1932

Abstract

To suppress plant immunity and promote the intracellular infection required for fixing nitrogen for the benefit of their legume hosts, many rhizobia use type III secretion systems (T3SSs) that deliver effector proteins (T3Es) inside host cells. As reported for interactions between pathogens and host plants, the immune system of legume hosts and the cocktail of T3Es secreted by rhizobia determine the symbiotic outcome. If they remain undetected, T3Es may reduce plant immunity and thus promote infection of legumes by rhizobia. If one or more of the secreted T3Es are recognized by the cognate plant receptors, defense responses are triggered and rhizobial infection may abort. However, some rhizobial T3Es can also circumvent the need for nodulation (Nod) factors to trigger nodule formation. Here we review the multifaceted roles played by rhizobial T3Es during symbiotic interactions with legumes.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: The Versatile Roles of Type III Secretion Systems in Rhizobium-Legume Symbioses
Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041020-032624
2022-09-08
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-041020-032624.html?itemId=/content/journals/10.1146/annurev-micro-041020-032624&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abby SS, Rocha EPC. 2012. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLOS Genet 8:e1002983
    [Google Scholar]
  2. 2.
    Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G et al. 2004. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol 134:2871–79
    [Google Scholar]
  3. 3.
    Bastedo DP, Lo T, Laflamme B, Desveaux D, Guttman DS. 2020. Diversity and evolution of type III secreted effectors: a case study of three families. Curr. Top. Microbiol. Immunol. 427:201–30
    [Google Scholar]
  4. 4.
    Bergeron JRC, Fernández L, Wasney GA, Vuckovic M, Reffuveille F et al. 2016. The structure of a type 3 secretion system (T3SS) ruler protein suggests a molecular mechanism for needle length sensing. J. Biol. Chem. 291:41676–91
    [Google Scholar]
  5. 5.
    Berndsen CE, Wolberger C. 2014. New insights into ubiquitin E3 ligase mechanism. Nat. Struct. Mol. Biol. 21:4301–7
    [Google Scholar]
  6. 6.
    Berrabah F, Ratet P, Gourion B. 2019. Legume nodules: massive infection in the absence of defense induction. Mol. Plant Microbe Interact. 32:35–44
    [Google Scholar]
  7. 7.
    Boch J, Bonas U. 2010. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48:419–36
    [Google Scholar]
  8. 8.
    Boch J, Bonas U, Lahaye T. 2014. TAL effectors—pathogen strategies and plant resistance engineering. New. Phytol. 204:4823–32
    [Google Scholar]
  9. 9.
    Boivin S, Fonouni-Farde C, Frugier F. 2016. How auxin and cytokinin phytohormones modulate root microbe interactions. Front. Plant Sci. 7:1240
    [Google Scholar]
  10. 10.
    Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptor. Annu. Rev. Plant Biol. 60:379–406
    [Google Scholar]
  11. 11.
    Bolzan de Campos S, Deakin WJ, Broughton WJ, Passaglia LMP. 2011. Roles of flavonoids and the transcriptional regulator TtsI in the activation of the type III secretion system of Bradyrhizobium elkanii SEMIA587. Microbiology 157:3627–35
    [Google Scholar]
  12. 12.
    Bonaldi K, Gargani D, Prin Y, Fardoux J, Gully D, et al. 2011. Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium sp. strain ORS285: the Nod-dependent versus the Nod-independent symbiotic interaction. Mol. Plant Microbe Interact. 24:111359–71
    [Google Scholar]
  13. 13.
    Busset N, Gully D, Teulet A, Fardoux J, Camuel A. et al. 2021. The Type III effectome of the symbiotic Bradyrhizobium vignae strain ORS3257. Biomolecules 11:111592
    [Google Scholar]
  14. 14.
    Büttner D. 2012. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol. Mol. Biol. Rev. 76:2262–310
    [Google Scholar]
  15. 15.
    Büttner D. 2016. Behind the lines—actions of bacterial type III effector proteins in plant cells. FEMS Microbiol. Rev. 40:6894–937
    [Google Scholar]
  16. 16.
