1932

Abstract

Secretory antibodies are the only component of our adaptive immune system capable of attacking mucosal pathogens topologically outside of our bodies. All secretory antibody classes are () relatively resistant to harsh proteolytic environments and () polymeric. Recent elucidation of the structure of secretory IgA (SIgA) has begun to shed light on SIgA functions at the nanoscale. We can now begin to unravel the structure–function relationships of these molecules, for example, by understanding how the bent conformation of SIgA enables robust cross-linking between adjacent growing bacteria. Many mysteries remain, such as the structural basis of protease resistance and the role of noncanonical bacteria–IgA interactions. In this review, we explore the structure–function relationships of IgA from the nano- to the metascale, with a strong focus on how the seemingly banal “license to clump” can have potent effects on bacterial physiology and colonization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032521-041803
2023-09-15
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032521-041803.html?itemId=/content/journals/10.1146/annurev-micro-032521-041803&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aegerter H, Lambrecht BN, Jakubzick CV. 2022. Biology of lung macrophages in health and disease. Immunity 55:91564–80
    [Google Scholar]
  2. 2.
    Akhiani AA, Stensson A, Schön K, Lycke NY. 2005. IgA antibodies impair resistance against Helicobacter pylori infection: studies on immune evasion in IL-10-deficient mice. J. Immunol. 174:128144–53
    [Google Scholar]
  3. 3.
    Ash JF, Louvard D, Singer SJ. 1977. Antibody-induced linkages of plasma membrane proteins to intracellular actomyosin-containing filaments in cultured fibroblasts. PNAS 74:125584–88
    [Google Scholar]
  4. 4.
    Bagheri Y, Sanaei R, Yazdani R, Shekarabi M, Falak R et al. 2019. The heterogeneous pathogenesis of selective immunoglobulin A deficiency. Int. Arch. Allergy Immunol. 179:3231–45
    [Google Scholar]
  5. 5.
    Bansept F, Schumann-Moor K, Diard M, Hardt WD, Slack E, Loverdo C. 2019. Enchained growth and cluster dislocation: a possible mechanism for microbiota homeostasis. PLOS Comput. Biol. 15:5e1006986
    [Google Scholar]
  6. 6.
    Barthel M, Hapfelmeier S, Quintanilla-Martínez L, Kremer M, Rohde M et al. 2003. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71:52839–58
    [Google Scholar]
  7. 7.
    Bharathkar SK, Parker BW, Malyutin AG, Haloi N, Huey-Tubman KE et al. 2020. The structures of secretory and dimeric immunoglobulin A. eLife 9:e56098
    [Google Scholar]
  8. 8.
    Bilal S, Etayo A, Hordvik I. 2021. Immunoglobulins in teleosts. Immunogenetics 73:165–77
    [Google Scholar]
  9. 9.
    Boumahrou N, Chevaleyre C, Berri M, Martin P, Bellier S, Salmon H. 2012. An increase in milk IgA correlates with both pIgR expression and IgA plasma cell accumulation in the lactating mammary gland of PRM/Alf mice. J. Reprod. Immunol. 96:1/225–33
    [Google Scholar]
  10. 10.
    Brandtzaeg P. 1997. Mucosal immunity in the female genital tract. J. Reprod. Immunol. 36:1/223–50
    [Google Scholar]
  11. 11.
    Briliūtė J, Urbanowicz PA, Luis AS, Baslé A, Paterson N et al. 2019. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat. Microbiol. 4:91571–81
    [Google Scholar]
  12. 12.
    Broadbent SE, Davies MR, van der Woude MW. 2010. Phase variation controls expression of Salmonella lipopolysaccharide modification genes by a DNA methylation–dependent mechanism. Mol. Microbiol. 77:2337–53
    [Google Scholar]
  13. 13.
    Brooks-Walter A, Briles DE, Hollingshead SK. 1999. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect. Immun. 67:126533–42
    [Google Scholar]
  14. 14.
    Castro CD, Flajnik MF. 2014. Putting J chain back on the map: How might its expression define plasma cell development?. J. Immunol. 193:73248–55
    [Google Scholar]
  15. 15.
    Castro-Dopico T, Clatworthy MR. 2019. IgG and Fcγ receptors in intestinal immunity and inflammation. Front. Immunol. 10:805
    [Google Scholar]
  16. 16.
