1932

Abstract

Among endosymbiotic bacteria living within eukaryotic cells, is exceptionally widespread, particularly in arthropods. Inherited through the female germline, it has evolved ways to increase the fraction of bacterially infected offspring by inducing parthenogenesis, feminization, male killing, or, most commonly, cytoplasmic incompatibility (CI). In CI, infection of males causes embryonic lethality unless they mate with similarly infected females, creating a relative reproductive advantage for infected females. A set of related bicistronic operons encodes the CI-inducing factors. The downstream gene encodes a deubiquitylase or nuclease and is responsible for CI induction by males, while the upstream product when expressed in females binds its sperm-introduced cognate partner and rescues viability. Both toxin-antidote and host-modification mechanisms have been proposed to explain CI. Interestingly, male killing by either or endosymbionts involves deubiquitylases as well. Interference with the host ubiquitin system may therefore be a common theme among endosymbiont-mediated reproductive alterations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041020-024616
2023-09-15
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-041020-024616.html?itemId=/content/journals/10.1146/annurev-micro-041020-024616&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adams KL, Abernathy DG, Willett BC, Selland EK, Itoe MA, Catteruccia F. 2021. Wolbachia cifB induces cytoplasmic incompatibility in the malaria mosquito vector. Nat. Microbiol. 6:1575–82. Erratum 2022. Nat. Microbiol. 7:600
    [Google Scholar]
  2. 2.
    Baiao GC, Janice J, Galinou M, Klasson L 2021. Comparative genomics reveals factors associated with phenotypic expression of Wolbachia. Genome Biol. Evol. 13:evab111
    [Google Scholar]
  3. 3.
    Balhorn R. 2007. The protamine family of sperm nuclear proteins. Genome Biol. 8:227
    [Google Scholar]
  4. 4.
    Beckmann JF, Bonneau M, Chen H, Hochstrasser M, Poinsot D et al. 2019. The toxin-antidote model of cytoplasmic incompatibility: genetics and evolutionary implications. Trends Genet. 35:175–85
    [Google Scholar]
  5. 5.
    Beckmann JF, Fallon AM. 2013. Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: implications for cytoplasmic incompatibility. Insect Biochem. Mol. Biol. 43:867–78
    [Google Scholar]
  6. 6.
    Beckmann JF, Ronau JA, Hochstrasser M. 2017. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat. Microbiol. 2:17007
    [Google Scholar]
  7. 7.
    Beckmann JF, Sharma GD, Mendez L, Chen H, Hochstrasser M. 2019. The Wolbachia cytoplasmic incompatibility enzyme CidB targets nuclear import and protamine-histone exchange factors. eLife 8:e50026
    [Google Scholar]
  8. 8.
    Beckmann JF, Van Vaerenberghe K, Akwa DE, Cooper BS. 2021. A single mutation weakens symbiont-induced reproductive manipulation through reductions in deubiquitylation efficiency. PNAS 118:e2113271118
    [Google Scholar]
  9. 9.
    Berk JM, Lim C, Ronau JA, Chaudhuri A, Chen H et al. 2020. A deubiquitylase with an unusually high-affinity ubiquitin-binding domain from the scrub typhus pathogen Orientia tsutsugamushi. Nat. Commun. 11:2343
    [Google Scholar]
  10. 10.
    Bian G, Joshi D, Dong Y, Lu P, Zhou G et al. 2013. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 340:748–51
    [Google Scholar]
  11. 11.
    Bing XL, Zhao DS, Sun JT, Zhang KJ, Hong XY. 2020. Genomic analysis of Wolbachia from Laodelphax striatellus (Delphacidae, Hemiptera) reveals insights into its “Jekyll and Hyde” mode of infection pattern. Genome Biol. Evol. 12:3818–31
    [Google Scholar]
  12. 12.
    Bonneau M, Atyame C, Beji M, Justy F, Cohen-Gonsaud M et al. 2018. Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia. Nat. Commun. 9:319
    [Google Scholar]
  13. 13.
    Bonneau M, Caputo B, Ligier A, Caparros R, Unal S et al. 2019. Variation in Wolbachia cidB gene, but not cidA, is associated with cytoplasmic incompatibility mod phenotype diversity in Culex pipiens. Mol. Ecol. 28:4725–36
    [Google Scholar]
  14. 14.
