1932

Abstract

Identified in the late nineteenth century as a single species residing on human skin, is now recognized as a diverse genus comprising 18 species inhabiting not only skin but human gut, hospital environments, and even deep-sea sponges. All cultivated species are lipid dependent, having lost genes for lipid synthesis and carbohydrate metabolism. The surging interest in results from development of tools to improve sampling, culture, identification, and genetic engineering, which has led to findings implicating it in numerous skin diseases, Crohn disease, and pancreatic cancer. However, it has become clear that plays a multifaceted role in human health, with mutualistic activity in atopic dermatitis and a preventive effect against other skin infections due to its potential to compete with skin pathogens such as Improved understanding of complex microbe-microbe and host-microbe interactions will be required to define ’s role in human and animal health and disease so as to design targeted interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-040820-010114
2022-09-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-040820-010114.html?itemId=/content/journals/10.1146/annurev-micro-040820-010114&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G. 2016. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: Supplementary issue: bioinformatics methods and applications for big metagenomics data. Evol. Bioinformat 12:Suppl. 15–16 https://doi.org/10.4137/EBO.S36436
    [Crossref] [Google Scholar]
  2. 2.
    Ambaw YA, Pagac MP, Irudayaswamy AS, Raida M, Bendt AK et al. 2021. Host/Malassezia interaction: a quantitative, non-invasive method profiling oxylipin production associates human skin eicosanoids with Malassezia. Metabolites 11:700
    [Google Scholar]
  3. 3.
    Amend A. 2014. From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLOS Pathog 10:e1004277
    [Google Scholar]
  4. 4.
    Applen Clancey S, Ruchti F, LeibundGut-Landmann S, Heitman J, Ianiri G 2020. A novel mycovirus evokes transcriptional rewiring in the fungus Malassezia and stimulates beta interferon production in macrophages. mBio 11:e01534–20
    [Google Scholar]
  5. 5.
    Ashbee HR, Evans EG. 2002. Immunology of diseases associated with Malassezia species. Clin. Microbiol. Rev. 15:21–57
    [Google Scholar]
  6. 6.
    Ashbee HR, Ingham E, Holland KT, Cunliffe WJ. 1993. The carriage of Malassezia furfur serovars A, B and C in patients with pityriasis versicolor, seborrhoeic dermatitis and controls. Br. J. Dermatol. 129:533–40
    [Google Scholar]
  7. 7.
    Ayhan M, Sancak B, Karaduman A, Arikan S, Sahin S. 2007. Colonization of neonate skin by Malassezia species: relationship with neonatal cephalic pustulosis. J. Am. Acad. Dermatol. 57:1012–18
    [Google Scholar]
  8. 8.
    Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango MG et al. 2019. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176:1340–55.e15
    [Google Scholar]
  9. 9.
    Balaji H, Heratizadeh A, Wichmann K, Niebuhr M, Crameri R et al. 2011. Malassezia sympodialis thioredoxin-specific T cells are highly cross-reactive to human thioredoxin in atopic dermatitis. J. Allergy Clin. Immunol. 128:92–99.e4
    [Google Scholar]
  10. 10.
    Bashiardes S, Zilberman-Schapira G, Elinav E. 2016. Use of metatranscriptomics in microbiome research. Bioinformat. Biol. Insights 10:19–25
    [Google Scholar]
  11. 11.
    Batra R, Boekhout T, Guého E, Cabañes FJ, Dawson TL Jr., Gupta AK. 2005. Malassezia Baillon, emerging clinical yeasts. FEMS Yeast Res 5:1101–13
    [Google Scholar]
  12. 12.
    Benham RW. 1939. Cultural characteristics of Pityrosporum ovale—a lipophylic fungus: nutrient and growth requirements. J. Investig. Dermatol. 2:187–203
    [Google Scholar]
  13. 13.
    Bernier V, Weill FX, Hirigoyen V, Elleau C, Feyler A et al. 2002. Skin colonization by Malassezia species in neonates: a prospective study and relationship with neonatal cephalic pustulosis. Arch. Dermatol. 138:215–18
    [Google Scholar]
  14. 14.
    Boekhout T, Bosboom RW. 1994. Karyotyping of Malassezia yeasts: taxonomic and epidemiological implications. Syst. Appl. Microbiol. 17:146–53
    [Google Scholar]
  15. 15.
    Boekhout T, Kamp M, Gueho E. 1998. Molecular typing of Malassezia species with PFGE and RAPD. Med. Mycol. 36:365–72
    [Google Scholar]
  16. 16.
