromosome inactivation. Cells 11:3535
    [Google Scholar]
  42. 42.
    Gardner MJ, Hall N, Fung E, White O, Berriman M et al. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:6906498–511
    [Google Scholar]
  43. 43.
    Gazanion E, Lacroix L, Alberti P, Gurung P, Wein S et al. 2020. Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites. PLOS Genet. 16:7e1008917
    [Google Scholar]
  44. 44.
    Gómez-Díaz E, Yerbanga RS, Lefèvre T, Cohuet A, Rowley MJ et al. 2017. Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in Anopheles gambiae. Sci. Rep. 7:140655
    [Google Scholar]
  45. 45.
    Gopalakrishnan AM, Nyindodo LA, Ross Fergus M, López-Estraño C 2009. Plasmodium falciparum: preinitiation complex occupancy of active and inactive promoters during erythrocytic stage. Exp. Parasitol. 121:146–54
    [Google Scholar]
  46. 46.
    Greenberg MVC, Bourc'his D 2019. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20:10590–607
    [Google Scholar]
  47. 47.
    Gruenbaum Y, Foisner R. 2015. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84:131–64
    [Google Scholar]
  48. 48.
    Guizetti J, Barcons-Simon A, Scherf A. 2016. Trans-acting GC-rich non-coding RNA at var expression site modulates gene counting in malaria parasite. Nucleic Acids Res. 44:209710–18
    [Google Scholar]
  49. 49.
    Gurung P, Gomes AR, Martins RM, Juranek SA, Alberti P et al. 2021. PfGBP2 is a novel G-quadruplex binding protein in Plasmodium falciparum. Cell Microbiol. 23:4e13303
    [Google Scholar]
  50. 50.
    Hammam E, Ananda G, Sinha A, Scheidig-Benatar C, Bohec M et al. 2020. Discovery of a new predominant cytosine DNA modification that is linked to gene expression in malaria parasites. Nucleic Acids Res. 48:1184–99
    [Google Scholar]
  51. 51.
    Heinberg A, Amit-Avraham I, Mitesser V, Simantov K, Goyal M et al. 2022. A nuclear redox sensor modulates gene activation and var switching in Plasmodium falciparum. PNAS 119:33e2201247119
    [Google Scholar]
  52. 52.
    Hoeijmakers WAM, Flueck C, Françoijs KJ, Smits AH, Wetzel J et al. 2012. Plasmodium falciparum centromeres display a unique epigenetic makeup and cluster prior to and during schizogony. Cell Microbiol. 14:91391–401
    [Google Scholar]
  53. 53.
    Hoeijmakers WAM, Miao J, Schmidt S, Toenhake CG, Shrestha S et al. 2019. Epigenetic reader complexes of the human malaria parasite, Plasmodium falciparum. Nucleic Acids Res. 47:2211574–88
    [Google Scholar]
  54. 54.
    Hoeijmakers WAM, Salcedo-Amaya AM, Smits AH, Françoijs KJ, Treeck M et al. 2013. H2A.Z/H2B.Z double-variant nucleosomes inhabit the AT-rich promoter regions of the Plasmodium falciparum genome. Mol. Microbiol. 87:51061–73
    [Google Scholar]
  55. 55.
    Howick VM, Russell AJC, Andrews T, Heaton H, Reid AJ et al. 2019. The Malaria Cell Atlas: single parasite transcriptomes across the complete Plasmodium life cycle. Science 365:6455eaaw2619
    [Google Scholar]
  56. 56.
    Iwanaga S, Kaneko I, Kato T, Yuda M. 2012. Identification of an AP2-family protein that is critical for malaria liver stage development. PLOS ONE 7:11e47557
    [Google Scholar]
  57. 57.
    Jiang L, Mu J, Zhang Q, Ni T, Srinivasan P et al. 2013. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. Nature 499:7457223–27
    [Google Scholar]
  58. 58.
    Jing Q, Cao L, Zhang L, Cheng X, Gilbert N et al. 2018. Plasmodium falciparum var gene is activated by its antisense long noncoding RNA. Front. Microbiol. 9:3117
    [Google Scholar]
  59. 59.