    Caldwell BE. 1966. Inheritance of a strain specific ineffective nodulation in soybeans. Crop. Sci. 6:427–28
    [Google Scholar]
  17. 17.
    Cascales E, Christie PJ. 2003. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol. 1:2137–49
    [Google Scholar]
  18. 18.
    Cui H, Tsuda K, Parker JE. 2015. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66:487–511
    [Google Scholar]
  19. 19.
    Dai W-J, Zeng Y, Xie Z-P, Staehelin C. 2008. Symbiosis-promoting and deleterious effects of NopT, a novel type 3 effector of Rhizobium sp. strain NGR234. J. Bacteriol. 190:145101–10
    [Google Scholar]
  20. 20.
    de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. 2019. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J. Syst. Evol. Microbiol. 69:71852–63
    [Google Scholar]
  21. 21.
    Deakin WJ, Broughton WJ. 2009. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat. Rev. Microbiol. 7:4312–20
    [Google Scholar]
  22. 22.
    Deakin WJ, Marie C, Saad MM, Krishnan HB, Broughton WJ. 2005. NopA is associated with cell surface appendages produced by the type III secretion system of Rhizobium sp. strain NGR234. Mol. Plant Microbe Interact. 18:5499–507
    [Google Scholar]
  23. 23.
    Dean P. 2011. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol. Rev. 35:61100–25
    [Google Scholar]
  24. 24.
    Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ et al. 2017. Assembly, structure, function and regulation of type III secretion systems. Nat. Rev. Microbiol. 15:6323–37
    [Google Scholar]
  25. 25.
    Dowen RH, Engel JL, Shao F, Ecker JR, Dixon JE. 2009. A family of bacterial cysteine protease type III effectors utilizes acylation-dependent and -independent strategies to localize to plasma membranes. J. Biol. Chem. 284:2315867–79
    [Google Scholar]
  26. 26.
    Fabre S, Gully D, Poitout A, Patrel D, Arrighi JF et al. 2015. Nod factor-independent nodulation in Aeschynomene evenia required the common plant-microbe symbiotic toolkit. Plant Physiol 169:42654–64
    [Google Scholar]
  27. 27.
    Faruque OM, Miwa H, Yasuda M, Fujii Y, Kaneko T et al. 2015. Identification of Bradyrhizobium elkanii genes involved in incompatibility with soybean plants carrying the Rj4 allele. Appl. Environ. Microbiol. 81:196710–17
    [Google Scholar]
  28. 28.
    Feng F, Sun J, Radhakrishnan GV, Lee T, Bozsóki Z et al. 2019. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nat. Commun. 10:15047
    [Google Scholar]
  29. 29.
    Fotiadis CT, Dimou M, Georgakopoulos DG, Katinakis P, Tampakaki AP. 2011. Functional characterization of NopT1 and NopT2, two type III effectors of Bradyrhizobium japonicum. FEMS Microbiol. Lett. 327:166–77
    [Google Scholar]
  30. 30.
    Foyer CH, Lam HM, Nguyen HT, Siddique KH, Varshney RK et al. 2016. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2:16112
    [Google Scholar]
  31. 31.
    Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. 2014. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68:415–38
    [Google Scholar]
  32. 32.
    Gazi AD, Sarris PF, Fadouloglou VE, Charova SN, Mathioudakis N et al. 2012. Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains. BMC Microbiol 12:188
    [Google Scholar]
  33. 33.
    Ge YY, Xiang QW, Wagner C, Zhang D, Xie ZP, Staehelin C. 2016. The type 3 effector NopL of Sinorhizobium sp. strain NGR234 is a mitogen-activated protein kinase substrate. J. Exp. Bot. 67:82483–94
    [Google Scholar]
  34. 34.
    Gibson KE, Kobayashi H, Walker GC. 2008. Molecular determinants of a symbiotic chronic infection. Annu. Rev. Genet. 42:413–41
    [Google Scholar]
  35. 35.
    Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E et al. 2007. Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:58291307–12
    [Google Scholar]
  36. 36.
    Gleason C, Chaudhuri S, Yang T, Muñoz A, Poovaiah BW, Oldroyd GED. 2006. Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441:70971149–52
    [Google Scholar]
  37. 37.