    Bond R, Morris DO, Guillot J, Bensignor EJ, Robson D et al. 2020. Biology, diagnosis and treatment of Malassezia dermatitis in dogs and cats. Vet. Dermatol. 31:73–77
    [Google Scholar]
  17. 17.
    Brasch J, Christophers E. 1993. Azelaic acid has antimycotic properties in vitro. Dermatology 186:55–58
    [Google Scholar]
  18. 18.
    Brilhante RSN, Rocha MGD, Guedes GMM, Oliveira JS, Araújo GDS et al. 2018. Malassezia pachydermatis from animals: planktonic and biofilm antifungal susceptibility and its virulence arsenal. Vet. Microbiol. 220:47–52
    [Google Scholar]
  19. 19.
    Buommino E, Baroni A, Papulino C, Nocera FP, Coretti L et al. 2018. Malassezia pachydermatis up-regulates AhR related CYP1A1 gene and epidermal barrier markers in human keratinocytes. Med. Mycol. 56:987–93
    [Google Scholar]
  20. 20.
    Burton M, Krumbeck JA, Wu G, Tang S, Prem A et al. 2022. The adult microbiome of healthy and otitis patients: definition of the core healthy and diseased ear microbiomes. PLOS ONE 17:1e0262806
    [Google Scholar]
  21. 21.
    Byrd AL, Belkaid Y, Segre JA. 2018. The human skin microbiome. Nat. Rev. Microbiol. 16:3143–55
    [Google Scholar]
  22. 22.
    Celis AM, Vos AM, Triana S, Medina CA, Escobar N et al. 2017. Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. J. Microbiol. Methods 134:1–6
    [Google Scholar]
  23. 23.
    Chen See J, Ly T, Shope A, Bess J, Wall A et al. 2021. A metatranscriptomics survey of microbial diversity on surfaces post-intervention of clean SURFACES® technology in an intensive care unit. Front. Cell Infect. Microbiol. 11:705593
    [Google Scholar]
  24. 24.
    Chng KR, Tay AS, Li C, Ng AH, Wang J et al. 2016. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat. Microbiol. 1:16106
    [Google Scholar]
  25. 25.
    Chung D, Barker BM, Carey CC, Merriman B, Werner ER et al. 2014. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLOS Pathog 10:e1004487
    [Google Scholar]
  26. 26.
    Corzo-León DE, MacCallum DM, Munro CA. 2021. Host responses in an ex vivo human skin model challenged with Malessezia sympodialis. Front. Cell. Infect. Microbiol. 10:10:561382
    [Google Scholar]
  27. 27.
    Cottier F, Srinivasan KG, Yurieva M, Liao W, Poidinger M et al. 2018. Advantages of meta-total RNA sequencing (MeTRS) over shotgun metagenomics and amplicon-based sequencing in the profiling of complex microbial communities. npj Biofilms Microbiomes 4:2
    [Google Scholar]
  28. 28.
    Cunningham AC, Leeming JP, Ingham E, Gowland G. 1990. Differentiation of three serovars of Malassezia furfur. J. Appl. Bacteriol. 68:439–46
    [Google Scholar]
  29. 29.
    de Jong MAWP, Vriend LEM, Theelen B, Taylor ME, Fluitsma D et al. 2010. C-type lectin Langerin is a β-glucan receptor on human Langerhans cells that recognizes opportunistic and pathogenic fungi. Mol. Immunol. 47:1216–25
    [Google Scholar]
  30. 30.
    DeAngelis YM, Gemmer CM, Kaczvinsky JR, Kenneally DC, Schwartz JR, Dawson TL Jr. 2005. Three etiologic facets of dandruff and seborrheic dermatitis: Malassezia fungi, sebaceous lipids, and individual sensitivity. J. Investig. Dermatol. Symp. Proc. 10:295–97
    [Google Scholar]
  31. 31.
    Findley K, Oh J, Yang J, Conlan S, Deming C et al. 2013. Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367–70
    [Google Scholar]
  32. 32.
    Fischer GJ, Keller NP. 2016. Production of cross-kingdom oxylipins by pathogenic fungi: an update on their role in development and pathogenicity. J. Microbiol. 54:254–64
    [Google Scholar]
  33. 33.
    Frau A, Ijaz UZ, Slater R, Jonkers D, Penders J et al. 2021. Inter-kingdom relationships in Crohn's disease explored using a multi-omics approach. Gut Microbes 13:1930871
    [Google Scholar]
  34. 34.
    Fredricks DN, Relman DA. 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9:18–33
    [Google Scholar]
  35. 35.