    Josling GA, Petter M, Oehring SC, Gupta AP, Dietz O et al. 2015. A Plasmodium falciparum bromodomain protein regulates invasion gene expression. Cell Host Microbe 17:6741–51
    [Google Scholar]
  60. 60.
    Kafsack BFC, Rovira-Graells N, Clark TG, Bancells C, Crowley VM et al. 2014. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507:7491248–52
    [Google Scholar]
  61. 61.
    Kaneko I, Iwanaga S, Kato T, Kobayashi I, Yuda M. 2015. Genome-wide identification of the target genes of AP2-O, a Plasmodium AP2-family transcription factor. PLOS Pathog. 11:5e1004905
    [Google Scholar]
  62. 62.
    Kanyal A, Rawat M, Gurung P, Choubey D, Anamika K, Karmodiya K. 2018. Genome-wide survey and phylogenetic analysis of histone acetyltransferases and histone deacetylases of Plasmodium falciparum. FEBS J. 285:101767–82
    [Google Scholar]
  63. 63.
    Kehrer J, Kuss C, Andres-Pons A, Reustle A, Dahan N et al. 2018. Nuclear pore complex components in the malaria parasite Plasmodium berghei. Sci. Rep. 8:111249
    [Google Scholar]
  64. 64.
    Kensche PR, Hoeijmakers WAM, Toenhake CG, Bras M, Chappell L et al. 2015. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences. Nucleic Acids Res. 44:52110–24
    [Google Scholar]
  65. 65.
    Khan SM, Franke-Fayard B, Mair GR, Lasonder E, Janse CJ et al. 2005. Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121:5675–87
    [Google Scholar]
  66. 66.
    Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y et al. 2018. The human transcription factors. Cell 172:4650–65
    [Google Scholar]
  67. 67.
    LaMonte GM, Orjuela-Sanchez P, Calla J, Wang LT, Li S et al. 2019. Dual RNA-seq identifies human mucosal immunity protein Mucin-13 as a hallmark of Plasmodium exoerythrocytic infection. Nat. Commun. 10:1488
    [Google Scholar]
  68. 68.
    Lasonder E, Rijpma SR, van Schaijk BCL, Hoeijmakers WAM, Kensche PR et al. 2016. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression. Nucleic Acids Res. 44:136087–101
    [Google Scholar]
  69. 69.
    Lavazec C, Sanyal S, Templeton TJ. 2007. Expression switching in the stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Mol. Microbiol. 64:61621–34
    [Google Scholar]
  70. 70.
    Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK et al. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:56391503–8
    [Google Scholar]
  71. 71.
    Lemieux JE, Kyes SA, Otto TD, Feller AI, Eastman RT et al. 2013. Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation. Mol. Microbiol. 90:3519–37
    [Google Scholar]
  72. 72.
    Lindner SE, Swearingen KE, Shears MJ, Walker MP, Vrana EN et al. 2019. Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites. Nat. Commun. 10:14964
    [Google Scholar]
  73. 73.
    López-Barragán MJ, Lemieux J, Quiñones M, Williamson KC, Molina-Cruz A et al. 2011. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genom. 12:587
    [Google Scholar]
  74. 74.
    Lopez-Rubio JJ, Gontijo AM, Nunes MC, Issar N, Hernandez Rivas R, Scherf A 2007. 5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol. Microbiol. 66:61296–305
    [Google Scholar]
  75. 75.
    Lopez-Rubio JJ, Mancio-Silva L, Scherf A. 2009. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5:2179–90
    [Google Scholar]
  76. 76.
    Lu B, Liu M, Gu L, Li Y, Shen S et al. 2021. The architectural factor HMGB1 is involved in genome organization in the human malaria parasite Plasmodium falciparum. mBio 12:2e00148–21
    [Google Scholar]
  77. 77.
    Lu XM, Batugedara G, Lee M, Prudhomme J, Bunnik EM, Le Roch KG 2017. Nascent RNA sequencing reveals mechanisms of gene regulation in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res. 45:137825–40
    [Google Scholar]
  78. 78.
