1932

Abstract

The amount of bacterial and archaeal genome sequence and methylome data has greatly increased over the last decade, enabling new insights into the functional roles of DNA methylation in these organisms. Methyltransferases (MTases), the enzymes responsible for DNA methylation, are exchanged between prokaryotes through horizontal gene transfer and can function either as part of restriction-modification systems or in apparent isolation as single (orphan) genes. The patterns of DNA methylation they confer on the host chromosome can have significant effects on gene expression, DNA replication, and other cellular processes. Some processes require very stable patterns of methylation, resulting in conservation of persistent MTases in a particular lineage. Other processes require patterns that are more dynamic yet more predictable than what is afforded by horizontal gene transfer and gene loss, resulting in phase-variable or recombination-driven MTase alleles. In this review, we discuss what is currently known about the functions of DNA methylation in prokaryotes in light of these evolutionary patterns.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-040521-035040
2021-10-08
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-040521-035040.html?itemId=/content/journals/10.1146/annurev-micro-040521-035040&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adamczyk-Poplawska M, Lower M, Piekarowicz A. 2011. Deletion of one nucleotide within the homonucleotide tract present in the hsdS gene alters the DNA sequence specificity of type I restriction-modification system NgoAV. J. Bacteriol. 193:6750–59
    [Google Scholar]
  2. 2. 
    Adhikari S, Curtis PD. 2016. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol. Rev. 40:575–91
    [Google Scholar]
  3. 3. 
    Alderman MH 3rd, Xiao AZ 2019. N6-Methyladenine in eukaryotes. Cell Mol. Life Sci. 76:2957–66
    [Google Scholar]
  4. 4. 
    Anjum A, Brathwaite KJ, Aidley J, Connerton PL, Cummings NJ et al. 2016. Phase variation of a Type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168. Nucleic Acids Res 44:4581–94
    [Google Scholar]
  5. 5. 
    Anton BP, Heiter DF, Benner JS, Hess EJ, Greenough L et al. 1997. Cloning and characterization of the BglII restriction-modification system reveals a possible evolutionary footprint. Gene 187:19–27
    [Google Scholar]
  6. 6. 
    Anton BP, Mongodin EF, Agrawal S, Fomenkov A, Byrd DR et al. 2015. Complete genome sequence of ER2796, a DNA methyltransferase-deficient strain of Escherichia coli K-12. PLOS ONE 10:e0127446
    [Google Scholar]
  7. 7. 
    Atack JM, Guo C, Litfin T, Yang L, Blackall PJ et al. 2020. Systematic analysis of REBASE identifies numerous Type I restriction-modification systems with duplicated, distinct hsdS specificity genes that can switch system specificity by recombination. mSystems 5:4e00497-20
    [Google Scholar]
  8. 8. 
    Atack JM, Guo C, Yang L, Zhou Y, Jennings MP. 2020. DNA sequence repeats identify numerous Type I restriction-modification systems that are potential epigenetic regulators controlling phase-variable regulons; phasevarions. FASEB J 34:1038–51
    [Google Scholar]
  9. 9. 
    Atack JM, Srikhanta YN, Fox KL, Jurcisek JA, Brockman KL et al. 2015. A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae. Nat. Commun. 6:7828
    [Google Scholar]
  10. 10. 
    Atack JM, Tan A, Bakaletz LO, Jennings MP, Seib KL. 2018. Phasevarions of bacterial pathogens: Methylomics sheds new light on old enemies. Trends Microbiol 26:715–26
    [Google Scholar]
  11. 11. 
    Atack JM, Yang Y, Seib KL, Zhou Y, Jennings MP. 2018. A survey of Type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons: phasevarions. Nucleic Acids Res 46:3532–42
    [Google Scholar]
  12. 12. 
    Baylin SB, Hoppener JW, de Bustros A, Steenbergh PH, Lips CJ, Nelkin BD. 1986. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res 46:2917–22
    [Google Scholar]
  13. 13. 