    Chavent M, Duncan AL, Rassam P, Birkholz O, Hélie J et al. 2018. How nanoscale protein interactions determine the mesoscale dynamic organisation of bacterial outer membrane proteins. Nat. Commun. 9:2846
    [Google Scholar]
  17. 17.
    Cullender TC, Chassaing B, Janzon A, Kumar K, Muller CE et al. 2013. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14:5571–81
    [Google Scholar]
  18. 18.
    Currie EG, Coburn B, Porfilio EA, Lam P, Rojas OL et al. 2022. Immunoglobulin A nephropathy is characterized by anti-commensal humoral immune responses. JCI Insight 7:5e141289
    [Google Scholar]
  19. 19.
    Davies MR, Broadbent SE, Harris SR, Thomson NR, van der Woude MW. 2013. Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity. PLOS Genet 9:6e1003568
    [Google Scholar]
  20. 20.
    Davis SK, Selva KJ, Kent SJ, Chung AW. 2020. Serum IgA Fc effector functions in infectious disease and cancer. Immunol. Cell Biol. 98:4276–86
    [Google Scholar]
  21. 21.
    de Sousa-Pereira P, Woof JM. 2019. IgA: structure, function, and developability. Antibodies 8:457
    [Google Scholar]
  22. 22.
    Diard M, Bakkeren E, Cornuault JK, Moor K, Hausmann A et al. 2017. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355:63301211–15
    [Google Scholar]
  23. 23.
    Diard M, Bakkeren E, Lentsch V, Rocker A, Bekele NA et al. 2021. A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nat. Microbiol. 6:7830–41
    [Google Scholar]
  24. 24.
    Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB et al. 2018. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:6390795–800
    [Google Scholar]
  25. 25.
    Doron I, Mesko M, Li XV, Kusakabe T, Leonardi I et al. 2021. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn's disease. Nat. Microbiol. 6:121493–504
    [Google Scholar]
  26. 26.
    D'Souza GG, Povolo VR, Keegstra JM, Stocker R, Ackermann M 2021. Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations. ISME J 15:92614–26
    [Google Scholar]
  27. 27.
    Ebrahimi A, Schwartzman J, Cordero OX. 2019. Multicellular behaviour enables cooperation in microbial cell aggregates. Philos. Trans. R. Soc. B 374:178620190077
    [Google Scholar]
  28. 28.
    Ebrahimi A, Schwartzman J, Cordero OX. 2019. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. PNAS 116:4623309–16
    [Google Scholar]
  29. 29.
    Elm C, Rohde M, Vaerman JP, Chhatwal GS, Hammerschmidt S. 2004. Characterization of the interaction of the pneumococcal surface protein SpsA with the human polymeric immunoglobulin receptor (hpIgR). Indian J. Med. Res. 119:Suppl.61–65
    [Google Scholar]
  30. 30.
    Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N et al. 2010. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLOS Pathog 6:9e1001097
    [Google Scholar]
  31. 31.
    Fadlallah J, el Kafsi H, Sterlin D, Juste C, Parizot C et al. 2018. Microbial ecology perturbation in human IgA deficiency. Sci. Transl. Med. 10:439eaan1217
    [Google Scholar]
  32. 32.
    Flajnik MF. 2010. All GOD's creatures got dedicated mucosal immunity. Nat. Immunol. 11:9777–79
    [Google Scholar]
  33. 33.
    Flajnik MF. 2018. A cold-blooded view of adaptive immunity. Nat. Rev. Immunol. 18:7438–53
    [Google Scholar]
  34. 34.
    Forbes SJ, Eschmann M, Mantis NJ. 2008. Inhibition of Salmonella enterica serovar Typhimurium motility and entry into epithelial cells by a protective antilipopolysaccharide monoclonal immunoglobulin A antibody. Infect. Immun. 76:94137–44
    [Google Scholar]
  35. 35.
    García-Pastor L, Puerta-Fernández E, Casadesús J. 2019. Bistability and phase variation in Salmonella enterica. Biochim. Biophys. Acta Gene Regul. Mech. 1862:7752–58
    [Google Scholar]
  36. 36.
    Gerlach D, Guo Y, de Castro C, Kim S-H, Schlatterer K et al. 2018. Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature 563:7733705–9
    [Google Scholar]
  37. 37.