    Luo GZ, Wang F, Weng X, Chen K, Hao Z et al. 2016. Characterization of eukaryotic DNA N6-methyladenine by a highly sensitive restriction enzyme-assisted sequencing. Nat. Commun. 7:11301
    [Google Scholar]
  79. 79.
    Martins RM, Macpherson CR, Claes A, Scheidig-Benatar C, Sakamoto H et al. 2017. An ApiAP2 member regulates expression of clonally variant genes of the human malaria parasite Plasmodium falciparum. Sci. Rep. 7:114042
    [Google Scholar]
  80. 80.
    Miao J, Fan Q, Cui L, Li J, Li J, Cui L. 2006. The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation. Gene 369:1–253–65
    [Google Scholar]
  81. 81.
    Miao J, Wang C, Lucky AB, Liang X, Min H et al. 2021. A unique GCN5 histone acetyltransferase complex controls erythrocyte invasion and virulence in the malaria parasite Plasmodium falciparum. PLOS Pathog. 17:8e1009351
    [Google Scholar]
  82. 82.
    Modrzynska K, Pfander C, Chappell L, Yu L, Suarez C et al. 2017. A knockout screen of ApiAP2 genes reveals networks of interacting transcriptional regulators controlling the Plasmodium life cycle. Cell Host Microbe 21:111–22
    [Google Scholar]
  83. 83.
    Mohammed M, Dziedziech A, Sekar V, Ernest M, Silva TLAE et al. 2023. Single-cell transcriptomics to define Plasmodium falciparum stage transition in the mosquito midgut. Microbiol. Spectr. 11:2e03671–22
    [Google Scholar]
  84. 84.
    Muller I, Jex AR, Kappe SHI, Mikolajczak SA, Sattabongkot J et al. 2019. Transcriptome and histone epigenome of Plasmodium vivax salivary-gland sporozoites point to tight regulatory control and mechanisms for liver-stage differentiation in relapsing malaria. Int. J. Parasitol. 49:7501–13
    [Google Scholar]
  85. 85.
    Ngara M, Palmkvist M, Sagasser S, Hjelmqvist D, Björklund ÅK et al. 2018. Exploring parasite heterogeneity using single-cell RNA-seq reveals a gene signature among sexual stage Plasmodium falciparum parasites. Exp. Cell Res. 371:1130–38
    [Google Scholar]
  86. 86.
    Nishi T, Kaneko I, Iwanaga S, Yuda M. 2022. Identification of a novel AP2 transcription factor in zygotes with an essential role in Plasmodium ookinete development. PLOS Pathog. 18:8e1010510
    [Google Scholar]
  87. 87.
    Otto TD, Wilinski D, Assefa S, Keane TM, Sarry LR et al. 2010. New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-seq. Mol. Microbiol. 76:112–24
    [Google Scholar]
  88. 88.
    Painter HJ, Chung NC, Sebastian A, Albert I, Storey JD, Llinás M 2018. Genome-wide real-time in vivo transcriptional dynamics during Plasmodium falciparum blood-stage development. Nat. Commun. 9:12656 Erratum 2022. Nat. Commun. 13:1497
    [Google Scholar]
  89. 89.
    Petter M, Lee CC, Byrne TJ, Boysen KE, Volz J et al. 2011. Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLOS Pathog. 7:2e1001292
    [Google Scholar]
  90. 90.
    Petter M, Selvarajah SA, Lee CC, Chin WH, Gupta AP et al. 2013. H2A.Z and H2B.Z double-variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite Plasmodium falciparum. Mol. Microbiol. 87:61167–82
    [Google Scholar]
  91. 91.
    Ponts N, Fu L, Harris EY, Zhang J, Chung DWD et al. 2013. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum. Cell Host Microbe 14:6696–706
    [Google Scholar]
  92. 92.
    Ponts N, Harris EY, Lonardi S, Le Roch KG 2011. Nucleosome occupancy at transcription start sites in the human malaria parasite: a hard-wired evolution of virulence?. Infect. Genet. Evol. 11:4716–24
    [Google Scholar]
  93. 93.