    Gómez-Gómez L, Felix G, Boller T. 1999. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:3277–84a
    [Google Scholar]
  38. 38.
    Gottig N, Vranych CV, Sgro GG, Piazza A, Ottado J. 2018. HrpE, the major component of the Xanthomonas type three protein secretion pilus, elicits plant immunity responses. Sci. Rep. 8:9842
    [Google Scholar]
  39. 39.
    Gourion B, Berrabah F, Ratet P, Stacey G. 2015. Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:186–94
    [Google Scholar]
  40. 40.
    Grohmann E, Christie PJ, Waksman G, Backert S. 2018. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol. Microbiol. 107:4455–71
    [Google Scholar]
  41. 41.
    Hann DR, Domínguez-Ferreras A, Motyka V, Dobrev PI, Schornack S et al. 2014. The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytol 201:2585–98
    [Google Scholar]
  42. 42.
    Harris JM, Balint-Kurti P, Bede JC, Day B, Gold S et al. 2020. What are the Top 10 unanswered questions in molecular plant-microbe interactions?. Mol. Plant Microbe Interact. 33:121354–65
    [Google Scholar]
  43. 43.
    Hempel J, Zehner S, Götffert M, Patschkowski T. 2009. Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. J. Biotechnol. 140:1–251–58
    [Google Scholar]
  44. 44.
    Hotson A, Chosed R, Shu H, Orth K, Mudgett MB. 2003. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol. 50:2377–89
    [Google Scholar]
  45. 45.
    Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJJ, Ronson CW. 2004. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol. Microbiol. 54:2561–74
    [Google Scholar]
  46. 46.
    Hungria M, Menna P, Delamuta JRM. 2015. Bradyrhizobium, the ancestor of all rhizobia: phylogeny of housekeeping and nitrogen-fixation genes. Biological Nitrogen Fixation, Vol. 2 F de Bruijn 191–202 Hoboken, NJ: John Wiley
    [Google Scholar]
  47. 47.
    Janczarek M, Kamila Rachwał K, Marzec A, Grządziel J, Palusińska-Szysz M 2015. Signal molecules and cell-surface components involved in early stages of the legume-rhizobium interactions. Appl. Soil Ecol. 85:94–113
    [Google Scholar]
  48. 48.
    Jiménez-Guerrero I, Acosta-Jurado S, Medina C, Ollero FJ, Alias-Villegas C et al. 2020. The Sinorhizobium fredii HH103 type III secretion system effector NopC blocks nodulation with Lotus japonicus Gifu. J. Exp. Bot. 71:196043–56
    [Google Scholar]
  49. 49.
    Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ. 2015. NopC is a rhizobium-specific type 3 secretion system effector secreted by Sinorhizobium (Ensifer) fredii HH103. PLOS ONE 10:11e0142866
    [Google Scholar]
  50. 50.
    Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ. 2017. The Sinorhizobium (Ensifer) fredii HH103 nodulation outer protein NopI is a determinant for efficient nodulation of soybean and cowpea plants. Appl. Environ. Microbiol. 83:e02770–16
    [Google Scholar]
  51. 51.
    Jones JD, Dangl JL. 2006. The plant immune system. Nature 444:323–29
    [Google Scholar]
  52. 52.
    Kambara K, Ardissone S, Kobayashi H, Saad MM, Schumpp O et al. 2009. Rhizobia utilize pathogen-like effector proteins during symbiosis. Mol. Microbiol. 71:192–106
    [Google Scholar]
  53. 53.
    Kim JG, Stork W, Mudgett MB. 2013. Xanthomonas type III effector XopD desumoylates tomato transcription factor SlERF4 to suppress ethylene responses and promote pathogen growth. Cell Host Microbe 13:2143–54
    [Google Scholar]
  54. 54.
    Kim JG, Taylor, Mudgett MB. 2011. Comparative analysis of the XopD type III secretion (T3S) effector family in plant pathogenic bacteria. Mol. Plant Pathol. 12:8715–30
    [Google Scholar]
  55. 55.