    Beauchamp JM, Leveque RM, Dawid S, DiRita VJ 2017. Methylation-dependent DNA discrimination in natural transformation of Campylobacter jejuni. PNAS 114:E8053–61
    [Google Scholar]
  14. 14. 
    Ben-Assa N, Coyne MJ, Fomenkov A, Livny J, Robins WP et al. 2020. Analysis of a phase-variable restriction modification system of the human gut symbiont Bacteroides fragilis. Nucleic Acids Res 48:1911040–53
    [Google Scholar]
  15. 15. 
    Betlach M, Hershfield V, Chow L, Brown W, Goodman H, Boyer HW. 1976. A restriction endonuclease analysis of the bacterial plasmid controlling the ecoRI restriction and modification of DNA. Fed. Proc. 35:2037–43
    [Google Scholar]
  16. 16. 
    Blakeway LV, Tan A, Lappan R, Ariff A, Pickering JL et al. 2018. Moraxella catarrhalis restriction-modification systems are associated with phylogenetic lineage and disease. Genome Biol. Evol. 10:2932–46
    [Google Scholar]
  17. 17. 
    Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A et al. 2016. The epigenomic landscape of prokaryotes. PLOS Genet 12:e1005854
    [Google Scholar]
  18. 18. 
    Bower EKM, Cooper LP, Roberts GA, White JH, Luyten Y et al. 2018. A model for the evolution of prokaryotic DNA restriction-modification systems based upon the structural malleability of Type I restriction-modification enzymes. Nucleic Acids Res 46:9067–80
    [Google Scholar]
  19. 19. 
    Broadbent SE, Balbontin R, Casadesus J, Marinus MG, van der Woude M. 2007. YhdJ, a nonessential CcrM-like DNA methyltransferase of Escherichia coli and Salmonella enterica. J. Bacteriol. 189:4325–27
    [Google Scholar]
  20. 20. 
    Budroni S, Siena E, Dunning Hotopp JC, Seib KL, Serruto D et al. 2011. Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. PNAS 108:4494–99
    [Google Scholar]
  21. 21. 
    Butterer A, Pernstich C, Smith RM, Sobott F, Szczelkun MD, Toth J. 2014. Type III restriction endonucleases are heterotrimeric: comprising one helicase-nuclease subunit and a dimeric methyltransferase that binds only one specific DNA. Nucleic Acids Res 42:5139–50
    [Google Scholar]
  22. 22. 
    Calisto BM, Pich OQ, Pinol J, Fita I, Querol E, Carpena X. 2005. Crystal structure of a putative type I restriction-modification S subunit from Mycoplasma genitalium. J. Mol. Biol. 351:749–62
    [Google Scholar]
  23. 23. 
    Callahan SJ, Luyten YA, Gupta YK, Wilson GG, Roberts RJ et al. 2016. Structure of Type IIL restriction-modification enzyme MmeI in complex with DNA has implications for engineering new specificities. PLOS Biol 14:e1002442
    [Google Scholar]
  24. 24. 
    Casadesus J. 2016. Bacterial DNA methylation and methylomes. Adv. Exp. Med. Biol. 945:35–61
    [Google Scholar]
  25. 25. 
    Chao MC, Zhu S, Kimura S, Davis BM, Schadt EE et al. 2015. A cytosine methyltransferase modulates the cell envelope stress response in the cholera pathogen [corrected]. PLOS Genet 11:e1005666 Correction. 2015 PLOS Genet 11:e1005739
    [Google Scholar]
  26. 26. 
    Chen C, Wang L, Chen S, Wu X, Gu M et al. 2017. Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes. PNAS 114:4501–6
    [Google Scholar]
  27. 27. 
    Cherry JL. 2018. Methylation-induced hypermutation in natural populations of bacteria. J. Bacteriol. 200:e00371-18
    [Google Scholar]
  28. 28. 
    Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP et al. 2006. Multireplicon genome architecture of Lactobacillus salivarius. PNAS 103:6718–23
    [Google Scholar]
  29. 29. 
    De Ste Croix M, Vacca I, Kwun MJ, Ralph JD, Bentley SD et al. 2017. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiol. Rev. 41:Suppl. 1S3–15
    [Google Scholar]
  30. 30. 
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A et al. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359:6379eaar4120
    [Google Scholar]
  31. 31. 
    Dunn DB, Smith JD. 1955. Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature 175:336–37
    [Google Scholar]
  32. 32. 
    Estibariz I, Overmann A, Ailloud F, Krebes J, Josenhans C, Suerbaum S. 2019. The core genome m5C methyltransferase JHP1050 (M.Hpy99III) plays an important role in orchestrating gene expression in Helicobacter pylori. Nucleic Acids Res 47:2336–48
    [Google Scholar]
  33. 33. 
    Fagerlund A, Langsrud S, Schirmer BC, Moretro T, Heir E. 2016. Genome analysis of Listeria monocytogenes sequence type 8 strains persisting in salmon and poultry processing environments and comparison with related strains. PLOS ONE 11:e0151117
    [Google Scholar]
  34. 34. 
    Fang G, Munera D, Friedman DI, Mandlik A, Chao MC et al. 2012. Genome-wide mapping of methyl-ated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat. Biotechnol. 30:1232–39
    [Google Scholar]
  35. 35. 
    Feinberg AP, Vogelstein B. 1983. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92
    [Google Scholar]
  36. 36. 
    Fioravanti A, Fumeaux C, Mohapatra SS, Bompard C, Brilli M et al. 2013. DNA binding of the cell cycle transcriptional regulator GcrA depends on N6-adenosine methylation in Caulobacter crescentus and other Alphaproteobacteria. PLOS Genet 9:e1003541
    [Google Scholar]
  37. 37. 
    Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC et al. 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7:461–65
    [Google Scholar]
  38. 38. 
    Fullmer MS, Ouellette M, Louyakis AS, Papke RT, Gogarten JP. 2019. The patchy distribution of restriction–modification system genes and the conservation of orphan methyltransferases in Halobacteria. Genes 10:3233
    [Google Scholar]
  39. 39. 
    Furuta Y, Abe K, Kobayashi I 2010. Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res 38:2428–43
    [Google Scholar]
  40. 40. 
    Furuta Y, Kawai M, Uchiyama I, Kobayashi I. 2011. Domain movement within a gene: a novel evolutionary mechanism for protein diversification. PLOS ONE 6:e18819
    [Google Scholar]
  41. 41. 
    Furuta Y, Kobayashi I. 2012. Movement of DNA sequence recognition domains between non-orthologous proteins. Nucleic Acids Res 40:9218–32
    [Google Scholar]
  42. 42. 
    Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC et al. 1983. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–94
    [Google Scholar]
  43. 43. 
    Gawthorne JA, Beatson SA, Srikhanta YN, Fox KL, Jennings MP. 2012. Origin of the diversity in DNA recognition domains in phasevarion associated modA genes of pathogenic Neisseria and Haemophilus influenzae. PLOS ONE 7:e32337
    [Google Scholar]
  44. 44. 
    Giacomodonato MN, Sarnacki SH, Llana MN, Cerquetti MC. 2009. Dam and its role in pathogenicity of Salmonella enterica. J. Infect. Dev. Ctries. 3:484–90
    [Google Scholar]
  45. 45. 
    Gold M, Hurwitz J, Anders M 1963. The enzymatic methylation of RNA and DNA. Biochem. Biophys. Res. Commun. 11:107–14
    [Google Scholar]
  46. 46. 
    Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S et al. 2015. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J 34:169–83
    [Google Scholar]
  47. 47. 
    Gonzalez D, Kozdon JB, McAdams HH, Shapiro L, Collier J. 2014. The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. Nucleic Acids Res 42:3720–35
    [Google Scholar]
  48. 48. 
