1932

Abstract

A huge number of bacterial species are motile by flagella, which allow them to actively move toward favorable environments and away from hazardous areas and to conquer new habitats. The general perception of flagellum-mediated movement and chemotaxis is dominated by the paradigm, with its peritrichous flagellation and its famous run-and-tumble navigation pattern, which has shaped the view on how bacteria swim and navigate in chemical gradients. However, a significant amount—more likely the majority—of bacterial species exhibit a (bi)polar flagellar localization pattern instead of lateral flagella. Accordingly, these species have evolved very different mechanisms for navigation and chemotaxis. Here, we review the earlier and recent findings on the various modes of motility mediated by polar flagella.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041122-101032
2022-09-08
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-041122-101032.html?itemId=/content/journals/10.1146/annurev-micro-041122-101032&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alirezaeizanjani Z, Großmann R, Pfeifer V, Hintsche M, Beta C. 2020. Chemotaxis strategies of bacteria with multiple run modes. Sci. Adv. 6:eaaz6153
    [Google Scholar]
  2. 2.
    Allen RD, Baumann P. 1971. Structure and arrangement of flagella in species of the genus Beneckea and Photobacterium fischeri. J. Bacteriol. 107:295–302
    [Google Scholar]
  3. 3.
    Altindal T, Xie L, Wu X-L. 2011. Implications of three-step swimming patterns in bacterial chemotaxis. Biophys. J. 100:32–41
    [Google Scholar]
  4. 4.
    Antani JD, Sumali AX, Lele TP, Lele PP 2021. Asymmetric random walks reveal that the chemotaxis network modulates flagellar rotational bias in Helicobacter pylori. eLife 10:e63936
    [Google Scholar]
  5. 5.
    Asakura S. 1970. Polymerization of flagellin and polymorphism of flagella. Adv. Biophys. 1:99–155
    [Google Scholar]
  6. 6.
    Aschtgen M-S, Brennan CA, Nikolakakis K, Cohen S, McFall-Ngai M, Ruby EG. 2019. Insights into flagellar function and mechanism from the squid-vibrio symbiosis. npj Biofilms Microbiomes 5:32
    [Google Scholar]
  7. 7.
    Baele M, Decostere A, Vandamme P, Ceelen L, Hellemans A et al. 2008. Isolation and characterization of Helicobacter suis sp. nov. from pig stomachs. Int. J. Syst. Evol. Microbiol. 58:1350–58
    [Google Scholar]
  8. 8.
    Barbara GM, Mitchell JG. 2003. Bacterial tracking of motile algae. FEMS Microbiol. Ecol. 44:79–87
    [Google Scholar]
  9. 9.
    Beeby M, Ribardo DA, Brennan CA, Ruby EG, Jensen GJ, Hendrixson DR. 2016. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. PNAS 113:E1917–26
    [Google Scholar]
  10. 10.
    Berg HC. 2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72:19–54
    [Google Scholar]
  11. 11.
    Berg HC. 2004. E. coli in Motion New York: Springer
  12. 12.
    Berg HC, Anderson RA. 1973. Bacteria swim by rotating their flagellar filaments. Nature 245:380–82
    [Google Scholar]
  13. 13.
    Berg HC, Brown DA. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–4
    [Google Scholar]
  14. 14.
    Berg HC, Purcell EM. 1977. Physics of chemoreception. Biophys. J. 20:2193–219
    [Google Scholar]
  15. 15.
    Bi S, Sourjik V. 2018. Stimulus sensing and signal processing in bacterial chemotaxis. Curr. Opin. Microbiol. 45:22–29
    [Google Scholar]
  16. 16.
    Bubendorfer S, Koltai M, Rossmann F, Sourjik V, Thormann KM. 2014. Secondary bacterial flagellar system improves bacterial spreading by increasing the directional persistence of swimming. PNAS 111:11485–90
    [Google Scholar]
  17. 17.
    Buder J. 1915. Zur Kenntnis des Thiospirillum jenense und seiner Reaktionen auf Lichtreize. Jahrb. Wiss. Bot. 56:529–84
    [Google Scholar]
  18. 18.
    Cai Q, Li Z, Ouyang Q, Luo C, Gordon VD 2016. Singly flagellated Pseudomonas aeruginosa chemotaxes efficiently by unbiased motor regulation. mBio 7:e00013
    [Google Scholar]
  19. 19.