    Poran A, Nötzel C, Aly O, Mencia-Trinchant N, Harris CT et al. 2017. Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites. Nature 551:767895–99
    [Google Scholar]
  94. 94.
    Quansah E, Pappoe F, Shen J, Liu M, Yang S et al. 2022. ApiAP2 gene-network regulates gametocytogenesis in Plasmodium parasites. Cell Microbiol. 2022:5796578
    [Google Scholar]
  95. 95.
    Quinn JJ, Chang HY. 2015. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17:147–62
    [Google Scholar]
  96. 96.
    Raabe CA, Sanchez CP, Randau G, Robeck T, Skryabin BV et al. 2009. A global view of the nonprotein-coding transcriptome in Plasmodium falciparum. Nucleic Acids Res. 38:2608–17
    [Google Scholar]
  97. 97.
    Rai R, Zhu L, Chen H, Gupta AP, Sze SK et al. 2014. Genome-wide analysis in Plasmodium falciparum reveals early and late phases of RNA polymerase II occupancy during the infectious cycle. BMC Genom. 15:1959
    [Google Scholar]
  98. 98.
    Ralph SA, Scheidig-Benatar C, Scherf A. 2005. Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations. PNAS 102:155414–19
    [Google Scholar]
  99. 99.
    Rawat M, Srivastava A, Johri S, Gupta I, Karmodiya K. 2021. Single-cell RNA sequencing reveals cellular heterogeneity and stage transition under temperature stress in synchronized Plasmodium falciparum cells. Microbiol. Spectr. 9:1e0000821
    [Google Scholar]
  100. 100.
    Read DF, Cook K, Lu YY, Le Roch KG, Noble WS 2019. Predicting gene expression in the human malaria parasite Plasmodium falciparum using histone modification, nucleosome positioning, and 3D localization features. PLOS Comput. Biol. 15:9e1007329
    [Google Scholar]
  101. 101.
    Real E, Howick VM, Dahalan FA, Witmer K, Cudini J et al. 2021. A single-cell atlas of Plasmodium falciparum transmission through the mosquito. Nat. Commun. 12:13196
    [Google Scholar]
  102. 102.
    Reid AJ, Talman AM, Bennett HM, Gomes AR, Sanders MJ et al. 2018. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites. eLife 7:e33105
    [Google Scholar]
  103. 103.
    Ruiz JL, Tena JJ, Bancells C, Cortés A, Gómez-Skarmeta JL, Gomez-Díaz E. 2018. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res. 46:189414–31
    [Google Scholar]
  104. 104.
    Salcedo-Amaya AM, van Driel MA, Alako BT, Trelle MB, van den Elzen AMG et al. 2009. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. PNAS 106:249655–60
    [Google Scholar]
  105. 105.
    Santos JM, Josling G, Ross P, Joshi P, Orchard L et al. 2017. Red blood cell invasion by the malaria parasite is coordinated by the PfAP2-I transcription factor. Cell Host Microbe 21:6731–41.e10
    [Google Scholar]
  106. 106.
    Saraf A, Cervantes S, Bunnik EM, Ponts N, Sardiu ME et al. 2016. Dynamic and combinatorial landscape of histone modifications during the intraerythrocytic developmental cycle of the malaria parasite. J. Proteome Res. 15:82787–801
    [Google Scholar]
  107. 107.
    Shang X, Shen S, Tang J, He X, Zhao Y et al. 2021. A cascade of transcriptional repression determines sexual commitment and development in Plasmodium falciparum. Nucleic Acids Res. 49:169264–79
    [Google Scholar]
  108. 108.
    Shang X, Wang C, Fan Y, Guo G, Wang F et al. 2022. Genome-wide landscape of ApiAP2 transcription factors reveals a heterochromatin-associated regulatory network during Plasmodium falciparum blood-stage development. Nucleic Acids Res. 50:63413–31
    [Google Scholar]
  109. 109.
    Shang X, Wang C, Shen L, Sheng F, He X et al. 2022. PfAP2-EXP2, an essential transcription factor for the intraerythrocytic development of Plasmodium falciparum. Front. Cell Dev. Biol. 9:3721
    [Google Scholar]
  110. 110.