    Furue M, Tsuji G, Mitoma C, Nakahara T, Chiba T et al. 2015. Gene regulation of filaggrin and other skin barrier proteins via aryl hydrocarbon receptor. J. Dermatol. Sci. 80:83–88
    [Google Scholar]
  36. 36.
    Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A. 2012. The Malassezia genus in skin and systemic diseases. Clin. Microbiol. Rev. 25:106–41
    [Google Scholar]
  37. 37.
    Gaitanis G, Magiatis P, Stathopoulou K, Bassukas ID, Alexopoulos EC et al. 2008. AhR ligands, malassezin, and indolo[3,2-b]carbazole are selectively produced by Malassezia furfur strains isolated from seborrheic dermatitis. J. Investig. Dermatol. 128:1620–25
    [Google Scholar]
  38. 38.
    Gallo RL. 2017. Human skin is the largest epithelial surface for interaction with microbes. J. Investig. Dermatol. 137:1213–14
    [Google Scholar]
  39. 39.
    Gemmer CM, DeAngelis YM, Theelen B, Boekhout T, Dawson TL Jr. 2002. Fast, noninvasive method for molecular detection and differentiation of Malassezia yeast species on human skin and application of the method to dandruff microbiology. J. Clin. Microbiol. 40:3350–57
    [Google Scholar]
  40. 40.
    Gioti A, Nystedt B, Li W, Xu J, Andersson A et al. 2013. Genomic insights into the atopic eczema-associated skin commensal yeast Malassezia sympodialis. mBio 4:e00572–12
    [Google Scholar]
  41. 41.
    Glatz M, Bosshard PP, Hoetzenecker W, Schmid-Grendelmeier P. 2015. The role of Malassezia spp. in atopic dermatitis. J. Clin. Med. 4:1217–28
    [Google Scholar]
  42. 42.
    Goh JPZ, Ianiri G, Heitman J, Dawson TL Jr. 2020. Expression of a Malassezia codon optimized mCherry fluorescent protein in a bicistronic vector. Cell Infect. Microbiol.10:367
    [Google Scholar]
  43. 43.
    Gosse RM, Vanderwyk RW. 1969. The relationship of a nystatin-resistant strain of Pityrosporum ovale to dandruff. J. Soc. Cosmet. Chem. 20:603–13
    [Google Scholar]
  44. 44.
    Grän F, Kerstan A, Serfling E, Goebeler M, Muhammad K. 2020. Current developments in the immunology of psoriasis. Yale J. Biol. Med. 93:97–110
    [Google Scholar]
  45. 45.
    Grice EA, Dawson TL. 2017. Host–microbe interactions: Malassezia and human skin. Curr. Opin. Microbiol. 40:81–87
    [Google Scholar]
  46. 46.
    Guého E, Midgley G, Guillot J. 1996. The genus Malassezia with description of four new species. Antonie van Leeuwenhoek 69:337–55
    [Google Scholar]
  47. 47.
    Guillot J, Bond R. 2020. Malassezia yeasts in veterinary dermatology: an updated overview. Front. Cell. Infect. Microbiol. 10:79
    [Google Scholar]
  48. 48.
    Hannigan GD, Grice EA. 2013. Microbial ecology of the skin in the era of metagenomics and molecular microbiology. Cold Spring Harb. . Perspect. Med. 3:a015362
    [Google Scholar]
  49. 49.
    Heitman J, Carter DA, Dyer PS, Soll DR. 2014. Sexual reproduction of human fungal pathogens. Cold Spring Harb. . Perspect. Med. 4:a019281
    [Google Scholar]
  50. 50.
    Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35:518–22
    [Google Scholar]
  51. 51.
    Holland DB, Bojar RA, Jeremy AHT, Ingham E, Holland KT. 2008. Microbial colonization of an in vitro model of a tissue engineered human skin equivalent—a novel approach. FEMS Microbiol. Lett. 279:110–15
    [Google Scholar]
  52. 52.
    Hurabielle C, Link VM, Bouladoux N, Han S-J, Merrill ED et al. 2020. Immunity to commensal skin fungi promotes psoriasiform skin inflammation. PNAS 117:16465–74
    [Google Scholar]
  53. 53.
    Ianiri G, Applen Clancey S, Lee SC, Heitman J. 2017. FKBP12-dependent inhibition of calcineurin mediates immunosuppressive antifungal drug action in Malassezia. mBio 8:e01752–17
    [Google Scholar]
  54. 54.