    Calladine CR. 1975. Construction of bacterial flagella. Nature 255:121–24
    [Google Scholar]
  20. 20.
    Calldine CR. 1978. Change of waveform in bacterial flagella: the role of mechanics at the molecular level. J. Mol. Biol. 118:457–79
    [Google Scholar]
  21. 21.
    Chu J, Liu J, Hoover TR. 2020. Phylogenetic distribution, ultrastructure, and function of bacterial flagellar sheaths. Biomolecules 10:363
    [Google Scholar]
  22. 22.
    Cohen EJ, Nakane D, Kabata Y, Hendrixson DR, Nishizaka T, Beeby M. 2020. Campylobacter jejuni motility integrates specialized cell shape, flagellar filament, and motor, to coordinate action of its opposed flagella. PLOS Pathog 16:e1008620
    [Google Scholar]
  23. 23.
    Constantino MA, Jabbarzadeh M, Fu HC, Bansil R. 2016. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape. Sci. Adv. 2:e1601661
    [Google Scholar]
  24. 24.
    Constantino MA, Jabbarzadeh M, Fu HC, Shen Z, Fox JG et al. 2018. Bipolar lophotrichous Helicobacter suis combine extended and wrapped flagella bundles to exhibit multiple modes of motility. Sci. Rep. 8:14415
    [Google Scholar]
  25. 25.
    Darnton NC, Berg HC. 2007. Force-extension measurements on bacterial flagella: triggering polymorphic transformations. Biophys. J. 92:2230–36
    [Google Scholar]
  26. 26.
    Darnton NC, Turner L, Rojevsky S, Berg HC. 2007. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189:1756–64
    [Google Scholar]
  27. 27.
    Davis ML, Mounteer LC, Stevens LK, Miller CD, Zhou A. 2011. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy. J. Biosci. Bioeng. 111:605–11
    [Google Scholar]
  28. 28.
    Duffy KJ, Ford RM. 1997. Turn angle and run time distributions characterize swimming behavior for Pseudomonas putida. J. Bacteriol. 179:1428–30
    [Google Scholar]
  29. 29.
    Faulds-Pain A, Birchall C, Aldridge C, Smith WD, Grimaldi G et al. 2011. Flagellin redundancy in Caulobacter crescentus and its implications for flagellar filament assembly. J. Bacteriol. 193:2695–707
    [Google Scholar]
  30. 30.
    Grognot M, Taute KM. 2021. More than propellers: how flagella shape bacterial motility behaviors. Curr. Opin. Microbiol. 61:73–81
    [Google Scholar]
  31. 31.
    Guttenplan SB, Shaw S, Kearns DB. 2013. The cell biology of peritrichous flagella in Bacillus subtilis. Mol. Microbiol. 87:211–29
    [Google Scholar]
  32. 32.
    Hall PG, Krieg NR. 1983. Swarming of Azospirillum brasilense on solid media. Can. J. Microbiol. 29:1592–94
    [Google Scholar]
  33. 33.
    Harwood CS, Fosnaugh K, Dispensa M. 1989. Flagellation of Pseudomonas putida and analysis of its motile behavior. J. Bacteriol. 171:4063–66
    [Google Scholar]
  34. 34.
    Harwood CS, Parales RE, Dispensa M. 1990. Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Appl. Environ. Microbiol. 56:1501–3
    [Google Scholar]
  35. 35.
    Hasegawa K, Yamashita I, Namba K. 1998. Quasi- and nonequivalence in the structure of bacterial flagellar filament. Biophys. J. 74:569–75
    [Google Scholar]
  36. 36.
    Hintsche M, Waljor V, Großmann R, Kühn MJ, Thormann KM et al. 2017. A polar bundle of flagella can drive bacterial swimming by pushing, pulling, or coiling around the cell body. Sci. Rep. 7:16771
    [Google Scholar]
  37. 37.
    Hotani H. 1982. Micro-video study of moving bacterial flagellar filaments: III. Cyclic transformation induced by mechanical force. J. Mol. Biol. 156:791–806
    [Google Scholar]
  38. 38.