    Shrestha S, Lucky AB, Brashear AM, Li X, Cui L, Miao J. 2022. Distinct histone post-translational modifications during Plasmodium falciparum gametocyte development. J. Proteome Res. 21:81857–67
    [Google Scholar]
  111. 111.
    Sierra-Miranda M, Delgadillo DM, Mancio-Silva L, Vargas M, Villegas-Sepulveda N et al. 2012. Two long non-coding RNAs generated from subtelomeric regions accumulate in a novel perinuclear compartment in Plasmodium falciparum. Mol. Biochem. Parasitol. 185:136–47
    [Google Scholar]
  112. 112.
    Sierra-Miranda M, Vembar S-S, Delgadillo DM, Ávila-López PA, Herrera-Solorio A-M et al. 2017. PfAP2Tel, harbouring a non-canonical DNA-binding AP2 domain, binds to Plasmodium falciparum telomeres. Cell Microbiol. 19:9e12742
    [Google Scholar]
  113. 113.
    Silvestrini F, Bozdech Z, Lanfrancotti A, di Giulio E, Bultrini E et al. 2005. Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Mol. Biochem. Parasitol. 143:1100–10
    [Google Scholar]
  114. 114.
    Simantov K, Goyal M, Dzikowskiid R. 2022. Emerging biology of noncoding RNAs in malaria parasites. PLOS Pathog. 18:7e1010600
    [Google Scholar]
  115. 115.
    Singh S, Santos JM, Orchard LM, Yamada N, van Biljon R et al. 2021. The PfAP2-G2 transcription factor is a critical regulator of gametocyte maturation. Mol. Microbiol. 115:51005–24
    [Google Scholar]
  116. 116.
    Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C et al. 2014. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507:7491253–57
    [Google Scholar]
  117. 117.
    Smargiasso N, Gabelica V, Damblon C, Rosu F, de Pauw E et al. 2009. Putative DNA G-quadruplex formation within the promoters of Plasmodium falciparum var genes. BMC Genom. 10:362
    [Google Scholar]
  118. 118.
    Sullivan WJ. 2003. Histone H3 and H3.3 variants in the protozoan pathogens Plasmodium falciparum and Toxoplasma gondii. DNA Seq. 14:3227–31
    [Google Scholar]
  119. 119.
    Tang J, Chisholm SA, Yeoh LM, Gilson PR, Papenfuss AT et al. 2020. Histone modifications associated with gene expression and genome accessibility are dynamically enriched at Plasmodium falciparum regulatory sequences. Epigenet. Chromatin 13:150
    [Google Scholar]
  120. 120.
    Templeton TJ, Iyer LM, Anantharaman V, Enomoto S, Abrahante JE et al. 2004. Comparative analysis of Apicomplexa and genomic diversity in eukaryotes. Genome Res. 14:91686–95
    [Google Scholar]
  121. 121.
    Toenhake CG, Fraschka SAK, Vijayabaskar MS, Westhead DR, van Heeringen SJ, Bártfai R. 2018. Chromatin accessibility-based characterization of the gene regulatory network underlying Plasmodium falciparum blood-stage development. Cell Host Microbe 23:4557–69.e9
    [Google Scholar]
  122. 122.
    Tonkin CJ, Carret CK, Duraisingh MT, Voss TS, Ralph SA et al. 2009. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLOS Biol. 7:4e84
    [Google Scholar]
  123. 123.
    Trelle MB, Salcedo-Amaya AM, Cohen AM, Stunnenberg HG, Jensen ON. 2009. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum. J. Proteome Res. 8:73439–50
    [Google Scholar]
  124. 124.
    Ukaegbu UE, Kishore SP, Kwiatkowski DL, Pandarinath C, Dahan-Pasternak N et al. 2014. Recruitment of PfSET2 by RNA polymerase II to variant antigen encoding loci contributes to antigenic variation in P. falciparum. PLOS Pathog. 10:1e1003854
    [Google Scholar]
  125. 125.
    von Grüning H, Coradin M, Mendoza MR, Reader J, Sidoli S et al. 2022. A dynamic and combinatorial histone code drives malaria parasite asexual and sexual development. Mol. Cell Proteom. 21:3100199
    [Google Scholar]
  126. 126.