    Gordeeva J, Morozova N, Sierro N, Isaev A, Sinkunas T et al. 2019. BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site. Nucleic Acids Res 47:253–65
    [Google Scholar]
  49. 49. 
    Gupta YK, Chan SH, Xu SY, Aggarwal AK. 2015. Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I. Nat. Commun. 6:7363
    [Google Scholar]
  50. 50. 
    Hagemann M, Gartner K, Scharnagl M, Bolay P, Lott SC et al. 2018. Identification of the DNA methyltransferases establishing the methylome of the cyanobacterium Synechocystis sp. PCC 6803. DNA Res 25:343–52
    [Google Scholar]
  51. 51. 
    Harris AJ, Goldman AD. 2020. The complex phylogenetic relationships of a 4mC/6mA DNA methyltransferase in prokaryotes. Mol. Phylogenet. Evol. 149:106837
    [Google Scholar]
  52. 52. 
    He YF, Li BZ, Li Z, Liu P, Wang Y et al. 2011. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–7
    [Google Scholar]
  53. 53. 
    Heitman J. 1993. On the origins, structures and functions of restriction-modification enzymes. Genet. Eng. 15:57–108
    [Google Scholar]
  54. 54. 
    Huang X, Wang J, Li J, Liu Y, Liu X et al. 2020. Prevalence of phase variable epigenetic invertons among host-associated bacteria. Nucleic Acids Res 48:2011468–85
    [Google Scholar]
  55. 55. 
    Humbelin M, Suri B, Rao DN, Hornby DP, Eberle H et al. 1988. Type III DNA restriction and modification systems EcoP1 and EcoP15: nucleotide sequence of the EcoP1 operon, the EcoP15 mod gene and some EcoP1 mod mutants. J. Mol. Biol. 200:23–29
    [Google Scholar]
  56. 56. 
    Ito S, Shen L, Dai Q, Wu SC, Collins LB et al. 2011. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–3
    [Google Scholar]
  57. 57. 
    Iyer LM, Tahiliani M, Rao A, Aravind L. 2009. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8:1698–710
    [Google Scholar]
  58. 58. 
    Iyer LM, Zhang D, Burroughs AM, Aravind L. 2013. Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. Nucleic Acids Res 41:7635–55
    [Google Scholar]
  59. 59. 
    Janulaitis A, Klimasauskas S, Petrusyte M, Butkus V. 1983. Cytosine modification in DNA by BcnI meth-ylase yields N4-methylcytosine. FEBS Lett 161:131–34
    [Google Scholar]
  60. 60. 
    Jeltsch A, Pingoud A. 1996. Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems. J. Mol. Evol. 42:91–96
    [Google Scholar]
  61. 61. 
    Jen FE-C, Scott AL, Tan A, Seib KL, Jennings MP. 2020. Random switching of the ModA11 Type III DNA methyltransferase of Neisseria meningitidis regulates Entner–Doudoroff aldolase expression by a methylation change in the eda promoter region. J. Mol. Biol. 432:215835–42
    [Google Scholar]
  62. 62. 
    Jin B, Li Y, Robertson KD. 2011. DNA methylation: superior or subordinate in the epigenetic hierarchy?. Genes Cancer 2:607–17
    [Google Scholar]
  63. 63. 
    Johnson TB, Coghill RD. 1925. Researches on pyrimidines. C111. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle Bacillus. J. Am. Chem. Soc. 47:2838–44
    [Google Scholar]
  64. 64. 
    Jonsson AB, Nyberg G, Normark S. 1991. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J 10:477–88
    [Google Scholar]
  65. 65. 
    Jurkowska RZ, Jeltsch A. 2016. Mechanisms and biological roles of DNA methyltransferases and DNA methylation: from past achievements to future challenges. Adv. Exp. Med. Biol. 945:1–17
    [Google Scholar]
  66. 66. 