    Howitt MR, Lee JY, Lertsethtakarn P, Vogelmann R, Joubert L-M et al. 2011. ChePep controls Helicobacter pylori infection of the gastric glands and chemotaxis in the epsilonproteobacteria. mBio 2:e00098–11
    [Google Scholar]
  39. 39.
    Islam ST, Mignot T. 2015. The mysterious nature of bacterial surface (gliding) motility: a focal adhesion-based mechanism in Myxococcus xanthus. Sem. Cell. Dev. Biol. 46:143–54
    [Google Scholar]
  40. 40.
    Jarosch R. 1967. Studien zur Bewegungsmechanik der Bakterien und Spirochäten des Hochmoores. Österr. Bot. Z. 114:255–306
    [Google Scholar]
  41. 41.
    Jarrell KF, McBride MJ. 2008. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6:466–76
    [Google Scholar]
  42. 42.
    Johnson S, Furlong EJ, Deme JC, Nord AL, Caesar JJE et al. 2021. Molecular structure of the intact bacterial flagellar basal body. Nat. Microbiol. 6:712–21
    [Google Scholar]
  43. 43.
    Jones CW, Armitage JP. 2015. Positioning of bacterial chemoreceptors. Trends Microbiol 23:247–56
    [Google Scholar]
  44. 44.
    Karlinsey JE, Tanaka S, Bettenworth V, Yamaguchi S, Boos W et al. 2000. Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol. Microbiol. 37:1220–31
    [Google Scholar]
  45. 45.
    Kearns DB. 2010. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8:634–44
    [Google Scholar]
  46. 46.
    Kim M, Bird JC, Parys AJV, Breuer KS, Powers TR. 2003. A macroscopic scale model of bacterial flagellar bundling. PNAS 100:15481–85
    [Google Scholar]
  47. 47.
    Kim SY, Thanh XTT, Jeong K, Kim SB, Pan SO et al. 2014. Contribution of six flagellin genes to the flagellum biogenesis of Vibrio vulnificus and in vivo invasion. Infect. Immun. 82:29–42
    [Google Scholar]
  48. 48.
    Kinosita Y, Kikuchi Y, Mikami N, Nakane D, Nishizaka T. 2018. Unforeseen swimming and gliding mode of an insect gut symbiont, Burkholderia sp. RPE64, with wrapping of the flagella around its cell body. ISME J 12:838–48
    [Google Scholar]
  49. 49.
    Kinscherf TG, Willis DK. 1999. Swarming by Pseudomonas syringae B728a requires gacS (lemA) and gacA but not the acyl-homoserine lactone biosynthetic gene ahlI. J. Bacteriol. 181:4133–36
    [Google Scholar]
  50. 50.
    Köhler T, Curty LK, Barja F, van Delden C, Pechère JC. 2000. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 182:5990–96
    [Google Scholar]
  51. 51.
    Koyasu S, Shirakihara Y. 1984. Caulobacter crescentus flagellar filament has a right-handed helical form. J. Mol. Biol. 173:125–30
    [Google Scholar]
  52. 52.
    Krieg NR. 1976. Biology of the chemoheterotrophic spirilla. Bacteriol. Rev. 40:55–115
    [Google Scholar]
  53. 53.
    Kühn MJ, Schmidt FK, Eckhardt B, Thormann KM. 2017. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps. PNAS 114:6340–45
    [Google Scholar]
  54. 54.
    Kühn MJ, Schmidt FK, Farthing NE, Rossmann FM, Helm B et al. 2018. Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nat. Commun. 9:5369
    [Google Scholar]
  55. 55.
    Lambert C, Evans KJ, Till R, Hobley L, Capeness M et al. 2006. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol. Microbiol. 60:274–86
    [Google Scholar]
  56. 56.
    Laventie B-J, Sangermani M, Estermann F, Manfredi P, Planes R et al. 2019. A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host Microbe 25:140–52
    [Google Scholar]
  57. 57.
    Leifson E, Cosenza BJ, Murchelano R, Cleverdon RC. 1964. Motile marine bacteria. I. Techniques, ecology, and general characteristics. J. Bacteriol. 87:652–66
    [Google Scholar]
  58. 58.
    Leifson E, Hugh R 1953. Variation in shape and arrangement of bacterial flagella. J. Bacteriol. 65:263–71
    [Google Scholar]
  59. 59.
