1932

Abstract

Microbiology began as a unified science using the principles of chemistry to understand living systems. The unified view quickly split into the subdisciplines of medical microbiology, molecular biology, and environmental microbiology. The advent of a universal phylogeny and culture-independent approaches has helped tear down the boundaries separating the subdisciplines. The vision for the future is that the study of the fundamental roles of microbes in ecology and evolution will lead to an integrated biology with no boundary between microbiology and macrobiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-033020-020648
2021-10-02
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-033020-020648.html?itemId=/content/journals/10.1146/annurev-micro-033020-020648&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Anderson D. 2020. Animalcules. Lens on Leeuwenhoek https://lensonleeuwenhoek.net/content/animalcules .
    [Google Scholar]
  2. 2. 
    Avery OT, MacLeod CM, McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J. Exp. Med. 79:2137–58
    [Google Scholar]
  3. 3. 
    Baker TA, Bell SP. 1998. Polymerases and the replisome: machines within machines. Cell 92:3295–305
    [Google Scholar]
  4. 4. 
    Barker HA, Hungate RE. 1990. Cornelius Bernardus van Niel: 1897–1985 Biogr. Mem., Natl. Acad. Sci Washington, DC: http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/van-niel-cornelius.pdf
    [Google Scholar]
  5. 5. 
    Barns SM, Fundyga RE, Jeffries MW, Pace NR 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. PNAS 91:51609–13
    [Google Scholar]
  6. 6. 
    Barry JM. 2008. The Great Influenza: The Story of the Deadliest Pandemic in History Bridgewater, NJ: Paw Prints
    [Google Scholar]
  7. 7. 
    Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC et al. 2020. Microbiome definition re-visited: old concepts and new challenges italicMicrobiome 81103
    [Google Scholar]
  8. 8. 
    Blaser MJ. 2014. Missing Microbes: How the Overuse of Antibiotics Is Fueling Our Modern Plagues New York: Henry Holt, 1st ed..Excellent treatment of the problems with antibiotic abuse beyond resistance.
    [Google Scholar]
  9. 9. 
    Blaser MJ, Cardon ZG, Cho MK, Dangl JL, Donohue TJ et al. 2016. Toward a predictive understanding of Earth's microbiomes to address 21st century challenges. mBio 7:3e00714-16
    [Google Scholar]
  10. 10. 
    Blevins SM, Bronze MS. 2010. Robert Koch and the ‘golden age’ of bacteriology. Int. J. Infect. Dis. 14:9e744–51
    [Google Scholar]
  11. 11. 
    Brenner S, Jacob F, Meselson M 1961. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190:576–81
    [Google Scholar]
  12. 12. 
    Britten RJ, Kohne DE. 1968. Repeated sequences in DNA: Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161:3841529–40
    [Google Scholar]
  13. 13. 
    Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ et al. 2015. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523:7559208–11
    [Google Scholar]
  14. 14. 
    Bud R. 2007. Penicillin: Triumph and Tragedy Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  15. 15. 
    Cent. Dis. Dyn. Econ. Policy 2015. The state of the world's antibiotics, 2015 Rep., Cent. Dis. Dyn. Econ. Policy Washington, DC: https://cddep.org/wp-content/uploads/2017/06/swa_edits_9.16.pdf
    [Google Scholar]
  16. 16. 
    Chung KT, Ferris DH. 1996. Martinus Willem Beijerinck (1851–1931): pioneer of general microbiology. ASM News 62:539–43
    [Google Scholar]
  17. 17. 
    Clatworthy AE, Pierson E, Hung DT 2007. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 3:9541–48
    [Google Scholar]
  18. 18. 
    Cobb M. 2014. Oswald Avery, DNA, and the transformation of biology. Curr. Biol. 24:2R55–60
    [Google Scholar]
  19. 19. 
    Cobb M. 2015. Who discovered messenger RNA?. Curr. Biol. 25:13R526–32
    [Google Scholar]
  20. 20. 
    Cold Spring Harb. Lab 2006. The Phage Course. Cold Spring Harbor Laboratory https://web.archive.org/web/20060916155323/https://www.cshl.edu/History/phagecourse.html
    [Google Scholar]
  21. 21. 
    Cold Spring Harb. Lab 2006. The Phage Group and Phage Treaty. Cold Spring Harbor Laboratory. https://web.archive.org/web/20070517203936/http://www.cshl.edu/History/phagegroup.html
    [Google Scholar]
  22. 22. 