    Kimbrel JA, Thomas WJ, Jiang Y, Creason AL, Thireault CA et al. 2013. Mutualistic co-evolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum. PLOS Pathog 9:2e1003204
    [Google Scholar]
  56. 56.
    Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ et al. 2004. Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume. Lotus japonicus. DNA Res. 11:263–74
    [Google Scholar]
  57. 57.
    Krause A, Doerfel A, Göttfert M. 2002. Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol. Plant Microbe Interact. 15:121228–35
    [Google Scholar]
  58. 58.
    Krishnan HB, Lorio J, Kim WS, Jiang G, Kim KY et al. 2003. Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. Mol. Plant Microbe Interact. 16:7617–25
    [Google Scholar]
  59. 59.
    Krishnan HB, Natarajan SS, Kim WS. 2011. Distinct cell surface appendages produced by Sinorhizobium fredii USDA257 and S. fredii USDA191, cultivar-specific and nonspecific symbionts of soybean. Appl. Environ. Microbiol. 77:176240–48
    [Google Scholar]
  60. 60.
    Kusakabe S, Higasitani N, Kaneko T, Yasuda, Miwa H et al. 2020. Lotus accessions possess multiple checkpoints triggered by different type III secretion system effectors of the wide-host-range symbiont Bradyrhizobium elkanii USDA61. Microbes Environ 35:1ME19141
    [Google Scholar]
  61. 61.
    Liang Y, Cao Y, Tanaka K, Thibivilliers S, Wan J et al. 2013. Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 341:61521384–87
    [Google Scholar]
  62. 62.
    Liu D, Luo Y, Zheng X, Wang X, Chou M, Wei G. 2021. TRAPPC13 is a novel target of Mesorhizobium amorphae type III secretion system effector NopP. Mol. Plant Microbe Interact. 34:5511–23
    [Google Scholar]
  63. 63.
    Lohar DP, Sharopova N, Endre G, Penuela S, Samac D et al. 2006. Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–34
    [Google Scholar]
  64. 64.
    Lopez-Baena FJ, Vinardell JM, Pérez-Montaño F, Crespo-Rivas JC, Bellogin RA et al. 2008. Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology 154:Part 61825–36
    [Google Scholar]
  65. 65.
    Lopez-Gomez M, Sandal N, Stougaard J, Boller T. 2012. Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J. Exp. Bot. 63:1393–401
    [Google Scholar]
  66. 66.
    Lorio JC, Kim WS, Krishnan HB. 2004. NopB, a soybean cultivar-specificity protein from Sinorhizobium fredii USDA257, is a type III secreted protein. Mol. Plant Microbe Interact. 17:1259–68
    [Google Scholar]
  67. 67.
    Luo Y, Liu D, Jiao S, Liu S, Wang X et al. 2020. Identification of Robinia pseudoacacia target proteins responsive to Mesorhizobium amphore CCNWGS0123 effector protein NopT. J. Exp. Bot. 71:227347–63
    [Google Scholar]
  68. 68.
    Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB et al. 2010. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat. Commun. 1:10
    [Google Scholar]
  69. 69.
    Marie C, Broughton WJ, Deakin WJ. 2001. Rhizobium type III secretion systems: legume charmers or alarmers?. Curr. Opin. Plant Biol. 4:4336–42
    [Google Scholar]
  70. 70.
    Marie C, Deakin WJ, Ojanen-Reuhs T, Diallo E, Reuhs B et al. 2004. TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol. Plant Microbe Interact. 17:9958–66
    [Google Scholar]
  71. 71.
    Marie C, Deakin WJ, Viprey V, Kopciñska J, Golinowski W et al. 2003. Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol. Plant Microbe Interact. 16:9743–51
    [Google Scholar]
  72. 72.
    Masson-Boivin C, Giraud E, Perret X, Batut J 2009. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?. Trends Microbiol 17:10458–66
    [Google Scholar]
  73. 73.
    Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37:634–63
    [Google Scholar]
  74. 74.
    Miwa H, Okazaki S. 2017. How effectors promote beneficial interactions. Curr. Opin. Plant Biol. 38:148–54
    [Google Scholar]
  75. 75.