    Lertsethtakarn P, Ottemann KM, Hendrixson DR. 2011. Motility and chemotaxis in Campylobacter and Helicobacter. Annu. Rev. Microbiol. 65:389–410
    [Google Scholar]
  60. 60.
    Liu B, Gulino M, Morse M, Tang JX, Powers TR, Breuer KS. 2014. Helical motion of the cell body enhances Caulobacter crescentus motility. PNAS 111:11252–56
    [Google Scholar]
  61. 61.
    Macnab RM. 1977. Bacterial flagella rotating in bundles: a study in helical geometry. PNAS 74:221–25
    [Google Scholar]
  62. 62.
    Macnab RM, Ornston MK. 1977. Normal-to-curly flagellar transitions and their role in bacterial tumbling: stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol. 112:1–30
    [Google Scholar]
  63. 63.
    Magariyama Y, Masuda S, Takano Y, Ohtani T, Kudo S. 2001. Difference between forward and backward swimming speeds of the single polar-flagellated bacterium, Vibrio alginolyticus. FEMS Microbiol. Lett. 205:343–47
    [Google Scholar]
  64. 64.
    Maki-Yonekura S, Yonekura K, Namba K. 2010. Conformational change of flagellin for polymorphic supercoiling of the flagellar filament. Nat. Struct. Mol. Biol. 17:4417–22
    [Google Scholar]
  65. 65.
    Marshall B, Warren JR. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 323:1311–15
    [Google Scholar]
  66. 66.
    Martínez LE, Hardcastle JM, Wang J, Pincus Z, Tsang J et al. 2016. Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments. Mol. Microbiol. 99:88–110
    [Google Scholar]
  67. 67.
    Matilla MA, Ramos JL, Duque E, de Dios Alché J, Espinosa-Urgel M, Ramos-González MI. 2007. Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. Environ. Microbiol. 9:1842–50
    [Google Scholar]
  68. 68.
    Mauriello EMF, Jones C, Moine A, Armitage JP. 2018. Cellular targeting and segregation of bacterial chemosensory systems. FEMS Microbiol. Rev. 42:462–76
    [Google Scholar]
  69. 69.
    McBride MJ, Nakane D. 2015. Flavobacterium gliding motility and the type IX secretion system. Curr. Opin. Microbiol. 28:72–77
    [Google Scholar]
  70. 70.
    McCarter L, Silverman M. 1990. Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol. Microbiol. 4:71057–62
    [Google Scholar]
  71. 71.
    McCarter LL. 2001. Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65:445–62
    [Google Scholar]
  72. 72.
    McCarter LL. 2004. Dual flagellar systems enable motility under different circumstances. J. Mol. Microbiol. Biotechnol. 7:18–29
    [Google Scholar]
  73. 73.
    Merino S, Shaw JG, Tomás JM. 2006. Bacterial lateral flagella: an inducible flagella system. FEMS Microbiol. Lett. 263:127–35
    [Google Scholar]
  74. 74.
    Metzner P. 1920. Die Bewegung and Reizbeantwortung der bipolar begeißelten Spirillen. Naturwissenschaften 8:957–58
    [Google Scholar]
  75. 75.
    Mignot T, Nöllmann M 2017. New insights into the function of a versatile class of membrane molecular motors from studies of Myxococcus xanthus surface (gliding) motility. Microb. Cell 4:98–100
    [Google Scholar]
  76. 76.
    Mukherjee T, Elmas M, Vo L, Alexiades V, Hong T, Alexandre G. 2019. Multiple CheY homologs control swimming reversals and transient pauses in Azospirillum brasilense. Biophys. J. 116:1527–37
    [Google Scholar]
  77. 77.
    Muraleedharan S, Freitas C, Mann P, Glatter T, Ringgaard S. 2018. A cell length-dependent transition in MinD-dynamics promotes a switch in division-site placement and preservation of proliferating elongated Vibrio parahaemolyticus swarmer cells. Mol. Microbiol. 109:3365–84
    [Google Scholar]
  78. 78.
    Murat D, Hérisse M, Espinosa L, Bossa A, Alberto F, Wu L-F 2015. Opposite and coordinated rotation of amphitrichous flagella governs oriented swimming and reversals in a magnetotactic Spirillum. J. Bacteriol. 197:3275–82
    [Google Scholar]
  79. 79.