    Crick FH. 1958. On protein synthesis. Symp. Soc. Exp. Biol. 12:138–63
    [Google Scholar]
  23. 23. 
    Crick FH, Barnett L, Brenner S, Watts-Tobin RJ. 1961. General nature of the genetic code for proteins. Nature 192:1227–32An all-time classic; uses phage genetics to figure out the details of the code.
    [Google Scholar]
  24. 24. 
    Dobzhansky T. 1973. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teacher. 35:125–29
    [Google Scholar]
  25. 25. 
    Doelle HW. 1969. Bacterial Metabolism. Cambridge, MA: Acad. Press
    [Google Scholar]
  26. 26. 
    Dubos R. 1976. Louis Pasteur: Free Lance of Science New York: Charles Scribner
    [Google Scholar]
  27. 27. 
    Dworkin M. 2012. Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist. FEMS Microbiol. Rev. 36:2364–79
    [Google Scholar]
  28. 28. 
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L et al. 2005. Diversity of the human intestinal microbial flora. Science 308:57281635–38
    [Google Scholar]
  29. 29. 
    Falkow S. 1988. Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10:Suppl. 2S274–76
    [Google Scholar]
  30. 30. 
    Falkow S. 2004. Molecular Koch's postulates applied to bacterial pathogenicity—a personal recollection 15 years later. Nat. Rev. Microbiol. 2:167–72
    [Google Scholar]
  31. 31. 
    Foulis MA, Barr JB. 1937. Prontosil album in puerperal sepsis. Br. Med. J. 1:3973445–46 Erratum. 1942. Br. J. Med. 1942:780
    [Google Scholar]
  32. 32. 
    Franklin RE, Gosling RG. 1953. Molecular configuration in sodium thymonucleate. Nature 171:4356740–41
    [Google Scholar]
  33. 33. 
    Gamow G. 1954. Possible relation between deoxyribonucleic acid and protein structures. Nature 173:4398318
    [Google Scholar]
  34. 34. 
    Griffith F. 1928. The significance of pneumococcal types. J. Hyg. 27:2113–59
    [Google Scholar]
  35. 35. 
    Hall K. 2011. William Astbury and the biological significance of nucleic acids, 1938–1951. Stud. Hist. Philos. Biol. Biomed. Sci. 42:2119–28
    [Google Scholar]
  36. 36. 
    Hanage WP. 2014. Microbiology: Microbiome science needs a healthy dose of scepticism. Nature 512:7514247–48
    [Google Scholar]
  37. 37. 
    Hershey AD, Chase M. 1952. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36:139–56
    [Google Scholar]
  38. 38. 
    Hirota Y, Ryter A, Jacob F. 1968. Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harb. Symp. Quant. Biol. 33:677–93
    [Google Scholar]
  39. 39. 
    Hoagland MB, Stephenson ML, Scott JF, Hecht LI, Zamecnik PC. 1958. A soluble ribonucleic acid intermediate in protein synthesis. J. Biol. Chem. 231:1241–57
    [Google Scholar]
  40. 40. 
    Holmes FL. 2001. Meselson, Stahl, and the Replication of DNA: A History of “The Most Beautiful Experiment in Biology.” New Haven, CT: Yale Univ. Press
    [Google Scholar]
  41. 41. 
    Howard Hughes Med. Inst 2018. Margaret McFall-Ngai. Howard Hughes Medical Institute. https://www.hhmi.org/scientists/margaret-mcfall-ngai
    [Google Scholar]
  42. 42. 
    Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ et al. 2016. A new view of the tree of life. Nat. Microbiol. 1:16048
    [Google Scholar]
  43. 43. 
    Hurwitz J. 2005. The discovery of RNA polymerase. J. Biol. Chem. 280:5242477–85
    [Google Scholar]
  44. 44. 
    Hutchinson GE. 1965. The Ecological Theater and the Evolutionary Play New Haven, CT: Yale Univ. Press
    [Google Scholar]
  45. 45. 
    Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318–56
    [Google Scholar]
  46. 46. 
    Judson HF. 1996. The Eighth Day of Creation: Makers of the Revolution in Biology. Plainview, NY: Cold Spring Harb. Lab. PressRemarkably comprehensive recap of the key early experiments in molecular biology.
    [Google Scholar]
  47. 47. 
    Jukes TH. 1985. Some historical notes on chlortetracycline. Rev. Infect. Dis. 7:5702–7
    [Google Scholar]
  48. 48. 