    Callaini G, Dallai R, Riparbelli MG. 1997. Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J. Cell Sci. 110:Part 2271–80
    [Google Scholar]
  15. 15.
    Chen H, Ronau JA, Beckmann JF, Hochstrasser M. 2019. A Wolbachia nuclease and its binding partner provide a distinct mechanism for cytoplasmic incompatibility. PNAS 116:22314–21
    [Google Scholar]
  16. 16.
    Chen H, Zhang M, Hochstrasser M. 2020. The biochemistry of cytoplasmic incompatibility caused by endosymbiotic bacteria. Genes 11:852
    [Google Scholar]
  17. 17.
    Clark ME, Veneti Z, Bourtzis K, Karr TL. 2003. Wolbachia distribution and cytoplasmic incompatibility during sperm development: the cyst as the basic cellular unit of CI expression. Mech. Dev. 120:185–98
    [Google Scholar]
  18. 18.
    Comandatore F, Cordaux R, Bandi C, Blaxter M, Darby A et al. 2015. Supergroup C Wolbachia, mutualist symbionts of filarial nematodes, have a distinct genome structure. Open Biol. 5:150099
    [Google Scholar]
  19. 19.
    Crawford JE, Clarke DW, Criswell V, Desnoyer M, Cornel D et al. 2020. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 38:482–92
    [Google Scholar]
  20. 20.
    Doremus MR, Hunter MS. 2020. The saboteur's tools: common mechanistic themes across manipulative symbioses. Adv. Insect Physiol. 58:317–53
    [Google Scholar]
  21. 21.
    Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M et al. 2020. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. PeerJ 8:e10646
    [Google Scholar]
  22. 22.
    Emelyanov AV, Rabbani J, Mehta M, Vershilova E, Keogh MC, Fyodorov DV. 2014. Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization. Genes Dev. 28:2027–40
    [Google Scholar]
  23. 23.
    Fallon AM. 2022. Muramidase, nuclease, or hypothetical protein genes intervene between paired genes encoding DNA packaging terminase and portal proteins in Wolbachia phages and prophages. Virus Genes 58:327–49
    [Google Scholar]
  24. 24.
    Fujii Y, Kubo T, Ishikawa H, Sasaki T. 2004. Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem. Biophys. Res. Commun. 317:1183–88
    [Google Scholar]
  25. 25.
    Fukui T, Kawamoto M, Shoji K, Kiuchi T, Sugano S et al. 2015. The endosymbiotic bacterium Wolbachia selectively kills male hosts by targeting the masculinizing gene. PLOS Pathog. 11:e1005048
    [Google Scholar]
  26. 26.
    Gebiola M, Giorgini M, Kelly SE, Doremus MR, Ferree PM, Hunter MS. 2017. Cytological analysis of cytoplasmic incompatibility induced by Cardinium suggests convergent evolution with its distant cousin Wolbachia. Proc. Biol. Sci. 284:1862
    [Google Scholar]
  27. 27.
    Ghelelovitch S. 1952. Sur le déterminisme génétique de la stérilité dans les croissements entre différents souches de Culex autogenicus Roubaud [Genetic determinism of sterility in the cross-breeding of various strains of Culex autogenicus Roubaud]. C. R. Hebd. Seances Acad. Sci. 234:2386–88
    [Google Scholar]
  28. 28.
    Gillespie JJ, Driscoll TP, Verhoeve VI, Rahman MS, Macaluso KR, Azad AF. 2018. A tangled web: origins of reproductive parasitism. Genome Biol. Evol. 10:2292–309
    [Google Scholar]
  29. 29.
    Harumoto T, Lemaitre B. 2018. Male-killing toxin in a bacterial symbiont of Drosophila. Nature 557:252–55
    [Google Scholar]
  30. 30.
    Hedges LM, Brownlie JC, O'Neill SL, Johnson KN. 2008. Wolbachia and virus protection in insects. Science 322:702
    [Google Scholar]
  31. 31.
    Hertig M, Wolbach SB. 1924. Studies on Rickettsia-like micro-organisms in insects. J. Med. Res. 44:329–74
    [Google Scholar]
  32. 32.
    Hickey CM, Wilson NR, Hochstrasser M. 2012. Function and regulation of SUMO proteases. Nat. Rev. Mol. Cell Biol. 13:755–66
    [Google Scholar]
  33. 33.