    Voong CK, Goodrich JA, Kugel JF. 2021. Interactions of HMGB proteins with the genome and the impact on disease. Biomolecules 11:101451
    [Google Scholar]
  127. 127.
    Walzer KA, Kubicki DM, Tang X, Chi J-TA 2018. Single-cell analysis reveals distinct gene expression and heterogeneity in male and female Plasmodium falciparum gametocytes. mSphere 3:2e00130
    [Google Scholar]
  128. 128.
    Wang H, Dittmer TA, Richards EJ. 2013. Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biol. 13:1200
    [Google Scholar]
  129. 129.
    Wei G, Zhao Y, Zhang Q, Pan W. 2015. Dual regulatory effects of non-coding GC-rich elements on the expression of virulence genes in malaria parasites. Infect. Genet. Evol. 36:490–99
    [Google Scholar]
  130. 130.
    Weiner A, Dahan-Pasternak N, Shimoni E, Shinder V, von Huth P et al. 2011. 3D nuclear architecture reveals coupled cell cycle dynamics of chromatin and nuclear pores in the malaria parasite Plasmodium falciparum. Cell Microbiol. 13:7967–77
    [Google Scholar]
  131. 131.
    Westenberger SJ, Cui L, Dharia N, Winzeler E, Cui L 2009. Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes. BMC Genom. 10:610
    [Google Scholar]
  132. 132.
    Wichers JS, Scholz JAM, Strauss J, Witt S, Lill A et al. 2019. Dissecting the gene expression, localization, membrane topology, and function of the Plasmodium falciparum STEVOR protein family. mBio 10:4e01500–19
    [Google Scholar]
  133. 133.
    Witmer K, Fraschka SA, Vlachou D, Bártfai R, Christophides GK. 2020. An epigenetic map of malaria parasite development from host to vector. Sci. Rep. 10:16354
    [Google Scholar]
  134. 134.
    World Health Organ 2021. World Malaria Report 2021 Geneva: World Health Organ.
    [Google Scholar]
  135. 135.
    Xu Y, Qiao D, Wen Y, Bi Y, Chen Y et al. 2021. PfAP2-g2 is associated to production and maturation of gametocytes in Plasmodium falciparum via regulating the expression of PfMDV-1. Front. Microbiol. 11:3546
    [Google Scholar]
  136. 136.
    Yang M, Shang X, Zhou Y, Wang C, Wei G et al. 2021. Full-length transcriptome analysis of Plasmodium falciparum by single-molecule long-read sequencing. Front. Cell Infect. Microbiol. 11:13
    [Google Scholar]
  137. 137.
    Yuda M, Iwanaga S, Kaneko I, Kato T. 2015. Global transcriptional repression: an initial and essential step for Plasmodium sexual development. PNAS 112:4112824–29
    [Google Scholar]
  138. 138.
    Yuda M, Iwanaga S, Shigenobu S, Kato T, Kaneko I. 2010. Transcription factor AP2-Sp and its target genes in malarial sporozoites. Mol. Microbiol. 75:4854–63
    [Google Scholar]
  139. 139.
    Yuda M, Iwanaga S, Shigenobu S, Mair GR, Janse CJ et al. 2009. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites. Mol. Microbiol. 71:61402–14
    [Google Scholar]
  140. 140.
    Zanghì G, Vembar SS, Baumgarten S, Ding S, Guizetti J et al. 2018. A specific PfEMP1 is expressed in P. falciparum sporozoites and plays a role in hepatocyte infection. Cell Rep. 22:112951–63
    [Google Scholar]
  141. 141.
    Zhang C, Li Z, Cui H, Jiang Y, Yang Z et al. 2017. Systematic CRISPR-Cas9-mediated modifications of Plasmodium yoelii ApiAP2 genes reveal functional insights into parasite development. mBio 8:6e01986–17
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032521-041554
Loading
/content/journals/10.1146/annurev-micro-032521-041554
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error