    Nakamura S. 2020. Spirochete flagella and motility. Biomolecules 10:E550
    [Google Scholar]
  80. 80.
    Nava LG, Großmann R, Hintsche M, Beta C, Peruani F. 2020. A novel approach to chemotaxis: active particles guided by internal clocks. Europhys. Lett. 130:68002
    [Google Scholar]
  81. 81.
    Ohbayashi T, Takeshita K, Kitagawa W, Nikoh N, Koga R et al. 2015. Insect's intestinal organ for symbiont sorting. PNAS 112:5179–88
    [Google Scholar]
  82. 82.
    O'Shea TM, DeLoney-Marino CR, Shibata S, Aizawa S-I, Wolfe AJ, Visick KL 2005. Magnesium promotes flagellation of Vibrio fischeri. J. Bacteriol. 187:2058–65
    [Google Scholar]
  83. 83.
    Padgett PJ, Friedman MW, Krieg NR. 1983. Straight mutants of Spirillum volutans can swim. J. Bacteriol. 153:1543–44
    [Google Scholar]
  84. 84.
    Park J, Kim Y, Lee W, Lim S. 2022. Modeling of lophotrichous bacteria reveals key factors for swimming reorientation. Sci. Rep. 12:6482
    [Google Scholar]
  85. 85.
    Ping L, Birkenbeil J, Monajembashi S. 2013. Swimming behavior of the monotrichous bacterium Pseudomonas fluorescens SBW25. FEMS Microbiol. Ecol. 86:36–44
    [Google Scholar]
  86. 86.
    Pohl O, Hintsche M, Alirezaeizanjani Z, Seyrich M, Beta C, Stark H. 2017. Inferring the chemotactic strategy of P. putida and E. coli using modified Kramers-Moyal coefficients. PLOS Comput. Biol. 13:e1005329
    [Google Scholar]
  87. 87.
    Purcell EM. 2014. Life at low Reynolds number. Am. J. Phys. 45:3
    [Google Scholar]
  88. 88.
    Qian C, Wong CC, Swarup S, Chiam K-H. 2013. Bacterial tethering analysis reveals a “run-reverse-turn” mechanism for Pseudomonas species motility. Appl. Environ. Microbiol. 79:4734–43
    [Google Scholar]
  89. 89.
    Raatz M, Hintsche M, Bahrs M, Theves M, Beta C. 2015. Swimming patterns of a polarly flagellated bacterium in environments of increasing complexity. Eur. Phys. J. Spec. Top. 224:1185–98
    [Google Scholar]
  90. 90.
    Reichert K. 1909. Über die Sichtbarmachung der Geisseln und die Geisselbewegung der Bakterien. Z. Bakteriol. Parasitenkd. Infektionskr. 51:14–94
    [Google Scholar]
  91. 91.
    Samatey FA, Imada K, Nagashima S, Vonderviszt F, Kumasaka T et al. 2001. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410:331–37
    [Google Scholar]
  92. 92.
    Schäffer C, Messner P. 2017. Emerging facets of prokaryotic glycosylation. FEMS Microbiol. Rev. 41:49–91
    [Google Scholar]
  93. 93.
    Schneider WR, Doetsch RN. 1974. Effect of viscosity on bacterial motility. J. Bacteriol. 117:696–701
    [Google Scholar]
  94. 94.
    Schuhmacher JS, Thormann KM, Bange G. 2015. How bacteria maintain location and number of flagella?. FEMS Microbiol. Rev. 39:812–22
    [Google Scholar]
  95. 95.
    Shimada T, Sakazaki R, Suzuki K. 1985. Peritrichous flagella in mesophilic strains of Aeromonas. Jpn. J. Med. Sci. Biol. 38:141–45
    [Google Scholar]
  96. 96.
    Shinoda S, Okamoto K. 1977. Formation and function of Vibrio parahaemolyticus lateral flagella. J. Bacteriol. 129:1266–71
    [Google Scholar]
  97. 97.
    Shrivastava A, Berg HC. 2015. Towards a model for Flavobacterium gliding. Curr. Opin. Microbiol. 28:93–97
    [Google Scholar]
  98. 98.