    Ianiri G, Averette AF, Kingsbury JM, Heitman J, Idnurm A. 2016. Gene function analysis in the ubiquitous human commensal and pathogen Malassezia genus. mBio 7:e01853–16
    [Google Scholar]
  55. 55.
    Ianiri G, Coelho MA, Ruchti F, Sparber F, McMahon TJ et al. 2020. HGT in the human and skin commensal Malassezia: A bacterially derived flavohemoglobin is required for NO resistance and host interaction. PNAS 117:15884–94
    [Google Scholar]
  56. 56.
    Ianiri G, Dagotto G, Sun S, Heitman J. 2019. Advancing functional genetics through Agrobacterium-mediated insertional mutagenesis and CRISPR/Cas9 in the commensal and pathogenic yeast Malassezia. Genetics 212:1163–79
    [Google Scholar]
  57. 57.
    Ianiri G, Heitman J. 2020. Approaches for genetic discoveries in the skin commensal and pathogenic Malassezia yeasts. Front. Cell. Infect. Microbiol. 10:393
    [Google Scholar]
  58. 58.
    Idnurm A, Bahn Y-S, Nielsen K, Lin X, Fraser JA, Heitman J. 2005. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat. Rev. Microbiol. 3:753–64
    [Google Scholar]
  59. 59.
    Ishikawa T, Itoh F, Yoshida S, Saijo S, Matsuzawa T et al. 2013. Identification of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe 13:477–88
    [Google Scholar]
  60. 60.
    Jin J-H, Lee K-T, Hong J, Lee D, Jang E-H et al. 2020. Genome-wide functional analysis of phosphatases in the pathogenic fungus Cryptococcus neoformans. Nat. Commun. 11:4212
    [Google Scholar]
  61. 61.
    Jo JH, Deming C, Kennedy EA, Conlan S, Polley EC et al. 2016. Diverse human skin fungal communities in children converge in adulthood. J. Investig. Dermatol. 136:2356–63
    [Google Scholar]
  62. 62.
    Johnson AD, Yanek LR, Chen MH, Faraday N, Larson MG et al. 2010. Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nat. Genet. 42:608–13
    [Google Scholar]
  63. 63.
    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP et al. 2012. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–24
    [Google Scholar]
  64. 64.
    Jung K-W, Yang D-H, Maeng S, Lee K-T, So Y-S et al. 2015. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat. Commun. 6:6757
    [Google Scholar]
  65. 65.
    Kim M, Cho YJ, Park M, Choi Y, Hwang SY, Jung WH. 2018. Genomic tandem quadruplication is associated with ketoconazole resistance in Malassezia pachydermatis. J. Microbiol. Biotechnol. 28:1937–45
    [Google Scholar]
  66. 66.
    Kistowska M, Fenini G, Jankovic D, Feldmeyer L, Kerl K et al. 2014. Malassezia yeasts activate the NLRP3 inflammasome in antigen-presenting cells via Syk-kinase signalling. Exp. Dermatol. 23:884–89
    [Google Scholar]
  67. 67.
    Koga H, Munechika Y, Matsumoto H, Nanjoh Y, Harada K et al. 2019. Guinea pig seborrheic dermatitis model of Malassezia restricta and the utility of luliconazole. Med. Mycol. 58:820–26
    [Google Scholar]
  68. 68.
    Kowalski CH, Kerkaert JD, Liu K-W, Bond MC, Hartmann R et al. 2019. Fungal biofilm morphology impacts hypoxia fitness and disease progression. Nat. Microbiol. 4:2430–41
    [Google Scholar]
  69. 69.
    Kretschmer M, Klose J, Kronstad JW. 2012. Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis. Eukaryot. Cell 11:1055–66
    [Google Scholar]
  70. 70.
    Larsen SB, Cowley CJ, Fuchs E. 2020. Epithelial cells: liaisons of immunity. Curr. Opin. Immunol. 62:45–53
    [Google Scholar]
  71. 71.
    Lee J, Koehler KR. 2021. Skin organoids: a new human model for developmental and translational research. Exp. Dermatol. 30:613–20
    [Google Scholar]
  72. 72.
    Lee K-T, Hong J, Lee D-G, Lee M, Cha S et al. 2020. Fungal kinases and transcription factors regulating brain infection in Cryptococcus neoformans. Nat. Commun. 11:1521
    [Google Scholar]
  73. 73.
    Leong C, Kit JCW, Lee SM, Lam YI, Goh JPZ et al. 2021. Azole resistance mechanisms in pathogenic M. furfur. Antimicrob. Agents Chemother 65:e01975–20
    [Google Scholar]
  74. 74.