    Hamburger AE, West AP, Bjorkman PJ. 2004. Crystal structure of a polymeric immunoglobulin binding fragment of the human polymeric immunoglobulin receptor. Structure 12:111925–35
    [Google Scholar]
  38. 38.
    Hammerschmidt S, Talay SR, Brandtzaeg P, Chhatwal GS. 1997. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol. Microbiol. 25:61113–24
    [Google Scholar]
  39. 39.
    Hauser E, Junker E, Helmuth R, Malorny B. 2011. Different mutations in the oafA gene lead to loss of O5-antigen expression in Salmonella enterica serovar Typhimurium. J. Appl. Microbiol. 110:1248–53
    [Google Scholar]
  40. 40.
    Herr AB, Ballister ER, Bjorkman PJ. 2003. Insights into IgA-mediated immune responses from the crystal structures of human FcαRI and its complex with IgA1-Fc. Nature 423:6940614–20
    [Google Scholar]
  41. 41.
    Hetzel M, Ackermann M, Lachmann N. 2021. Beyond “big eaters”: the versatile role of alveolar macrophages in health and disease. Int. J. Mol. Sci. 22:73308
    [Google Scholar]
  42. 42.
    Hoces D, Arnoldini M, Diard M, Loverdo C, Slack E. 2020. Growing, evolving and sticking in a flowing environment: understanding IgA interactions with bacteria in the gut. Immunology 159:152–62
    [Google Scholar]
  43. 43.
    Hockenberry A, Radiom M, Arnoldini M, Turgay Y, Dunne M et al. 2023. Nanoscale clustering by O-antigen–secretory immunoglobulin-A binding limits outer membrane diffusion by encaging individual Salmonella cells. bioRxiv 2023.07.13.548943 https://doi.org/10.1101/2023.07.13.548943
    [Crossref]
  44. 44.
    Hoiseth SK, Stocker BAD. 1981. Aromatic-dependent Salmonella Typhimurium are non-virulent and effective as live vaccines. Nature 291:5812238–39
    [Google Scholar]
  45. 45.
    Huang BK, Choma MA. 2015. Microscale imaging of cilia-driven fluid flow. Cell Mol. Life Sci. 72:61095–113
    [Google Scholar]
  46. 46.
    Huet C, Ash JF, Singer SJ. 1980. The antibody-induced clustering and endocytosis of HLA antigens on cultured human fibroblasts. Cell 21:2429–38
    [Google Scholar]
  47. 47.
    Jan AT 2017. Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Front. Microbiol. 8:1053
    [Google Scholar]
  48. 48.
    Janoff EN, Rubins JB, Fasching C, Charboneau D, Rahkola JT et al. 2014. Pneumococcal IgA1 protease subverts specific protection by human IgA1. Mucosal Immunol 7:2249–56
    [Google Scholar]
  49. 49.
    Joglekar P, Ding H, Canales-Herrerias P, Pasrich PJ, Sonnenburg JL, Peterson DA. 2019. Intestinal IgA regulates expression of a fructan polysaccharide utilization locus in colonizing gut commensal Bacteroides thetaiotaomicron. mBio 10:602324
    [Google Scholar]
  50. 50.
    Kaetzel CS. 2001. Polymeric Ig receptor: defender of the fort or Trojan horse?. Curr. Biol. 11:1PR35–38
    [Google Scholar]
  51. 51.
    Kaetzel CS. 2005. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol. Rev. 206:83–99
    [Google Scholar]
  52. 52.
    Kazeeva TN, Shevelev AB. 2009. IgA-specific proteins of pathogenic bacteria. Biochemistry 74:112–21
    [Google Scholar]
  53. 53.
    Keyt BA, Baliga R, Sinclair AM, Carroll SF, Peterson MS. 2020. Structure, function, and therapeutic use of IgM antibodies. Antibodies 9:453
    [Google Scholar]
  54. 54.
    Kilian M, Mestecky J, Schrohenloher RE. 1979. Pathogenic species of the genus Haemophilus and Streptococcus pneumoniae produce immunoglobulin A1 protease. Infect. Immun. 26:1143–49
    [Google Scholar]
  55. 55.
    Kim M, Ryu S. 2012. Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 86:2411–25
    [Google Scholar]
  56. 56.
    Kintz E, Davies MR, Hammarlöf DL, Canals R, Hinton JCD, van der Woude MW. 2015. A BTP1 prophage gene present in invasive non-typhoidal Salmonella determines composition and length of the O-antigen of the lipopolysaccharide. Mol. Microbiol. 96:2263–75
    [Google Scholar]
  57. 57.