    Silverman M, Simon M. 1974. Flagellar rotation and the mechanism of bacterial motility. Nature 249:73–74
    [Google Scholar]
  99. 99.
    Son K, Guasto JS, Stocker R. 2013. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9:494–98
    [Google Scholar]
  100. 100.
    Son K, Menolascina F, Stocker R. 2016. Speed-dependent chemotactic precision in marine bacteria. PNAS 113:8624–29
    [Google Scholar]
  101. 101.
    Sowa Y, Berry RM. 2008. Bacterial flagellar motor. Q. Rev. Biophys. 41:103–32
    [Google Scholar]
  102. 102.
    Stocker R. 2011. Reverse and flick: hybrid locomotion in bacteria. PNAS 108:2635–36
    [Google Scholar]
  103. 103.
    Stocker R. 2012. Marine microbes see a sea of gradients. Science 338:628–33
    [Google Scholar]
  104. 104.
    Takeshita K, Kikuchi Y. 2017. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations. Res. Microbiol. 168:175–87
    [Google Scholar]
  105. 105.
    Tan J, Zhang X, Wang X, Xu C, Chang S et al. 2021. Structural basis of assembly and torque transmission of the bacterial flagellar motor. Cell 184:2665–79
    [Google Scholar]
  106. 106.
    Taute KM, Gude S, Tans SJ, Shimizu TS. 2015. High-throughput 3D tracking of bacteria on a standard phase contrast microscope. Nat. Commun. 6:8776
    [Google Scholar]
  107. 107.
    Taylor BL, Koshland DE. 1974. Reversal of flagellar rotation in monotrichous and peritrichous bacteria: generation of changes in direction. J. Bacteriol. 119:640–42
    [Google Scholar]
  108. 108.
    Theves M, Taktikos J, Zaburdaev V, Stark H, Beta C. 2013. A bacterial swimmer with two alternating speeds of propagation. Biophys. J. 105:1915–24
    [Google Scholar]
  109. 109.
    Theves M, Taktikos J, Zaburdaev V, Stark H, Beta C. 2015. Random walk patterns of a soil bacterium in open and confined environments. Europhys. Lett. 109:28007
    [Google Scholar]
  110. 110.
    Tian M, Wu Z, Zhang R, Yuan J. 2022. A new mode of swimming in singly flagellated Pseudomonas aeruginosa. PNAS 119:14e2120508119
    [Google Scholar]
  111. 111.
    Tsokos CG, Laub MT. 2012. Polarity and cell fate asymmetry in Caulobacter crescentus. Curr. Opin. Microbiol. 15:744–50
    [Google Scholar]
  112. 112.
    Turner L, Ryu WS, Berg HC. 2000. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182:2793–801
    [Google Scholar]
  113. 113.
    van Leeuwenhoek A. 1722. Arcana Naturae Detecta. Lugduni Batavorum: Apud Joh. Arnold Langerak
  114. 114.
    Visick KL, Stabb EV, Ruby EG. 2021. A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat. Rev. Microbiol. 19:654–65
    [Google Scholar]
  115. 115.
    Wadhwa N, Berg HC. 2022. Bacterial motility: machinery and mechanisms. Nat. Rev. Microbiol. 20:3161–73
    [Google Scholar]
  116. 116.
    Wang F, Burrage AM, Postel S, Clark RE, Orlova A et al. 2017. A structural model of flagellar filament switching across multiple bacterial species. Nat. Commun. 8:960
    [Google Scholar]
  117. 117.
    Xie L, Altindal T, Chattopadhyay S, Wu X-L. 2011. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. PNAS 108:2246–51
    [Google Scholar]
  118. 118.
    Xie L, Lu C, Wu X-L. 2015. Marine bacterial chemoresponse to a stepwise chemoattractant stimulus. Biophys. J. 108:766–74
    [Google Scholar]
  119. 119.
    Yamashita L, Hasegawa K, Suzuki H, Vonderviszt F, Mimori-Kiyosue Y, Namba K. 1998. Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Nat. Struct. Mol. Biol. 5:125–32
    [Google Scholar]
  120. 120.
    Zhulin IB, Armitage JP. 1993. Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense. J. Bacteriol. 175:952–58
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041122-101032
Loading
/content/journals/10.1146/annurev-micro-041122-101032
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error