    Kita K, Tsuda J, Kato T, Okamoto K, Yanase H, Tanaka M. 1999. Evidence of horizontal transfer of the EcoO109I restriction-modification gene to Escherichia coli chromosomal DNA. J. Bacteriol. 181:6822–27
    [Google Scholar]
  67. 67. 
    Kobayashi I. 2001. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–56
    [Google Scholar]
  68. 68. 
    Krebes J, Morgan RD, Bunk B, Sproer C, Luong K et al. 2014. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res 42:2415–32
    [Google Scholar]
  69. 69. 
    Kriaucionis S, Heintz N. 2009. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–30
    [Google Scholar]
  70. 70. 
    Kwun MJ, Oggioni MR, De Ste Croix M, Bentley SD, Croucher NJ. 2018. Excision-reintegration at a pneumococcal phase-variable restriction-modification locus drives within- and between-strain epigenetic differentiation and inhibits gene acquisition. Nucleic Acids Res 46:11438–53
    [Google Scholar]
  71. 71. 
    Lin LF, Posfai J, Roberts RJ, Kong H 2001. Comparative genomics of the restriction-modification systems in Helicobacter pylori. PNAS 98:2740–45
    [Google Scholar]
  72. 72. 
    Liu G, Jiang YM, Liu YC, Han LL, Feng H. 2020. A novel DNA methylation motif identified in Bacillus pumilus BA06 and possible roles in the regulation of gene expression. Appl. Microbiol. Biotechnol. 104:3445–57
    [Google Scholar]
  73. 73. 
    Løbner-Olesen A, Skovgaard O, Marinus MG. 2005. Dam methylation: coordinating cellular processes. Curr. Opin. Microbiol. 8:154–60
    [Google Scholar]
  74. 74. 
    Malone T, Blumenthal RM, Cheng X. 1995. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J. Mol. Biol. 253:618–32
    [Google Scholar]
  75. 75. 
    Manso AS, Chai MH, Atack JM, Furi L, De Ste Croix M et al. 2014. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat. Commun. 5:5055
    [Google Scholar]
  76. 76. 
    Martin JL, McMillan FM. 2002. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr. Opin. Struct. Biol. 12:783–93
    [Google Scholar]
  77. 77. 
    Militello KT, Mandarano AH, Varechtchouk O, Simon RD. 2014. Cytosine DNA methylation influences drug resistance in Escherichia coli through increased sugE expression. FEMS Microbiol. Lett. 350:100–6
    [Google Scholar]
  78. 78. 
    Militello KT, Simon RD, Qureshi M, Maines R, VanHorne ML et al. 2012. Conservation of Dcm-mediated cytosine DNA methylation in Escherichia coli. FEMS Microbiol. Lett. 328:78–85
    [Google Scholar]
  79. 79. 
    Mohapatra SS, Fioravanti A, Vandame P, Spriet C, Pini F et al. 2020. Methylation-dependent transcriptional regulation of crescentin gene (creS) by GcrA in Caulobacter crescentus. Mol. Microbiol. 114:127–39
    [Google Scholar]
  80. 80. 
    Morgan RD, Dwinell EA, Bhatia TK, Lang EM, Luyten YA. 2009. The MmeI family: type II restriction-modification enzymes that employ single-strand modification for host protection. Nucleic Acids Res 37:5208–21
    [Google Scholar]
  81. 81. 
    Morgan RD, Luyten YA. 2009. Rational engineering of type II restriction endonuclease DNA binding and cleavage specificity. Nucleic Acids Res 37:5222–33
    [Google Scholar]
  82. 82. 
    Mouammine A, Collier J. 2018. The impact of DNA methylation in Alphaproteobacteria. Mol. Microbiol. 110:1–10
    [Google Scholar]
  83. 83. 
    Moxon R, Bayliss C, Hood D. 2006. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40:307–33
    [Google Scholar]
  84. 84. 