    Morrell R, Sadanandom A. 2019. Dealing with stress: a review of plant SUMO proteases. Front. Plant Sci. 10:1122
    [Google Scholar]
  76. 76.
    Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:6042596–601
    [Google Scholar]
  77. 77.
    Nelson MS, Chun CL, Sadowsky MJ. 2017. Type IV effector proteins involved in the Medicago-Sinorhizobium symbiosis. Mol. Plant Microbe Interact. 30:128–34
    [Google Scholar]
  78. 78.
    Nelson MS, Sadowsky MJ. 2015. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front. Plant Sci. 6:491
    [Google Scholar]
  79. 79.
    Nguyen HP, Ratu STN, Yasuda M, Göttfert M, Okazaki S. 2018. InnB, a novel type III effector of Bradyrhizobium elkanii USDA61, controls symbiosis with Vigna species. Front. Microbiol. 9:3155
    [Google Scholar]
  80. 80.
    Nguyen HP, Ratu STN, Yasuda M, Teaumroong N, Okazaki S. 2020. Identification of Bradyrhizobium elkanii USDA61 type III effectors determining symbiosis with Vigna mungo. Genes 11:5474
    [Google Scholar]
  81. 81.
    Nissan G, Manulis-Sasson S, Chalupowicz L, Teper D, Yeheskel A et al. 2012. The type III effector HsvG of the gall-forming Pantoea agglomerans mediates expression of the host gene HSVGT. Mol. Plant Microbe Interact. 25:2231–40
    [Google Scholar]
  82. 82.
    Nissan G, Manulis-Sasson S, Weinthal D, Mor H, Sessa G, Barash I. 2006. The type III effectors HsvG and HsvB of gall-forming Pantoea agglomerans determine host specificity and function as transcriptional activators. Mol. Microbiol. 61:51118–31
    [Google Scholar]
  83. 83.
    Notti RQ, Stebbins CE. 2016. The structure and function of Type III secretion systems. Microbiol. Spectr. 4:1 https://doi.org/10.1128/microbiolspec.VMBF-0004-2015
    [Crossref] [Google Scholar]
  84. 84.
    Okazaki S, Kaneko T, Sato S, Saeki K. 2013. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. PNAS 110:4217131–36
    [Google Scholar]
  85. 85.
    Okazaki S, Tittabutr P, Teulet A, Thouin J, Fardoux J et al. 2016. Rhizobium–legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS. ISME J 10:164–74
    [Google Scholar]
  86. 86.
    Oldroyd GED. 2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11:4252–63
    [Google Scholar]
  87. 87.
    Parker MA. 2015. The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia. Microb. Ecol. 69:3630–40
    [Google Scholar]
  88. 88.
    Perret X, Staehelin C, Broughton WJ. 2000. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. 64:1180–201
    [Google Scholar]
  89. 89.
    Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11:789–99
    [Google Scholar]
  90. 90.
    Piromyou P, Nguyen N, Songwattana P, Boonchuen P, Teamtisong K et al. 2021. The Bradyrhizobium diazoefficiens type III efector NopE modulates the regulation of plant hormones towards nodulation in Vigna radiata. Sci. Rep. 11:16604
    [Google Scholar]
  91. 91.
    Piromyou P, Songwattana P, Teamtisong K, Tittabutr P, Boonkerd N et al. 2019. Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and bradyrhizobia. MicrobiologyOpen 8:e781
    [Google Scholar]
  92. 92.
    Poole P, Ramachandran V, Terpolilli J. 2018. Rhizobia: from saprophytes to endosymbionts. Nat. Rev. Microbiol. 16:5291–303
    [Google Scholar]
  93. 93.
    Ratu STN, Teulet A, Miwa H, Masuda S, Nguyen HP et al. 2021. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signaling. Sci. Rep. 11:12034
    [Google Scholar]
  94. 94.
    Remigi P, Zhu J, Young JPW, Masson-Boivin C. 2016. Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24:163–75
    [Google Scholar]
  95. 95.