    Leong C, Schmid B, Toi MJ, Wang J, Irudayaswamy AS et al. 2019. Geographical and ethnic differences influence culturable commensal yeast diversity on healthy skin. Front. Microbiol 10:1891
    [Google Scholar]
  75. 75.
    Leyden JJ, McGinley KJ, Kligman AM. 1976. Role of microorganisms in dandruff. Arch. Dermatol. 112:333–38
    [Google Scholar]
  76. 76.
    Li H, Goh BN, Teh WK, Jiang Z, Goh JPZ et al. 2018. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Investig. Dermatol. 138:1137–45
    [Google Scholar]
  77. 77.
    Liguori G, Lamas B, Richard ML, Brandi G, da Costa G et al. 2016. Fungal dysbiosis in mucosa-associated microbiota of Crohn's disease patients. J. Crohn's Colitis 10:296–305
    [Google Scholar]
  78. 78.
    Limon JJ, Tang J, Li D, Wolf AJ, Michelsen KS et al. 2019. Malassezia is associated with Crohn's disease and exacerbates colitis in mouse models. Cell Host Microbe 25:377–88.e6
    [Google Scholar]
  79. 79.
    Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. 2008. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 135:174–88
    [Google Scholar]
  80. 80.
    Magiatis P, Pappas P, Gaitanis G, Mexia N, Melliou E et al. 2013. Malassezia yeasts produce a collection of exceptionally potent activators of the Ah (dioxin) receptor detected in diseased human skin. J. Investig. Dermatol. 133:2023–30
    [Google Scholar]
  81. 81.
    Malassez L. 1874. Note sur le champignon de la pelade. Arch. Physiol. Norm. Path. 6:203
    [Google Scholar]
  82. 82.
    Mayser P. 2015. Medium chain fatty acid ethyl esters—activation of antimicrobial effects by Malassezia enzymes. Mycoses 58:215–19
    [Google Scholar]
  83. 83.
    Merkel S, Heidrich D, Danilevicz CK, Scroferneker ML, Zanette RA. 2018. Drosophila melanogaster as a model for the study of Malassezia pachydermatis infections. Vet. Microbiol. 224:31–33
    [Google Scholar]
  84. 84.
    Millet N, Solis NV, Swidergall M. 2020. Mucosal IgA prevents commensal Candida albicans dysbiosis in the oral cavity. Front. Immunol. 11:555363
    [Google Scholar]
  85. 85.
    Min K, Jannace TF, Si H, Veeramah KR, Haley JD, Konopka JB. 2021. Integrative multi-omics profiling reveals cAMP-independent mechanisms regulating hyphal morphogenesis in Candida albicans. PLOS Pathog 17:e1009861
    [Google Scholar]
  86. 86.
    Miyachi H, Wakabayashi S, Sugihira T, Aoyama R, Saijo S et al. 2021. Keratinocyte IL-36 receptor/MyD88 signaling mediates Malassezia-induced IL-17-dependent skin inflammation. J. Infect. Dis. 223:1753–65
    [Google Scholar]
  87. 87.
    Miyake Y, Yamasaki S. 2020. Immune recognition of pathogen-derived glycolipids through Mincle. Adv. Exp. Med. Biol. 1204:31–56
    [Google Scholar]
  88. 88.
    Nagata R, Nagano H, Ogishima D, Nakamura Y, Hiruma M, Sugita T. 2012. Transmission of the major skin microbiota, Malassezia, from mother to neonate. Pediatr. Int. 54:350–55
    [Google Scholar]
  89. 89.
    Naglik JR, Gaffen SL, Hube B. 2019. Candidalysin: discovery and function in Candida albicans infections. Curr. Opin. Microbiol. 52:100–9
    [Google Scholar]
  90. 90.
    Nalamothu V, O'Leary AL, Kandavilli S, Fraser J, Pandya V. 2009. Evaluation of a nonsteroidal topical cream in a guinea pig model of Malassezia furfur infection. Clin. Dermatol. 27:S41–43
    [Google Scholar]
  91. 91.
    Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32:268–74
    [Google Scholar]
  92. 92.
    Nielsen K, Heitman J. 2007. Sex and virulence of human pathogenic fungi. Adv. Genet. 57:143–73
    [Google Scholar]
  93. 93.
    Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS et al. 2018. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–64
    [Google Scholar]
  94. 94.
    Oble DA, Collett E, Hsieh M, Ambjørn M, Law J et al. 2005. A novel T cell receptor transgenic animal model of seborrheic dermatitis-like skin disease. J. Invesigt. Dermatol. 124:151–59
    [Google Scholar]
  95. 95.