    Murray IA, Clark TA, Morgan RD, Boitano M, Anton BP et al. 2012. The methylomes of six bacteria. Nucleic Acids Res 40:11450–62
    [Google Scholar]
  85. 85. 
    Murray NE. 2002. Immigration control of DNA in bacteria: self versus non-self. Microbiology 148:3–20
    [Google Scholar]
  86. 86. 
    Naito T, Kusano K, Kobayashi I. 1995. Selfish behavior of restriction-modification systems. Science 267:897–99
    [Google Scholar]
  87. 87. 
    Nye TM, Jacob KM, Holley EK, Nevarez JM, Dawid S et al. 2019. DNA methylation from a Type I restriction modification system influences gene expression and virulence in Streptococcus pyogenes. PLOS Pathog 15:e1007841
    [Google Scholar]
  88. 88. 
    Nye TM, van Gijtenbeek LA, Stevens AG, Schroeder JW, Randall JR et al. 2020. Methyltransferase DnmA is responsible for genome-wide N6-methyladenosine modifications at non-palindromic recognition sites in Bacillus subtilis. Nucleic Acids Res 48:5332–48
    [Google Scholar]
  89. 89. 
    Oliveira PH, Fang G. 2021. Conserved DNA methyltransferases: a window into fundamental mechanisms of epigenetic regulation in bacteria. Trends Microbiol 29:128–40
    [Google Scholar]
  90. 90. 
    Oliveira PH, Ribis JW, Garrett EM, Trzilova D, Kim A et al. 2020. Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nat. Microbiol. 5:166–80
    [Google Scholar]
  91. 91. 
    Oliveira PH, Touchon M, Rocha EP. 2014. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 42:10618–31
    [Google Scholar]
  92. 92. 
    Oliveira PH, Touchon M, Rocha EP 2016. Regulation of genetic flux between bacteria by restriction-modification systems. PNAS 113:5658–63
    [Google Scholar]
  93. 93. 
    Orlowski J, Bujnicki JM. 2008. Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses. Nucleic Acids Res 36:3552–69
    [Google Scholar]
  94. 94. 
    Payelleville A, Legrand L, Ogier JC, Roques C, Roulet A et al. 2018. The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated adenines. Sci. Rep. 8:12091
    [Google Scholar]
  95. 95. 
    Pirone-Davies C, Hoffmann M, Roberts RJ, Muruvanda T, Timme RE et al. 2015. Genome-wide methylation patterns in Salmonella enterica subsp. enterica serovars. PLOS ONE 10:e0123639
    [Google Scholar]
  96. 96. 
    Posfai J, Bhagwat AS, Posfai G, Roberts RJ. 1989. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res 17:2421–35
    [Google Scholar]
  97. 97. 
    Radlinska M, Bujnicki JM. 2001. Cloning of enterohemorrhagic Escherichia coli phage VT-2 dam methyltransferase. Acta Microbiol. Pol. 50:161–67
    [Google Scholar]
  98. 98. 
    Radlinska M, Bujnicki JM, Piekarowicz A. 1999. Structural characterization of two tandemly arranged DNA methyltransferase genes from Neisseria gonorrhoeae MS11: N4-cytosine specific M.NgoMXV and nonfunctional 5-cytosine-type M.NgoMorf2P. Proteins 37:717–28
    [Google Scholar]
  99. 99. 
    Raghunathan N, Goswami S, Leela JK, Pandiyan A, Gowrishankar J. 2019. A new role for Escherichia coli Dam DNA methylase in prevention of aberrant chromosomal replication. Nucleic Acids Res 47:5698–711
    [Google Scholar]
  100. 100. 
    Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA et al. 2003. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–12
    [Google Scholar]
  101. 101. 
    Rochepeau P, Selinger LB, Hynes MF. 1997. Transposon-like structure of a new plasmid-encoded restriction-modification system in Rhizobium leguminosarum VF39SM. Mol. Gen. Genet. 256:387–96
    [Google Scholar]
  102. 102. 