    Reuhs BL, Relić B, Forsberg LS, Marie C, Ojanen-Reuhs T et al. 2005. Structural characterization of a flavonoid-inducible Pseudomonas aeruginosa A-band-like O antigen of Rhizobium sp. strain NGR234, required for the formation of nitrogen-fixing nodules. J. Bacteriol. 187:186479–87
    [Google Scholar]
  96. 96.
    Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C. 2007. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1:177–83
    [Google Scholar]
  97. 97.
    Saad MM, Crèvecoeur M, Masson-Boivin C, Perret X. 2012. The type 3 protein secretion system of Cupriavidus taiwanensis strain LMG19424 compromises symbiosis with Leucaena leucocephala. Appl. Environ. Microbiol. 78:207476–79
    [Google Scholar]
  98. 98.
    Saad MM, Kobayashi H, Marie C, Brown IR, Mansfield JW et al. 2005. NopB, a type III secreted protein of Rhizobium sp. strain NGR234, is associated with pilus-like surface appendages. J. Bacteriol. 187:31173–81
    [Google Scholar]
  99. 99.
    Saad MM, Staehelin C, Broughton WJ, Deakin WJ. 2008. Protein-protein interactions within type III secretion system-dependent pili of Rhizobium sp. strain NGR234. J Bacteriol 190:2750–54
    [Google Scholar]
  100. 100.
    Schechter LM, Guenther J, Olcay EA, Sungchan J, Krishnan HB. 2010. Translocation of NopP by Sinorhizobium fredii USDA257 into Vigna unguiculata root nodules. Appl. Environ. Microbiol. 76:113758–61
    [Google Scholar]
  101. 101.
    Schiessl K, Lilley JLS, Lee T, Tamvakis I, Kohlen W. 2019. NODULE INCEPTION recruits the lateral root developmental program for symbiotic nodule organogenesis in Medicago truncatula. Curr. Biol. 29:213657–68.e5
    [Google Scholar]
  102. 102.
    Schirrmeister J, Friedrich L, Wenzel M, Hoppe M, Wolf C et al. 2011. Characterization of the self-cleaving effector protein NopE1 of Bradyrhizobium japonicum. J. Bacteriol. 193:153733–39
    [Google Scholar]
  103. 103.
    Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quéré A et al. 2009. Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl. Environ. Microbiol. 75:124035–45
    [Google Scholar]
  104. 104.
    Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK. 2016. Role of ubiquitin-mediated degradation system in plant biology. Front. Plant Sci. 7:806
    [Google Scholar]
  105. 105.
    Sheikh TMM, Zhang L, Zubair M, Hanif A, Li P. 2019. The type III accessory protein HrpE of Xanthomonas oryzae pv. oryzae surpasses the secretion role, and enhances plant resistance and photosynthesis. Microorganisms 7:11572
    [Google Scholar]
  106. 106.
    Singh S, Katzer K, Lambert J, Cerri M, Parniske M. 2014. CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 15:2139–52
    [Google Scholar]
  107. 107.
    Skorpil P, Saad MM, Boukli NM, Kobayashi H, Ares-Orpel F et al. 2005. NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol. Microbiol. 57:51304–17
    [Google Scholar]
  108. 108.
    Songwattana P, Chaintreuil C, Wongdee J, Teulet A, Mbaye M et al. 2021. Identification of type III effectors modulating the symbiotic properties of Bradyrhizobium vignae strain ORS3257 with various Vigna species. Sci. Rep. 11:14874
    [Google Scholar]
  109. 109.
    Songwattana P, Noisongiam R, Teamtisong K, Prakamhang J, Teulet A et al. 2017. Type 3 secretion system (T3SS) of Bradyrhizobium sp. DOA9 and its roles in legume symbiosis and rice endophytic association. Front. Microbiol. 8:1810
    [Google Scholar]
  110. 110.
    Songwattana P, Tittabutr P, Wongdee J, Teamtisong K, Wulandari D et al. 2019. Symbiotic properties of a chimeric Nod-independent photosynthetic Bradyrhizobium strain obtained by conjugative transfer of a symbiotic plasmid. Environ. Microbiol. 21:93442–54
    [Google Scholar]
  111. 111.