    Ogai K, Nagase S, Mukai K, Iuchi T, Mori Y et al. 2018. A comparison of techniques for collecting skin microbiome samples: swabbing versus tape-stripping. Front. Microbiol. 9:2326 Erratum 2018. Front. Microbiol. 9:2812
    [Google Scholar]
  96. 96.
    Oh J, Byrd AL, Park M, Program NCS, Kong HH, Segre JA. 2016. Temporal stability of the human skin microbiome. Cell 165:854–66
    [Google Scholar]
  97. 97.
    Ost KS, O'Meara TR, Stephens WZ, Chiaro T, Zhou H et al. 2021. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596:114–18
    [Google Scholar]
  98. 98.
    Pang KL, Guo SY, Chen IA, Burgaud G, Luo ZH et al. 2019. Insights into fungal diversity of a shallow-water hydrothermal vent field at Kueishan Island, Taiwan by culture-based and metabarcoding analyses. PLOS ONE 14:e0226616
    [Google Scholar]
  99. 99.
    Park CO, Fu X, Jiang X, Pan Y, Teague JE et al. 2018. Staged development of long-lived T-cell receptor αβ TH17 resident memory T-cell population to Candida albicans after skin infection. J. Allergy Clin. Immunol. 142:647–62
    [Google Scholar]
  100. 100.
    Park M, Cho Y-J, Kim D, Yang C-S, Lee SM et al. 2020. A novel virus alters gene expression and vacuolar morphology in Malassezia cells and induces a TLR3-mediated inflammatory immune response. mBio 11:e01521–20
    [Google Scholar]
  101. 101.
    Pedrosa AF, Lisboa C, Branco J, Pellevoisin C, Miranda IM, Rodrigues AG. 2019. Malassezia interaction with a reconstructed human epidermis: keratinocyte immune response. Mycoses 62:932–36
    [Google Scholar]
  102. 102.
    Poh SE, Goh JPZ, Fan C, Chua W, Gan SQ et al. 2020. Identification of Malassezia furfur secreted aspartyl protease 1 (MfSAP1) and its role in extracellular matrix degradation. Front. Cell Infect. Microbiol. 10:148
    [Google Scholar]
  103. 103.
    Preuss J, Hort W, Lang S, Netsch A, Rahlfs S et al. 2013. Characterization of tryptophan aminotransferase 1 of Malassezia furfur, the key enzyme in the production of indolic compounds by M. furfur. Exp. Dermatol. 22:736–41
    [Google Scholar]
  104. 104.
    Proctor DM, Dangana T, Sexton DJ, Fukuda C, Yelin RD et al. 2021. Integrated genomic, epidemiologic investigation of Candida auris skin colonization in a skilled nursing facility. Nat. Med. 27:1401–9
    [Google Scholar]
  105. 105.
    Prohic A, Jovovic Sadikovic T, Krupalija-Fazlic M, Kuskunovic-Vlahovljak S 2016. Malassezia species in healthy skin and in dermatological conditions. Int. J. Dermatol. 55:494–504
    [Google Scholar]
  106. 106.
    Ramasamy S, Barnard E, Dawson TL Jr., Li H. 2019. The role of the skin microbiota in acne pathophysiology. Br. J. Dermatol. 181:691–99
    [Google Scholar]
  107. 107.
    Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y et al. 2011. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43:1066–73
    [Google Scholar]
  108. 108.
    Ro BI, Dawson TL. 2005. The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruff. J. Investig. Dermatol. Symp. Proc. 10:194–97
    [Google Scholar]
  109. 109.
    Roemer T, Jiang B, Davison J, Ketela T, Veillette K et al. 2003. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol. Microbiol. 50:167–81
    [Google Scholar]
  110. 110.
    Sabouraud R. 1897. La séborrhée grasse et la pelade. Ann. Inst. Pasteur 11:134–59
    [Google Scholar]
  111. 111.
    Saheb Kashaf S, Proctor DM, Deming C, Saary P, Hölzer M et al. 2022. Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nat. Microbiol 7:1169–79
    [Google Scholar]
  112. 112.
    Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC et al. 2020. Loss of centromere function drives karyotype evolution in closely related Malassezia species. eLife 9:e53944
    [Google Scholar]
  113. 113.
    SanMiguel A, Grice EA. 2015. Interactions between host factors and the skin microbiome. Cell Mol. Life Sci. 72:1499–515
    [Google Scholar]
  114. 114.