    Kumar N, Arthur CP, Ciferri C, Matsumoto ML. 2020. Structure of the secretory immunoglobulin A core. Science 367:64811008–14
    [Google Scholar]
  58. 58.
    Kumar N, Arthur CP, Ciferri C, Matsumoto ML. 2021. Structure of the human secretory immunoglobulin M core. Structure 29:6564–71.e3
    [Google Scholar]
  59. 59.
    Levinson KJ, De Jesus M, Mantis NJ. 2015. Rapid effects of a protective O-polysaccharide-specific monoclonal IgA on Vibrio cholerae agglutination, motility, and surface morphology. Infect. Immun. 83:41674–83
    [Google Scholar]
  60. 60.
    Li TWH, Wang J, Lam JT, Gutierrez EM, Solorzano-Vargus RS et al. 1999. Transcriptional control of the murine polymeric IgA receptor promoter by glucocorticoids. Am. J. Physiol. Gastrointest. Liver Physiol. 276:6G1425–34
    [Google Scholar]
  61. 61.
    Liu Q, Stadtmueller BM. 2023. The structures of secretory IgA in complex with Streptococcus pyogenes M4 and human CD89 provide insights on mucosal host-pathogen interactions. bioRxiv 2023.04.21.537878. https://doi.org/10.1101/2023.04.21.537878
  62. 62.
    Loman S, Jansen HM, Out TA, Lutter R. 1999. Interleukin-4 and interferon-γ synergistically increase secretory component gene expression, but are additive in stimulating secretory immunoglobulin A release by Calu-3 airway epithelial cells. Immunology 96:4537–43
    [Google Scholar]
  63. 63.
    Low ZY, Zabidi NZ, Yip AJW, Puniyamurti A, Chow VTK, Lal SK. 2022. SARS-CoV-2 non-structural proteins and their roles in host immune evasion. Viruses 14:91991
    [Google Scholar]
  64. 64.
    Ludvigsson JF, Neovius M, Hammarström L. 2016. Risk of infections among 2100 individuals with IgA deficiency: a nationwide cohort study. J. Clin. Immunol. 36:2134–40
    [Google Scholar]
  65. 65.
    Mamou G, Inns PG, Sun D, Kaminska R, Housden NG et al. 2021. Spatiotemporal organization of BamA governs the pattern of outer membrane protein distribution in growing Escherichia coli cells. bioRxiv 2021.01.27.428258. https://doi.org/10.1101/2021.01.27.428258
  66. 66.
    Martens EC, Roth R, Heuser JE, Gordon JI. 2009. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J. Biol. Chem. 284:2718445–57
    [Google Scholar]
  67. 67.
    Mathias A, Corthésy B. 2011. N-glycans on secretory component: mediators of the interaction between secretory IgA and gram-positive commensals sustaining intestinal homeostasis. Gut Microbes 2:5287–93
    [Google Scholar]
  68. 68.
    Matsumoto ML. 2022. Molecular mechanisms of multimeric assembly of IgM and IgA. Annu. Rev. Immunol. 40:221–47
    [Google Scholar]
  69. 69.
    McLoughlin K, Schluter J, Rakoff-Nahoum S, Smith AL, Foster KR. 2016. Host selection of microbiota via differential adhesion. Cell Host Microbe 19:4550–59
    [Google Scholar]
  70. 70.
    Moll JM, Myers PN, Zhang C, Eriksen C, Wolf J et al. 2021. Gut microbiota perturbation in IgA deficiency is influenced by IgA-autoantibody status. Gastroenterology 160:72423–34.e5
    [Google Scholar]
  71. 71.
    Moor K, Diard M, Sellin ME, Felmy B, Wotzka SY et al. 2017. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544:7651498–502
    [Google Scholar]
  72. 72.
    Moor K, Wotzka SY, Toska A, Diard M, Hapfelmeier S, Slack E. 2016. Peracetic acid treatment generates potent inactivated oral vaccines from a broad range of culturable bacterial species. Front. Immunol. 7:34
    [Google Scholar]
  73. 73.
    Murphy K, Weaver C. 2016. Janeway's Immunobiology New York: Garland Sci. , 9th ed..
  74. 74.