    Soyano T, Kouchi H, Hirota A, Hayashi M. 2013. Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLOS Genet 9:3e1003352
    [Google Scholar]
  112. 112.
    Soyano T, Shimoda Y, Kawaguchi M, Hayashi M. 2019. A shared gene drives lateral root development and root nodule symbiosis pathways in Lotus. Science 366:1021–23
    [Google Scholar]
  113. 113.
    Sprent JI. 2007. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:111–25
    [Google Scholar]
  114. 114.
    Staehelin C, Krishnan HB. 2015. Nodulation outer proteins: double-edged swords of symbiotic rhizobia. Biochem. J. 470:3263–74
    [Google Scholar]
  115. 115.
    Sugawara M, Epstein B, Badgley BD, Unno T, Xu L et al. 2013. Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol 14:2R17
    [Google Scholar]
  116. 116.
    Sugawara M, Takahashi S, Umehara Y, Iwano H, Tsurumaru H et al. 2018. Variation in bradyrhizobial NopP effector determines symbiotic incompatibility with Rj2-soybeans via effector-triggered immunity. Nat. Commun. 9:13139
    [Google Scholar]
  117. 117.
    Sugawara M, Umehara Y, Kaga A, Hayashi M, Ishimoto M et al. 2019. Symbiotic incompatibility between soybean and Bradyrhizobium arises from one amino acid determinant in soybean Rj2 protein. PLOS ONE 14:9e0222469
    [Google Scholar]
  118. 118.
    Tampakaki AP. 2014. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. Front. Plant Sci. 5:114
    [Google Scholar]
  119. 119.
    Tan L, Rong W, Luo H, Chen Y, He C. 2014. The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins. New Phytol 204:3595–608
    [Google Scholar]
  120. 120.
    Tang F, Yang S, Liu J, Zhu H. 2016. Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol 170:26–32
    [Google Scholar]
  121. 121.
    Teulet A, Busset N, Fardoux J, Gully D, Chaintreuil C et al. 2019. The rhizobial type III effector ErnA confers the ability to form nodules in legumes. PNAS 116:4321758–68
    [Google Scholar]
  122. 122.
    Teulet A, Gully D, Rouy Z, Camuel A, Koebnik R et al. 2020. Phylogenetic distribution and evolutionary dynamics of nod and T3SS genes in the genus Bradyrhizobium. Microb. Genom. 6:9mgen000407
    [Google Scholar]
  123. 123.
    Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH et al. 2006. Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441:70971153–56
    [Google Scholar]
  124. 124.
    Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS et al. 2007. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:5808104–7
    [Google Scholar]
  125. 125.
    Tong W, Li X, Wang E, Cao Y, Chen W et al. 2020. Genomic insight into the origins and evolution of symbiosis genes in Phaseolus vulgaris microsymbionts. BMC Genom 21:1186
    [Google Scholar]
  126. 126.
    Troisfontaines P, Cornelis GR. 2005. Type III secretion: more systems than you think. Physiology 20:326–39
    [Google Scholar]
  127. 127.
    Van Engelenburg SB, Palmer AE. 2008. Quantification of real-time Salmonella effector type-III secretion kinetics reveals differential secretion rates for SopE2 and SptP. Chem. Biol. 15:6619–28
    [Google Scholar]
  128. 128.
    Vasse J, de Billy F, Truchet G. 1993. Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J 4:3555–66
    [Google Scholar]
  129. 129.
    Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X 1998. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol. 28:61381–89
    [Google Scholar]
  130. 130.
    Wagner S, Grin I, Malmsheimer S, Singh N, Torres-Vargas CE, Westerhausen S. 2018. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol Lett 365:19fny201
    [Google Scholar]
  131. 131.
    Wang J, Wang J, Liu C, Ma C, Li C et al. 2018. Identification of soybean genes whose expression is affected by the Ensifer fredii HH103 effector protein NopP. Int. J. Mol. Sci. 19:113438
    [Google Scholar]
  132. 132.
    Wang J, Wang J, Ma C, Zhou Z, Yang D et al. 2020. QTL mapping and data mining to identify genes associated with the Sinorhizobium fredii HH103 T3SS effector NopD in soybean. Front. Plant Sci. 11:453
    [Google Scholar]
  133. 133.