    Hicks SW, Galan JE. 2010. Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases. Curr. Opin. Microbiol. 13:41–46
    [Google Scholar]
  34. 34.
    Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. 2008. How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol. Lett. 281:215–20
    [Google Scholar]
  35. 35.
    Hochstrasser M. 2022. Cytoplasmic incompatibility: A Wolbachia toxin-antidote mechanism comes into view. Curr. Biol. 32:R287–89
    [Google Scholar]
  36. 36.
    Horard B, Terretaz K, Gosselin-Grenet AS, Sobry H, Sicard M et al. 2022. Paternal transmission of the Wolbachia CidB toxin underlies cytoplasmic incompatibility. Curr. Biol. 32:1319–31.e5
    [Google Scholar]
  37. 37.
    Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL. 2011. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLOS Pathog. 7:e1002043
    [Google Scholar]
  38. 38.
    Hunter MS, Perlman SJ, Kelly SE. 2003. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc. Biol. Sci. 270:2185–90
    [Google Scholar]
  39. 39.
    Hurst GD, Werren JH. 2001. The role of selfish genetic elements in eukaryotic evolution. Nat. Rev. Genet. 2:597–606
    [Google Scholar]
  40. 40.
    Husnik F, Keeling PJ. 2019. The fate of obligate endosymbionts: reduction, integration, or extinction. Curr. Opin. Genet. Dev.58–59:1–8
    [Google Scholar]
  41. 41.
    Jeong M, Jeon H, Shin D. 2022. Ubiquitin-regulating effector proteins from Legionella. BMB Rep. 55:316–22
    [Google Scholar]
  42. 42.
    Kamruzzaman M, Wu AY, Iredell JR. 2021. Biological functions of type II toxin-antitoxin systems in bacteria. Microorganisms 9:1276
    [Google Scholar]
  43. 43.
    Katsuma S, Hirota K, Matsuda-Imai N, Fukui T, Muro T et al. 2022. A Wolbachia factor for male killing in lepidopteran insects. Nat. Commun. 123:6764
    [Google Scholar]
  44. 44.
    Kaur R, Leigh BA, Ritchie IT, Bordenstein SR. 2022. The Cif proteins from Wolbachia prophage WO modify sperm genome integrity to establish cytoplasmic incompatibility. PLOS Biol. 20:e3001584
    [Google Scholar]
  45. 45.
    Kaur R, Shropshire JD, Leigh BA, Bordenstein SR. 2022. Nuclease proteins CifA and CifB promote spermatid DNA damage associated with symbiont-induced cytoplasmic incompatibility. Preprint, bioRxiv. https://www.biorxiv.org/content/10.1101/2022.04.04.487029v1
  46. 46.
    Kosinski J, Feder M, Bujnicki JM. 2005. The PD-(D/E)XK superfamily revisited: identification of new members among proteins involved in DNA metabolism and functional predictions for domains of (hitherto) unknown function. BMC Bioinform. 6:172
    [Google Scholar]
  47. 47.
    Landmann F, Orsi GA, Loppin B, Sullivan W. 2009. Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLOS Pathog. 5:e1000343
    [Google Scholar]
  48. 48.
    Lang AS, Zhaxybayeva O, Beatty JT. 2012. Gene transfer agents: phage-like elements of genetic exchange. Nat. Rev. Microbiol. 10:472–82
    [Google Scholar]
  49. 49.
    Lassy CW, Karr TL. 1996. Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans. Mech. Dev. 57:47–58
    [Google Scholar]
  50. 50.
    Laven H. 1951. Crossing experiments with Culex strains. Evolution 5:370–75
    [Google Scholar]
  51. 51.
    LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI et al. 2017. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543:243–47
    [Google Scholar]
  52. 52.
    Li SJ, Hochstrasser M. 1999. A new protease required for cell-cycle progression in yeast. Nature 398:246–51
    [Google Scholar]
  53. 53.
    Lindsey ARI, Rice DW, Bordenstein SR, Brooks AW, Bordenstein SR, Newton ILG. 2018. Evolutionary genetics of cytoplasmic incompatibility genes cifA and cifB in prophage WO of Wolbachia. Genome Biol. Evol. 10:434–51
    [Google Scholar]
  54. 54.
    Lo N, Paraskevopoulos C, Bourtzis K, O'Neill SL, Werren JH et al. 2007. Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int. J. Syst. Evol. Microbiol. 57:654–57
    [Google Scholar]
  55. 55.
    Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, Couble P. 2005. The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437:1386–90
    [Google Scholar]
  56. 56.
    Marshall JF. 1938. The British Mosquitoes London: Br. Mus.
    [Google Scholar]
  57. 57.
    Mevissen TET, Komander D. 2017. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86:159–92
    [Google Scholar]
  58. 58.
    Namias A, Sicard M, Weill M, Charlat S. 2021. From Wolbachia genomics to phenotype: Molecular models of cytoplasmic incompatibility must account for the multiplicity of compatibility types. Curr. Opin. Insect Sci. 49:78–84
    [Google Scholar]
  59. 59.
    Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. 2014. Evolutionary origin of insect-Wolbachia nutritional mutualism. PNAS 111:10257–62
    [Google Scholar]
  60. 60.
    O'Neill SL. 2018. The use of Wolbachia by the World Mosquito Program to interrupt transmission of Aedes aegypti transmitted viruses. Adv. Exp. Med. Biol. 1062:355–60
    [Google Scholar]
  61. 61.
    Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Muller A et al. 2012. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLOS Genet. 8:e1003012
    [Google Scholar]
  62. 62.
    Perlmutter JI, Bordenstein SR, Unckless RL, LePage DP, Metcalf JA et al. 2019. The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLOS Pathog. 15:e1007936
    [Google Scholar]
  63. 63.
    Perlmutter JI, Meyers JE, Bordenstein SR. 2020. Transgenic testing does not support a role for additional candidate genes in Wolbachia male killing or cytoplasmic incompatibility. mSystems 5:00658–19
    [Google Scholar]
  64. 64.
    Pollmann M, Moore LD, Krimmer E, D'Alvise P, Hasselmann M et al. 2022. Highly transmissible cytoplasmic incompatibility by the extracellular insect symbiont Spiroplasma. iScience 25:104335
    [Google Scholar]
  65. 65.
    Presgraves DC. 2000. A genetic test of the mechanism of Wolbachia-induced cytoplasmic incompatibility in Drosophila. Genetics 154:771–76
    [Google Scholar]
  66. 66.
    Ramirez-Puebla ST, Servin-Garciduenas LE, Ormeno-Orrillo E, Vera-Ponce de Leon A, Rosenblueth M et al. 2015. Species in Wolbachia? Proposal for the designation of ‘Candidatus Wolbachia bourtzisii’, ‘Candidatus Wolbachia onchocercicola’, ‘Candidatus Wolbachia blaxteri’, ‘Candidatus Wolbachia brugii’, ‘Candidatus Wolbachia taylori’, ‘Candidatus Wolbachia collembolicola’ and ‘Candidatus Wolbachia multihospitum’ for the different species within Wolbachia supergroups. Syst. Appl. Microbiol. 38:390–99
    [Google Scholar]
  67. 67.
    Reed KM, Werren JH. 1995. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events. Mol. Reprod. Dev. 40:408–18
    [Google Scholar]
  68. 68.
    Rosenwald LC, Sitvarin MI, White JA. 2020. Endosymbiotic Rickettsiella causes cytoplasmic incompatibility in a spider host. Proc. Biol. Sci. 287:20201107
    [Google Scholar]
  69. 69.
    Serbus LR, Casper-Lindley C, Landmann F, Sullivan W. 2008. The genetics and cell biology of Wolbachia-host interactions. Annu. Rev. Genet. 42:683–707
    [Google Scholar]
  70. 70.
    Shropshire JD, Kalra M, Bordenstein SR. 2020. Evolution-guided mutagenesis of the cytoplasmic incompatibility proteins: identifying CifA's complex functional repertoire and new essential regions in CifB. PLOS Pathog. 16:e1008794
    [Google Scholar]
  71. 71.
    Shropshire JD, Leigh B, Bordenstein SR. 2020. Symbiont-mediated cytoplasmic incompatibility: What have we learned in 50 years?. eLife 9:e61989
    [Google Scholar]
  72. 72.
    Shropshire JD, On J, Layton EM, Zhou H, Bordenstein SR. 2018. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. PNAS 115:4987–91
    [Google Scholar]
  73. 73.
    Sinkins SP. 2013. Wolbachia and arbovirus inhibition in mosquitoes. Future Microbiol. 8:1249–56
    [Google Scholar]
  74. 74.