    Kamp AF, La Rivière JWM, Verhoeven W 1959. Albert Jan Kluyver, His Life and Work Amsterdam: North Holland Pub.
    [Google Scholar]
  49. 49. 
    Kluyver AJ, Van Niel CB. 1936. Prospects for a natural system of classification of bacteria. Zent. Bakt. Parasit. Infektion Hyg. 94:369–403
    [Google Scholar]
  50. 50. 
    Langdon A, Crook N, Dantas G. 2016. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 8:139
    [Google Scholar]
  51. 51. 
    Laurence WL. 1950.. ‘ Wonder drug’ aureomycin found to spur growth 50%. New York Times April 10
    [Google Scholar]
  52. 52. 
    Luria SE, Delbrück M. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:6491–511
    [Google Scholar]
  53. 53. 
    Maddox B 2002. Rosalind Franklin: The Dark Lady of DNA New York: HarperCollins, 1st ed..Outstanding biography that does great justice to the work of Rosalind Franklin.
    [Google Scholar]
  54. 54. 
    Margoliash E. 1963. Primary structure and evolution of cytochrome c. PNAS 50:672–79
    [Google Scholar]
  55. 55. 
    McFall-Ngai M, Ruby N 2012. Deciphering the language of diplomacy. Microbes and Evolution: The World That Darwin Never Saw R Kolter, S Maloy 173–80 Washington, DC: ASM
    [Google Scholar]
  56. 56. 
    McFall-Ngai MJ. 2015. Giving microbes their due—animal life in a microbially dominant world. J. Exp. Biol. 218:Part 121968–73
    [Google Scholar]
  57. 57. 
    Meselson M, Stahl F. 2020. The Most Beautiful Experiment: Meselson and Stahl Video. San Francisco: iBiology https://www.ibiology.org/genetics-and-gene-regulation/experiment-meselson-and-stahl/ This video captures two great scientists joyfully remembering their classic experiment.
    [Google Scholar]
  58. 58. 
    Meselson M, Stahl FW 1958. The replication of DNA in Escherichia coli. PNAS 44:7671–82
    [Google Scholar]
  59. 59. 
    Metcalfe NH. 2011. Sir Geoffrey Marshall (1887–1982): respiratory physician, catalyst for anaesthesia development, doctor to both Prime Minster and King, and World War I Barge Commander. J. Med. Biogr. 19:110–14
    [Google Scholar]
  60. 60. 
    Monod J, Jacob F 1961. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26:389–401
    [Google Scholar]
  61. 61. 
    Nirenberg M, Leder P, Bernfield M, Brimacombe R, Trupin J et al. 1965. RNA codewords and protein synthesis. VII. On the general nature of the RNA code. PNAS 53:51161–68
    [Google Scholar]
  62. 62. 
    Nirenberg MW, Matthaei JH 1961. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. PNAS 47:1588–602
    [Google Scholar]
  63. 63. 
    Pace NR. 1997. A molecular view of microbial diversity and the biosphere. Science 276:5313734–40
    [Google Scholar]
  64. 64. 
    Palade GE. 1955. A small particulate component of the cytoplasm. J. Biophys. Biochem. Cytol. 1:159–68
    [Google Scholar]
  65. 65. 
    Pardee AB, Jacob F, Monod J 1959. The genetic control and cytoplasmic expression of “Inducibility” in the synthesis of β-galactosidase by E. coli. J. Mol. Biol 1:2165–78Another classic of bacterial genetics, the so-called PAJAMO paper.
    [Google Scholar]
  66. 66. 
    Pasteur L. 1878. La théorie des germes et ses applications en médecine et en chirurgie. C. R. Acad. Sci. 86:1037–43
    [Google Scholar]
  67. 67. 
    Polianciuc SI, Gurzău AE, Kiss B, Ştefan MG, Loghin F. 2020. Antibiotics in the environment: causes and consequences. Med. Pharm. Rep. 93:3231–40
    [Google Scholar]
  68. 68. 
    Reardon S. 2014. WHO warns against ‘post-antibiotic’ era. Nature News https://www.nature.com/news/who-warns-against-post-antibiotic-era-1.15135
    [Google Scholar]
  69. 69. 
    Sapp J. 2005. The prokaryote-eukaryote dichotomy: meanings and mythology. Microbiol. Mol. Biol. Rev. 69:2292–305Wonderful source for the history of the search for a natural classification of bacteria.