    Wang S, Meade A, Lam HM, Luo H. 2020. Evolutionary timeline and genomic plasticity underlying the lifestyle diversity in Rhizobiales. mSystems 5:4e00438–20
    [Google Scholar]
  134. 134.
    Wang W, Feng B, Zhou JM, Tang 2020. Plant immune signaling: advancing on two frontiers. J. Integr. Plant Biol. 62:12–24
    [Google Scholar]
  135. 135.
    Wassem R, Kobayashi H, Kambara K, Le Quéré A, Walker GC et al. 2008. TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol. Microbiol. 68:3736–48
    [Google Scholar]
  136. 136.
    Wenzel M, Friedrich L, Göttfert M, Zehner S. 2010. The type III-secreted protein NopE1 affects symbiosis and exhibits a calcium-dependent autocleavage activity. Mol. Plant Microbe Interact. 23:1124–29
    [Google Scholar]
  137. 137.
    Weßling R, Epple P, Altmann S, He Y, Yang L et al. 2014. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16:3364–75
    [Google Scholar]
  138. 138.
    Winnen B, Schlumberger AC, Sturm A, Schüpbach K, Siebenmann S et al. 2008. Hierarchical effector protein transport by the Salmonella Typhimurium SPI-1 type III secretion system. PLOS ONE 3:5e2178
    [Google Scholar]
  139. 139.
    Xiang Q-W, Bai J, Cai J, Huang Q-Y, Wang Y et al. 2020. NopD of Bradyrhizobium sp. XS1150 possesses SUMO protease activity. Front. Microbiol. 11:386
    [Google Scholar]
  140. 140.
    Xin D-W, Liao S, Xie Z-P, Hann DR, Steinle L et al. 2012. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234. PLOS Pathog 8:5e1002707
    [Google Scholar]
  141. 141.
    Xu C-C, Zhang D, Hann DR, Xie Z-P, Staehelin C. 2018. Biochemical properties and in planta effects of NopM, a rhizobial E3 ubiquitin ligase. J. Biol. Chem. 93:3915304–15
    [Google Scholar]
  142. 142.
    Yang S, Tang F, Gao M, Krishnan HB, Zhu H. 2010. R gene-controlled host specificity in the legume–rhizobia symbiosis. PNAS 107:18735–40
    [Google Scholar]
  143. 143.
    Yasuda M, Miwa H, Masuda S, Takebayashi Y, Sakakibara H, Okazaki S. 2016. Effector-triggered immunity determines host genotype-specific incompatibility in legume–Rhizobium symbiosis. Plant Cell Physiol 57:81791–800
    [Google Scholar]
  144. 144.
    Zehner S, Schober G, Wenzel M, Lang K, Göttfert M 2008. Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter. Mol. Plant Microbe Interact. 21:81087–93
    [Google Scholar]
  145. 145.
    Zhang B, Wang M, Sun Y, Zhao P, Liu C et al. 2021. Glycine max NNL1 restricts symbiotic compatibility with widely distributed bradyrhizobia via root hair infection. Nat. Plants 7:173–86
    [Google Scholar]
  146. 146.
    Zhang J, Li W, Xiang T, Liu Z, Laluk K et al. 2010. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:4290–301
    [Google Scholar]
  147. 147.
    Zhang L, Chen X-J, Lu H-B, Xie Z-P, Staehelin C. 2011. Functional analysis of the type 3 effector nodulation outer protein L (NopL) from Rhizobium sp. NGR234: symbiotic effects, phosphorylation, and interference with mitogen-activated protein kinase signaling. J. Biol. Chem. 286:3732178–87
    [Google Scholar]
  148. 148.
    Zhang Y, Liu X, Chen L, Fu Y, Li C et al. 2018. Mining for genes encoding proteins associated with NopL of Sinorhizobium fredii HH103 using quantitative trait loci in soybean Glycine max (Merr.) recombinant inbred lines. Plant Soil 431:245–55
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041020-032624
Loading
/content/journals/10.1146/annurev-micro-041020-032624
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error