    Sisakova E, Stanley LK, Weiserova M, Szczelkun MD. 2008. A RecB-family nuclease motif in the Type I restriction endonuclease EcoR124I. Nucleic Acids Res. 36:3939–49
    [Google Scholar]
  75. 75.
    Sun G, Zhang M, Chen H, Hochstrasser M. 2022. The CinB nuclease from wNo Wolbachia is sufficient for induction of cytoplasmic incompatibility in Drosophila. mBio 13:e0317721
    [Google Scholar]
  76. 76.
    Sutton ER, Harris SR, Parkhill J, Sinkins SP. 2014. Comparative genome analysis of Wolbachia strain wAu. BMC Genom. 15:928
    [Google Scholar]
  77. 77.
    Takano SI, Gotoh Y, Hayashi T. 2021. Candidatus Mesenet longicola”: novel endosymbionts of Brontispa longissima that induce cytoplasmic incompatibility. Microb. Ecol. 82:512–22
    [Google Scholar]
  78. 78.
    Teixeira L, Ferreira A, Ashburner M. 2008. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLOS Biol. 6:e2
    [Google Scholar]
  79. 79.
    Tram U, Fredrick K, Werren JH, Sullivan W. 2006. Paternal chromosome segregation during the first mitotic division determines Wolbachia-induced cytoplasmic incompatibility phenotype. J. Cell Sci. 119:3655–63
    [Google Scholar]
  80. 80.
    Tram U, Sullivan W. 2002. Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 296:1124–26
    [Google Scholar]
  81. 81.
    Turelli M, Katznelson A, Ginsberg PS. 2022. Why Wolbachia-induced cytoplasmic incompatibility is so common. PNAS 119:e2211637119
    [Google Scholar]
  82. 82.
    Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E et al. 2021. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N. Engl. J. Med. 384:2177–86
    [Google Scholar]
  83. 83.
    Vera-Ponce Leon A, Dominguez-Mirazo M, Bustamante-Brito R, Higareda-Alvear V, Rosenblueth M, Martinez-Romero E. 2021. Functional genomics of a Spiroplasma associated with the carmine cochineals Dactylopius coccus and Dactylopius opuntiae. BMC Genom. 22:240
    [Google Scholar]
  84. 84.
    Wang H, Xiao Y, Chen X, Zhang M, Sun G et al. 2022. Crystal structures of Wolbachia CidA and CidB reveal determinants of bacteria-induced cytoplasmic incompatibility and rescue. Nat. Commun. 13:1608
    [Google Scholar]
  85. 85.
    Wang W, Cui W, Yang H. 2022. Toward an accurate mechanistic understanding of Wolbachia-induced cytoplasmic incompatibility. Environ. Microbiol. 24:4519–32
    [Google Scholar]
  86. 86.
    Warecki B, Titen SWA, Alam MS, Vega G, Lemseffer N et al. 2022. Wolbachia action in the sperm produces developmentally deferred chromosome segregation defects during the Drosophila mid-blastula transition. eLife 11:e81292
    [Google Scholar]
  87. 87.
    Werren JH. 1997. Biology of Wolbachia. Annu. Rev. Entomol. 42:587–609
    [Google Scholar]
  88. 88.
    Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6:741–51
    [Google Scholar]
  89. 89.
    Xiao Y, Chen H, Wang H, Zhang M, Chen X et al. 2021. Structural and mechanistic insights into the complexes formed by Wolbachia cytoplasmic incompatibility factors. PNAS 118:e2107699118
    [Google Scholar]
  90. 90.
    Yamada R, Iturbe-Ormaetxe I, Brownlie JC, O'Neill SL 2011. Functional test of the influence of Wolbachia genes on cytoplasmic incompatibility expression in Drosophila melanogaster. Insect Mol. Biol. 20:75–85
    [Google Scholar]
  91. 91.
    Yen JH, Barr AR. 1971. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232:657–58
    [Google Scholar]
  92. 92.
    Yen JH, Barr AR. 1973. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J. Invertebr. Pathol. 22:242–50
    [Google Scholar]
  93. 93.
    Zheng X, Zhang D, Li Y, Yang C, Wu Y et al. 2019. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572:56–61
    [Google Scholar]
  94. 94.
    Zug R, Hammerstein P. 2012. Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLOS ONE 7:e38544
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041020-024616
Loading
/content/journals/10.1146/annurev-micro-041020-024616
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error