    Nakajima A, Vogelzang A, Maruya M, Miyajima M, Murata M et al. 2018. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J. Exp. Med. 215:82019–34
    [Google Scholar]
  75. 75.
    Nakamura Y, Nosaka S, Suzuki M, Nagafuchi S, Takahashi T et al. 2004. Dietary fructooligosaccharides up-regulate immunoglobulin A response and polymeric immunoglobulin receptor expression in intestines of infant mice. Clin. Exp. Immunol. 137:152–58
    [Google Scholar]
  76. 76.
    Oliveira IR, Araújo AN, Bao SN, Giugliano LG. 2001. Binding of lactoferrin and free secretory component to enterotoxigenic Escherichia coli. FEMS Microbiol. Lett. 203:129–33
    [Google Scholar]
  77. 77.
    Oortwijn BD, Roos A, van der Boog PJM, Klar-Mohamad N, van Remoortere A et al. 2007. Monomeric and polymeric IgA show a similar association with the myeloid FcαRI/CD89. Mol. Immunol. 44:5966–73
    [Google Scholar]
  78. 78.
    Ost KS, O'Meara TR, Stephens WZ, Chiaro T, Zhou H et al. 2021. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596:7870114–18
    [Google Scholar]
  79. 79.
    Pal K, Kaetzel CS, Brundage K, Cunningham CA, Cuff CF. 2005. Regulation of polymeric immunoglobulin receptor expression by reovirus. J. Gen. Virol. 86:82347–57
    [Google Scholar]
  80. 80.
    Pausder A, Fricke J, Schughart K, Schreiber J, Strowig T et al. 2022. Exogenous and endogenous triggers differentially stimulate Pigr expression and antibacterial secretory immunity in the murine respiratory tract. Lung 200:1119–28
    [Google Scholar]
  81. 81.
    Penny HA, Domingues RG, Krauss MZ, Melo-Gonzalez F, Lawson MAE et al. 2022. Rhythmicity of intestinal IgA responses confers oscillatory commensal microbiota mutualism. Sci. Immunol. 7:75eabk2541
    [Google Scholar]
  82. 82.
    Peterson DA, McNulty NP, Guruge JL, Gordon JI. 2007. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2:5328–39
    [Google Scholar]
  83. 83.
    Peterson DA, Planer JD, Guruge JL, Xue L, Virgin-Downey W et al. 2015. Characterizing the interactions between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice. J. Biol. Chem. 290:2012630–49
    [Google Scholar]
  84. 84.
    Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W et al. 2016. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 68:283–107
    [Google Scholar]
  85. 85.
    Ramsland PA, Willoughby N, Trist HM, Farrugia W, Hogarth PM et al. 2007. Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. PNAS 104:3815051–56
    [Google Scholar]
  86. 86.
    Rassam P, Long KR, Kaminska R, Williams DJ, Papadakos G et al. 2018. Intermembrane crosstalk drives inner-membrane protein organization in Escherichia coli. Nat. Commun. 9:1082
    [Google Scholar]
  87. 87.
    Roche AM, Richard AL, Rahkola JT, Janoff EN, Weiser JN. 2015. Antibody blocks acquisition of bacterial colonization through agglutination. Mucosal Immunol 8:1176–85
    [Google Scholar]
  88. 88.
    Rodríguez A, Rottenberg M, Tjärnlund A, Fernández C. 2006. Immunoglobulin A and CD8 T-cell mucosal immune defenses protect against intranasal infection with Chlamydia pneumoniae. Scand. J. Immunol. 63:3177–83
    [Google Scholar]
  89. 89.
    Rollenske T, Burkhalter S, Muerner L, von Gunten S, Lukasiewicz J et al. 2021. Parallelism of intestinal secretory IgA shapes functional microbial fitness. Nature 598:7882657–61
    [Google Scholar]
  90. 90.
    Schneeman TA, Bruno MEC, Schjerven H, Johansen F-E, Chady L, Kaetzel CS. 2005. Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: linking innate and adaptive immune responses. J. Immunol. 175:1376–84
    [Google Scholar]
  91. 91.
    Senior BW, Woof JM. 2005. The influences of hinge length and composition on the susceptibility of human IgA to cleavage by diverse bacterial IgA1 proteases. J. Immunol. 174:127792–99
    [Google Scholar]
  92. 92.