    Sanchez-Buso L, Golparian D, Parkhill J, Unemo M, Harris SR. 2019. Genetic variation regulates the activation and specificity of Restriction-Modification systems in Neisseria gonorrhoeae. Sci. Rep. 9:14685
    [Google Scholar]
  103. 103. 
    Sánchez-Romero MA, Olivenza DR, Gutiérrez G, Casadesús J. 2020. Contribution of DNA adenine methylation to gene expression heterogeneity in Salmonella enterica. Nucleic Acids Res 48:2111857–67
    [Google Scholar]
  104. 104. 
    Schluckebier G, O'Gara M, Saenger W, Cheng X. 1995. Universal catalytic domain structure of AdoMet-dependent methyltransferases. J. Mol. Biol. 247:16–20
    [Google Scholar]
  105. 105. 
    Seib KL, Pigozzi E, Muzzi A, Gawthorne JA, Delany I et al. 2011. A novel epigenetic regulator associated with the hypervirulent Neisseria meningitidis clonal complex 41/44. FASEB J 25:3622–33
    [Google Scholar]
  106. 106. 
    Seib KL, Srikhanta YN, Atack JM, Jennings MP. 2020. Epigenetic regulation of virulence and immunoevasion by phase-variable restriction-modification systems in bacterial pathogens. Annu. Rev. Microbiol. 74:655–71
    [Google Scholar]
  107. 107. 
    Seshasayee AS, Singh P, Krishna S 2012. Context-dependent conservation of DNA methyltransferases in bacteria. Nucleic Acids Res 40:7066–73
    [Google Scholar]
  108. 108. 
    Sibley MH, Raleigh EA 2004. Cassette-like variation of restriction enzyme genes in Escherichia coli C and relatives. Nucleic Acids Res 32:522–34
    [Google Scholar]
  109. 109. 
    Sitaraman R, Denison AM, Dybvig K. 2002. A unique, bifunctional site-specific DNA recombinase from Mycoplasma pulmonis. Mol. Microbiol. 46:1033–40
    [Google Scholar]
  110. 110. 
    Skoglund A, Bjorkholm B, Nilsson C, Andersson AF, Jernberg C et al. 2007. Functional analysis of the M.HpyAIV DNA methyltransferase of Helicobacter pylori. J. Bacteriol. 189:8914–21
    [Google Scholar]
  111. 111. 
    Skowron PM, Anton BP, Czajkowska E, Zebrowska J, Sulecka E et al. 2017. The third restriction-modification system from Thermus aquaticus YT-1: solving the riddle of two TaqII specificities. Nucleic Acids Res 45:9005–18
    [Google Scholar]
  112. 112. 
    Sohail A, Lieb M, Dar M, Bhagwat AS. 1990. A gene required for very short patch repair in Escherichia coli is adjacent to the DNA cytosine methylase gene. J. Bacteriol. 172:4214–21
    [Google Scholar]
  113. 113. 
    Srikhanta YN, Dowideit SJ, Edwards JL, Falsetta ML, Wu HJ et al. 2009. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLOS Pathog 5:e1000400
    [Google Scholar]
  114. 114. 
    Srikhanta YN, Gorrell RJ, Steen JA, Gawthorne JA, Kwok T et al. 2011. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori. PLOS ONE 6:e27569
    [Google Scholar]
  115. 115. 
    Srikhanta YN, Maguire TL, Stacey KJ, Grimmond SM, Jennings MP 2005. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. PNAS 102:5547–51
    [Google Scholar]
  116. 116. 
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–35
    [Google Scholar]
  117. 117. 
    Tan A, Hill DM, Harrison OB, Srikhanta YN, Jennings MP et al. 2016. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence. Sci. Rep. 6:21015
    [Google Scholar]
  118. 118. 
    Tauseef I, Harrison OB, Wooldridge KG, Feavers IM, Neal KR et al. 2011. Influence of the combination and phase variation status of the haemoglobin receptors HmbR and HpuAB on meningococcal virulence. Microbiology 157:1446–56
    [Google Scholar]
  119. 119. 
