1932

Abstract

The malaria parasite life cycle alternates between two hosts: a vertebrate and the female mosquito vector. Cell division, proliferation, and invasion are essential for parasite development, transmission, and survival. Most research has focused on development in the vertebrate, which causes disease; however, knowledge of malaria parasite development in the mosquito (the sexual and transmission stages) is now rapidly accumulating, gathered largely through investigation of the rodent malaria model, with In this review, we discuss the seminal genome-wide screens that have uncovered key regulators of cell proliferation, invasion, and transmission during sexual development. Our focus is on the roles of transcription factors, reversible protein phosphorylation, and molecular motors. We also emphasize the still-unanswered important questions around key pathways in cell division during the vector transmission stages and how they may be targeted in future studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041320-010046
2022-09-08
2024-07-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-041320-010046.html?itemId=/content/journals/10.1146/annurev-micro-041320-010046&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adryan B, Teichmann SA. 2006. FlyTF: a systematic review of site-specific transcription factors in the fruit fly Drosophila melanogaster. Bioinformatics 22:1532–33
    [Google Scholar]
  2. 2.
    Aikawa M, Beaudoin RL. 1968. Studies on nuclear division of a malarial parasite under pyrimethamine treatment. J. Cell Biol. 39:749–54
    [Google Scholar]
  3. 3.
    Alano P, Read D, Bruce M, Aikawa M, Kaido T et al. 1995. COS cell expression cloning of Pfg377, a Plasmodium falciparum gametocyte antigen associated with osmiophilic bodies. Mol. Biochem. Parasitol. 74:143–56
    [Google Scholar]
  4. 4.
    Aly AS, Matuschewski K. 2005. A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts. J. Exp. Med. 202:225–30
    [Google Scholar]
  5. 5.
    Aly AS, Vaughan AM, Kappe SH. 2009. Malaria parasite development in the mosquito and infection of the mammalian host. Annu. Rev. Microbiol. 63:195–221
    [Google Scholar]
  6. 6.
    Arrighi RB, Lycett G, Mahairaki V, Siden-Kiamos I, Louis C 2005. Laminin and the malaria parasite's journey through the mosquito midgut. J. Exp. Biol. 208:2497–502
    [Google Scholar]
  7. 7.
    Bahl A, Brunk B, Crabtree J, Fraunholz MJ, Gajria B et al. 2003. PlasmoDB: the Plasmodium genome resource; a database integrating experimental and computational data. Nucleic Acids Res 31:212–15
    [Google Scholar]
  8. 8.
    Balaji S, Babu MM, Iyer LM, Aravind L. 2005. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res 33:3994–4006
    [Google Scholar]
  9. 9.
    Balestra AC, Zeeshan M, Rea E, Pasquarello C, Brusini L et al. 2020. A divergent cyclin/cyclin-dependent kinase complex controls the atypical replication of a malaria parasite during gametogony and transmission. eLife 9:e56474
    [Google Scholar]
  10. 10.
    Bansal A, Molina-Cruz A, Brzostowski J, Liu P, Luo Y et al. 2018. PfCDPK1 is critical for malaria parasite gametogenesis and mosquito infection. PNAS 115:774–79
    [Google Scholar]
  11. 11.
    Bansal A, Molina-Cruz A, Brzostowski J, Mu J, Miller LH. 2017. Plasmodium falciparum calcium-dependent protein kinase 2 is critical for male gametocyte exflagellation but not essential for asexual proliferation. mBio 8:e01656–17
    [Google Scholar]
  12. 12.
    Billker O, Dechamps S, Tewari R, Wenig G, Franke-Fayard B, Brinkmann V. 2004. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117:503–14
    [Google Scholar]
  13. 13.
    Billker O, Shaw MK, Margos G, Sinden RE. 1997. The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology 115:Part 11–7
    [Google Scholar]
  14. 14.
    Boucher LE, Bosch J. 2015. The apicomplexan glideosome and adhesins—structures and function. J. Struct. Biol. 190:93–114
    [Google Scholar]
  15. 15.
    Brochet M, Collins MO, Smith TK, Thompson E, Sebastian S et al. 2014. Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca2+ signals at key decision points in the life cycle of malaria parasites. PLOS Biol 12:e1001806
    [Google Scholar]
  16. 16.
    Bushell E, Gomes AR, Sanderson T, Anar B, Girling G et al. 2017. Functional profiling of a Plasmodium falciparum genome reveals an abundance of essential genes. Cell 170:260–72.e8Genetic screen revealed that P. berghei requires two-thirds of its genome for optimal growth.
    [Google Scholar]
  17. 17.
    Campbell TL, De Silva EK, Olszewski KL, Elemento O, Llinas M. 2010. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLOS Pathog 6:e1001165
    [Google Scholar]
  18. 18.
    Chang LF, Zhang Z, Yang J, McLaughlin SH, Barford D. 2014. Molecular architecture and mechanism of the anaphase-promoting complex. Nature 513:388–93
    [Google Scholar]
  19. 19.