    Saunders CW, Scheynius A, Heitman J. 2012. Malassezia fungi are specialized to live on skin and associated with dandruff, eczema, and other skin diseases. PLOS Pathog 8:e1002701
    [Google Scholar]
  115. 115.
    Scheffold A, Bacher P, LeibundGut-Landmann S. 2020. T cell immunity to commensal fungi. Curr. Opin. Microbiol. 58:116–23
    [Google Scholar]
  116. 116.
    Schommer NN, Gallo RL. 2013. Structure and function of the human skin microbiome. Trends Microbiol 21:660–68
    [Google Scholar]
  117. 117.
    Sen K, Bai M, Sen B, Wang G. 2021. Disentangling the structure and function of mycoplankton communities in the context of marine environmental heterogeneity. Sci. Total Environ. 766:142635
    [Google Scholar]
  118. 118.
    Sfriso R, Egert M, Gempeler M, Voegeli R, Campiche R. 2020. Revealing the secret life of skin—with the microbiome you never walk alone. Int. J. Cosmet. Sci. 42:116–26
    [Google Scholar]
  119. 119.
    Sohnle PG, Collins-Lech C, Huhta KE. 1983. Class-specific antibodies in young and aged humans against organisms producing superficial fungal infections. Br. J. Dermatol. 108:69–76
    [Google Scholar]
  120. 120.
    Sokol H, Leducq V, Aschard H, Pham H-P, Jegou S et al. 2017. Fungal microbiota dysbiosis in IBD. Gut 66:1039–48
    [Google Scholar]
  121. 121.
    Sparber F, De Gregorio C, Steckholzer S, Ferreira FM, Dolowschiak T et al. 2019. The skin commensal yeast Malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation. Cell Host Microbe 25:389–403.e6
    [Google Scholar]
  122. 122.
    Sparber F, LeibundGut-Landmann S. 2017. Host responses to Malassezia spp. in the mammalian skin. Front. Immunol. 8:1614
    [Google Scholar]
  123. 123.
    Sparber F, LeibundGut-Landmann S. 2019. Infecting mice with Malassezia spp. to study the fungus-host interaction. J. Vis. Exp.153:e60175
    [Google Scholar]
  124. 124.
    Spatz M, Richard ML. 2020. Overview of the potential role of Malassezia in gut health and disease. Front. Cell. Infect. Microbiol. 10:201
    [Google Scholar]
  125. 125.
    Stalhberger T, Simenel C, Clavaud C, Eijsink VG, Jourdain R et al. 2014. Chemical organization of the cell wall polysaccharide core of Malassezia restricta. J. Biol. Chem. 289:12647–56
    [Google Scholar]
  126. 126.
    Stewart JIP, Fava VM, Kerkaert JD, Subramanian AS, Gravelat FN et al. 2020. Reducing Aspergillus fumigatus virulence through targeted dysregulation of the conidiation pathway. mBio 11:1e03202–19
    [Google Scholar]
  127. 127.
    Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512–26
    [Google Scholar]
  128. 128.
    Tang S, Prem A, Tjokrosurjo J, Sary M, Van Bel MA et al. 2020. The canine skin and ear microbiome: a comprehensive survey of pathogens implicated in canine skin and ear infections using a novel next-generation-sequencing-based assay. Vet. Microbiol. 247:108764
    [Google Scholar]
  129. 129.
    Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A et al. 2016. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl. Environ. Microbiol. 82:7217–26
    [Google Scholar]
  130. 130.
    Theelen B, Cafarchia C, Gaitanis G, Bassukas ID, Boekhout T, Dawson TL Jr. 2018. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. 56:S10–25
    [Google Scholar]
  131. 131.
    Theelen B, Christinaki AC, Dawson TL Jr., Boekhout T, Kouvelis VN. 2021. Comparative analysis of Malassezia furfur mitogenomes and the development of a mitochondria-based typing approach. FEMS Yeast Res 21:7foab051
    [Google Scholar]
  132. 132.
    Theelen B, Mixão V, Ianiri G, Goh JPZ, Dijksterhuis J et al. 2022. Multiple hybridization events punctuate the evolutionary trajectory of Malassezia furfur. mBio 13:2e0385321
    [Google Scholar]
  133. 133.
    Torres M, Pinzón EN, Rey FM, Martinez H, Parra Giraldo CM, Celis Ramírez AM. 2020. Galleria mellonella as a novelty in vivo model of host-pathogen interaction for Malassezia furfur CBS 1878 and Malassezia pachydermatis CBS 1879. Front. Cell Infect. Microbiol. 10:199
    [Google Scholar]
  134. 134.