    Tyndall C, Lehnherr H, Sandmeier U, Kulik E, Bickle TA. 1997. The type IC hsd loci of the enterobacteria are flanked by DNA with high homology to the phage P1 genome: implications for the evolution and spread of DNA restriction systems. Mol. Microbiol. 23:729–36
    [Google Scholar]
  120. 120. 
    Vale FF, Megraud F, Vitor JM. 2009. Geographic distribution of methyltransferases of Helicobacter pylori: evidence of human host population isolation and migration. BMC Microbiol 9:193
    [Google Scholar]
  121. 121. 
    Vandenbussche I, Sass A, Pinto-Carbo M, Mannweiler O, Eberl L, Coenye T. 2020. DNA methylation epigenetically regulates gene expression in Burkholderia cenocepacia and controls biofilm formation, cell aggregation, and motility. mSphere 5:4e00455–20
    [Google Scholar]
  122. 122. 
    Vasu K, Nagaraja V. 2013. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol. Mol. Biol. Rev. 77:53–72
    [Google Scholar]
  123. 123. 
    Weiser JN, Maskell DJ, Butler PD, Lindberg AA, Moxon ER. 1990. Characterization of repetitive sequences controlling phase variation of Haemophilus influenzae lipopolysaccharide. J. Bacteriol. 172:3304–9
    [Google Scholar]
  124. 124. 
    Willemse N, Schultsz C. 2016. Distribution of Type I restriction-modification systems in Streptococcus suis: an outlook. Pathogens 5:462
    [Google Scholar]
  125. 125. 
    Wilson GG, Murray NE. 1991. Restriction and modification systems. Annu. Rev. Genet. 25:585–627
    [Google Scholar]
  126. 126. 
    Wion D, Casadesus J. 2006. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat. Rev. Microbiol. 4:183–92
    [Google Scholar]
  127. 127. 
    Wu D, Wang Y, Xu X. 2020. Effects of a type I RM system on gene expression and glycogen catabolism in Synechocystis sp. PCC 6803. Front. Microbiol 11:1258
    [Google Scholar]
  128. 128. 
    Yamaichi Y, Chao MC, Sasabe J, Clark L, Davis BM et al. 2015. High-resolution genetic analysis of the requirements for horizontal transmission of the ESBL plasmid from Escherichia coli O104:H4. Nucleic Acids Res 43:348–60
    [Google Scholar]
  129. 129. 
    Zautner AE, Goldschmidt AM, Thurmer A, Schuldes J, Bader O et al. 2015. SMRT sequencing of the Campylobacter coli BfR-CA-9557 genome sequence reveals unique methylation motifs. BMC Genom 16:1088
    [Google Scholar]
  130. 130. 
    Zhao L, Song Y, Li L, Gan N, Brand JJ, Song L. 2018. The highly heterogeneous methylated genomes and diverse restriction-modification systems of bloom-forming Microcystis. Harmful Algae 75:87–93
    [Google Scholar]
  131. 131. 
    Zhou B, Schrader JM, Kalogeraki VS, Abeliuk E, Dinh CB et al. 2015. The global regulatory architecture of transcription during the Caulobacter cell cycle. PLOS Genet 11:e1004831
    [Google Scholar]
  132. 132. 
    Zhou X, Wang J, Herrmann J, Moerner WE, Shapiro L 2019. Asymmetric division yields progeny cells with distinct modes of regulating cell cycle-dependent chromosome methylation. PNAS 116:15661–70
    [Google Scholar]
  133. 133. 
    Ziebuhr W, Krimmer V, Rachid S, Lossner I, Gotz F, Hacker J. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbiol. 32:345–56
    [Google Scholar]
/content/journals/10.1146/annurev-micro-040521-035040
Loading
/content/journals/10.1146/annurev-micro-040521-035040
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error