    Shi T, Denney L, An H, Ho LP, Zheng Y. 2021. Alveolar and lung interstitial macrophages: definitions, functions, and roles in lung fibrosis. J. Leukoc. Biol. 110:1107–14
    [Google Scholar]
  93. 93.
    Slauch JM, Lee AA, Mahan MJ, Mekalanos JJ. 1996. Molecular characterization of the oafA locus responsible for acetylation of Salmonella Typhimurium O-antigen: oafA is a member of a family of integral membrane trans-acylases. J. Bacteriol. 178:205904–9
    [Google Scholar]
  94. 94.
    Srivastava R, Kashyap A, Kumar M, Nath G, Jain AK. 2013. Mucosal IgA and IL-1β in Helicobacter pylori infection. Indian J. Clin. Biochem. 28:119–23
    [Google Scholar]
  95. 95.
    Stadtmueller BM, Huey-Tubman KE, López CJ, Yang Z, Hubbell WL, Bjorkman PJ 2016. The structure and dynamics of secretory component and its interactions with polymeric immunoglobulins. eLife 5:e10640
    [Google Scholar]
  96. 96.
    Stadtmueller BM, Yang Z, Huey-Tubman KE, Roberts-Mataric H, Hubbell WL, Bjorkman PJ. 2016. Biophysical and biochemical characterization of avian secretory component provides structural insights into the evolution of the polymeric Ig receptor. J. Immunol. 197:41408–14
    [Google Scholar]
  97. 97.
    Suzuki H, Novak J. 2021. IgA glycosylation and immune complex formation in IgAN. Semin. Immunopathol. 43:5669–78
    [Google Scholar]
  98. 98.
    Tiku V, Tan MW. 2021. Host immunity and cellular responses to bacterial outer membrane vesicles. Trends Immunol 42:111024–36
    [Google Scholar]
  99. 99.
    van der Feltz MJM, de Groot N, Bayley JP, Lee SH, Verbeet MP, de Boer HA. 2001. Lymphocyte homing and Ig secretion in the murine mammary gland. Scand. J. Immunol. 54:3292–300
    [Google Scholar]
  100. 100.
    van der Woude MW, Bäumler AJ. 2004. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 17:3581–611
    [Google Scholar]
  101. 101.
    van Spriel AB, Leusen JHW, Vilé H, van de Winkel JGJ. 2002. Mac-1 (CD11b/CD18) as accessory molecule for FcαR (CD89) binding of IgA. J. Immunol. 169:73831–36
    [Google Scholar]
  102. 102.
    Wang Y, Wang G, Li Y, Zhu Q, Shen H et al. 2020. Structural insights into secretory immunoglobulin A and its interaction with a pneumococcal adhesin. Cell Res. 30:7602–9
    [Google Scholar]
  103. 103.
    Wang Z, Rahkola J, Redzic JS, Chi YC, Tran N et al. 2020. Mechanism and inhibition of Streptococcus pneumoniae IgA1 protease. Nat. Commun. 11:6063
    [Google Scholar]
  104. 104.
    Weis AM, Round JL. 2021. Microbiota–antibody interactions that regulate gut homeostasis. Cell Host Microbe 29:3334–46
    [Google Scholar]
  105. 105.
    Weiser JN, Ferreira DM, Paton JC. 2018. Streptococcus pneumoniae: transmission, colonization and invasion. Nat. Rev. Microbiol. 16:355–67
    [Google Scholar]
  106. 106.
    Whitfield C, Roberts IS. 1999. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol. Microbiol. 31:51307–19
    [Google Scholar]
  107. 107.
    Woof JM. 2016. Immunoglobulins and their receptors, and subversion of their protective roles by bacterial pathogens. Biochem. Soc. Trans. 44:61651–58
    [Google Scholar]
  108. 108.
    Xu Z, Takizawa F, Casadei E, Shibasaki Y, Ding Y et al. 2020. Specialization of mucosal immunoglobulins in pathogen control and microbiota homeostasis occurred early in vertebrate evolution. Sci. Immunol. 5:44eaay3254
    [Google Scholar]
  109. 109.
    Zhang JR, Mostov KE, Lamm ME, Nanno M, Shimida et al. 2000. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102:827–37
    [Google Scholar]
  110. 110.
    Zhang YA, Salinas I, Li J, Parra D, Bjork S et al. 2010. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol. 11:9827–35
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032521-041803
Loading
/content/journals/10.1146/annurev-micro-032521-041803
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error