    Troller JA. 1971. Model system for the investigation of dandruff. J. Soc. Cosmetic Chem. 22:3187–98
    [Google Scholar]
  135. 135.
    Van Cutsem J, Van Gerven F, Fransen J, Schrooten P, Janssen PAJ. 1990. The in vitro antifungal activity of ketoconazole, zinc pyrithione, and selenium sulfide against Pityrosporum and their efficacy as a shampoo in the treatment of experimental pityrosporosis in guinea pigs. J. Am. Acad. Dermatol. 22:993–98
    [Google Scholar]
  136. 136.
    Vanderwyk RW, Hechemy KE. 1967. A comparison of the bacterial and yeast flora of the human scalp and their effect upon dandruff production. J. Soc. Cosmet. Chem. 18:629–39
    [Google Scholar]
  137. 137.
    Vanderwyk RW, Roia FC. 1964. The relationship between dandruff and the microbial flora of the human scalp. J. Soc. Cosmet. Chem. 15:761–68
    [Google Scholar]
  138. 138.
    Vijaya Chandra SH, Srinivas R, Dawson TL Jr., Common JE 2021. Cutaneous Malassezia: commensal, pathogen, or protector?. Front. Cell. Infect. Microbiol. 10:614446
    [Google Scholar]
  139. 139.
    Ward TL, Dominguez-Bello MG, Heisel T, Al-Ghalith G, Knights D, Gale CA. 2018. Development of the human mycobiome over the first month of life and across body sites. mSystems 3:e00140–17
    [Google Scholar]
  140. 140.
    Warner RR, Schwartz JR, Boissy YL, Dawson TL. 2001. Dandruff has an altered stratum corneum ultrastructure that is improved with zinc pyrithione shampoo. J. Am. Acad. Dermatol. 45:6897–903
    [Google Scholar]
  141. 141.
    Weidman FD. 1925. Exfoliative dermatitis in the Indian rhinoceros (Rhinoceros unicornis) with description of a new yeast species, Pityrosporum pachydermatis. Report of the Laboratory and Museum of Comparative Pathology of the Zoological Society of Philadelphia H Fox 36–46 Philadelphia: Zool. Soc. Philadelphia
    [Google Scholar]
  142. 142.
    West PT, Peters SL, Olm MR, Yu FB, Gause H et al. 2021. Genetic and behavioral adaptation of Candida parapsilosis to the microbiome of hospitalized infants revealed by in situ genomics, transcriptomics, and proteomics. Microbiome 9:142
    [Google Scholar]
  143. 143.
    Wheeler ML, Limon JJ, Underhill DM. 2017. Immunity to commensal fungi: detente and disease. Annu. Rev. Pathol. Mech. Dis. 12:359–85
    [Google Scholar]
  144. 144.
    White TC, Findley K, Dawson TL Jr., Scheynius A, Boekhout T et al. 2014. Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harb. . Perspect. Med. 4:a019802
    [Google Scholar]
  145. 145.
    Wikramanayake TC, Borda LJ, Kirsner RS, Wang Y, Duffort S et al. 2017. Loss of MPZL3 function causes seborrhoeic dermatitis-like phenotype in mice. Exp. Dermatol. 26:736–38
    [Google Scholar]
  146. 146.
    Wikramanayake TC, Borda LJ, Miteva M, Paus R. 2019. Seborrheic dermatitis—looking beyond Malassezia. Exp. Dermatol. 28:991–1001
    [Google Scholar]
  147. 147.
    Wolf AJ, Limon JJ, Nguyen C, Prince A, Castro A, Underhill DM. 2021. Malassezia spp. induce inflammatory cytokines and activate NLRP3 inflammasomes in phagocytes. J. Leukoc. Biol. 109:161–72
    [Google Scholar]
  148. 148.
    Wu G, Zhao H, Li C, Rajapakse MP, Wong WC et al. 2015. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLOS Genet. 11:e1005614
    [Google Scholar]
  149. 149.
    Xu J, Saunders CW, Hu P, Grant RA, Boekhout T et al. 2007. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. PNAS 104:18730–35
    [Google Scholar]
  150. 150.
    Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E et al. 2009. C-type lectin Mincle is an activating receptor for pathogenic fungus. Malassezia. PNAS 106:1897–902
    [Google Scholar]
  151. 151.
    Zhang T, Fei Wang N, Qin Zhang Y, Yu Liu H, Yan Yu L. 2015. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci. Rep. 5:14524
    [Google Scholar]
/content/journals/10.1146/annurev-micro-040820-010114
Loading
/content/journals/10.1146/annurev-micro-040820-010114
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error