    [Google Scholar]
  70. 70. 
    Singleton R, Singleton DR. 2017. Remembering OUR forebears: Albert Jan Kluyver and the unity of life. J. Hist. Biol. 50:1169–218
    [Google Scholar]
  71. 71. 
    Staley JT, Konopka A. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39:321–46
    [Google Scholar]
  72. 72. 
    Stanier RY, Van Niel CB. 1962. The concept of a bacterium. Arch. Mikrobiol. 42:17–35
    [Google Scholar]
  73. 73. 
    Stent GS 1971.. Molecular Genetics: An Introductory Narrative San Francisco: W. H. FreemanA classic textbook for anyone interested in the history of molecular genetics.
    [Google Scholar]
  74. 74. 
    Strauss BS. 2017. A physicist's quest in biology: Max Delbrück and “complementarity. .” Genetics 206:2641–50
    [Google Scholar]
  75. 75. 
    Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR et al. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65:114799–807
    [Google Scholar]
  76. 76. 
    Summers WC. 1993. How bacteriophage came to be used by the Phage Group. J. Hist. Biol. 26:2255–67
    [Google Scholar]
  77. 77. 
    Timofeev-Resovskij NV, Zimmer KG, Delbrück M. 1935. Uber die Natur der Genmutation und der Genstruktur. Nach. Gesell. Wissen Math. Phys. 6:190–245
    [Google Scholar]
  78. 78. 
    Torsvik V, Goksøyr J, Daae FL. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56:3782–87
    [Google Scholar]
  79. 79. 
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 2007. The human microbiome project. Nature 449:7164804–10
    [Google Scholar]
  80. 80. 
    Ullmann A. 2007. Pasteur-Koch: distinctive ways of thinking about infectious diseases. Microbe 2:383–87
    [Google Scholar]
  81. 81. 
    Van Epps HL. 2006. Influenza: exposing the true killer. J. Exp. Med. 203:4803
    [Google Scholar]
  82. 82. 
    van Niel CB. 1967. The education of a microbiologist: some reflections. Annu. Rev. Microbiol. 21:1–31
    [Google Scholar]
  83. 83. 
    Vernon G. 2019. Syphilis and Salvarsan. Br. J. Gen. Pract. 69:682246
    [Google Scholar]
  84. 84. 
    Viegas J. 2017. Profile of Margaret J. McFall-Ngai. PNAS 114:369494–96
    [Google Scholar]
  85. 85. 
    Waksman SA, Schatz A 1943. Strain specificity and production of antibiotic substances. PNAS 29:274–79
    [Google Scholar]
  86. 86. 
    Watson JD. 1968. The Double Helix: A Personal Account of the Discovery of the Structure of DNA New York: Atheneum
    [Google Scholar]
  87. 87. 
    Watson JD, Crick FH. 1953. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:4356737–38
    [Google Scholar]
  88. 88. 
    Wilson EO. 1994. Naturalist Washington, DC: Island Press
    [Google Scholar]
  89. 89. 
    Witkowski JA. 2003. 1961: cellular regulatory mechanisms, Vol. XXVI. Cold Spring Harbor Symposia on Quantitative Biology http://symposium.cshlp.org/site/misc/topic26.xhtml
    [Google Scholar]
  90. 90. 
    Woese CR, Fox GE 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS 74:115088–90
    [Google Scholar]
  91. 91. 
    Woese CR, Fox GE, Zablen L, Uchida T, Bonen L et al. 1975. Conservation of primary structure in 16S ribosomal RNA. Nature 254:549583–86
    [Google Scholar]
  92. 92. 
    Woese CR, Goldenfeld N 2009. How the microbial world saved evolution from the Scylla of molecular biology and the Charybdis of the modern synthesis. Microbiol. Mol. Biol. Rev 73:114–21The narrative of this essay is remarkable, from the title through to the end of the text.
    [Google Scholar]
  93. 93. 
    Woese CR, Kandler O, Wheelis ML 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87:124576–79
    [Google Scholar]
  94. 94. 
    World Health Organ 2017. WHO guidelines on use of medically important antimicrobials in food-producing animals. Guidel., World Health Organ, Geneva. https://www.who.int/foodsafety/publications/cia_guidelines/en/
  95. 95. 
    Zuckerkandl E, Pauling L. 1965. Molecules as documents of evolutionary history. J. Theor. Biol. 8:2357–66
    [Google Scholar]
/content/journals/10.1146/annurev-micro-033020-020648
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error