    Clarke DJ, Diaz-Martinez LA, Gimenez-Abian JF. 2005. Anaphase promoting complex or cyclosome?. Cell Cycle 4:1585–92
    [Google Scholar]
  20. 20.
    Cohen P. 2000. The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem. Sci. 25:596–601
    [Google Scholar]
  21. 21.
    Cui L, Fan Q, Li J 2002. The malaria parasite Plasmodium falciparum encodes members of the Puf RNA-binding protein family with conserved RNA binding activity. Nucleic Acids Res 30:4607–17
    [Google Scholar]
  22. 22.
    de Almeida Oliveira G, Lieberman J, Barillas-Mury C. 2012. Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science 335:856–59
    [Google Scholar]
  23. 23.
    De Silva EK, Gehrke AR, Olszewski K, Leon I, Chahal JS et al. 2008. Specific DNA-binding by apicomplexan AP2 transcription factors. PNAS 105:8393–98
    [Google Scholar]
  24. 24.
    Deligianni E, Morgan RN, Bertuccini L, Kooij TW, Laforge A et al. 2011. Critical role for a stage-specific actin in male exflagellation of the malaria parasite. Cell. Microbiol. 13:1714–30
    [Google Scholar]
  25. 25.
    Deligianni E, Silmon de Monerri NC, McMillan PJ, Bertuccini L, Superti F et al. 2018. Essential role of Plasmodium falciparum perforin-like protein 4 in ookinete midgut passage. PLOS ONE 13:e0201651
    [Google Scholar]
  26. 26.
    Dessens JT, Beetsma AL, Dimopoulos G, Wengelnik K, Crisanti A et al. 1999. CTRP is essential for mosquito infection by malaria ookinetes. EMBO J 18:6221–27
    [Google Scholar]
  27. 27.
    Dessens JT, Siden-Kiamos I, Mendoza J, Mahairaki V, Khater E et al. 2003. SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development. Mol. Microbiol. 49:319–29
    [Google Scholar]
  28. 28.
    Ecker A, Pinto SB, Baker KW, Kafatos FC, Sinden RE. 2007. Plasmodium berghei: Plasmodium perforin-like protein 5 is required for mosquito midgut invasion in Anopheles stephensi. Exp. Parasitol. 116:504–8
    [Google Scholar]
  29. 29.
    Eme L, Trilles A, Moreira D, Brochier-Armanet C. 2011. The phylogenomic analysis of the anaphase promoting complex and its targets points to complex and modern-like control of the cell cycle in the last common ancestor of eukaryotes. BMC Evol. Biol. 11:265
    [Google Scholar]
  30. 30.
    Foth BJ, Goedecke MC, Soldati D. 2006. New insights into myosin evolution and classification. PNAS 103:3681–86
    [Google Scholar]
  31. 31.
    Francia ME, Striepen B. 2014. Cell division in apicomplexan parasites. Nat. Rev. Microbiol. 12:125–36
    [Google Scholar]
  32. 32.
    Frischknecht F, Matuschewski K. 2017. Plasmodium sporozoite biology. Cold Spring Harb. Perspect. Med. 7:a025478
    [Google Scholar]
  33. 33.
    Ganter M, Goldberg JM, Dvorin JD, Paulo JA, King JG et al. 2017. Plasmodium falciparum CRK4 directs continuous rounds of DNA replication during schizogony. Nat. Microbiol. 2:17017
    [Google Scholar]
  34. 34.
    Gao H, Yang Z, Wang X, Qian P, Hong R et al. 2018. ISP1-anchored polarization of GCβ/CDC50A complex initiates malaria ookinete gliding motility. Curr. Biol. 28:2763–76.e6
    [Google Scholar]
  35. 35.
    Gerald N, Mahajan B, Kumar S. 2011. Mitosis in the human malaria parasite Plasmodium falciparum. Eukaryot. Cell 10:474–82
    [Google Scholar]
  36. 36.
    Gomes AR, Bushell E, Schwach F, Girling G, Anar B et al. 2015. A genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite. Cell Host Microbe 17:404–13Developed PlasmoGEM, a large-scale resource of bar-coded vectors for modification of the P. berghei genome.
    [Google Scholar]
  37. 37.
    Gomes-Santos CS, Braks J, Prudencio M, Carret C, Gomes AR et al. 2011. Transition of Plasmodium sporozoites into liver stage-like forms is regulated by the RNA binding protein Pumilio. PLOS Pathog 7:e1002046
    [Google Scholar]
  38. 38.
    Gouagna LC, Mulder B, Noubissi E, Tchuinkam T, Verhave JP, Boudin C. 1998. The early sporogonic cycle of Plasmodium falciparum in laboratory-infected Anopheles gambiae: an estimation of parasite efficacy. Trop. Med. Int. Health 3:21–28
    [Google Scholar]
  39. 39.
    Graumann PL, Knust T. 2009. Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair. Chromosome Res 17:265–75
    [Google Scholar]
  40. 40.
    Green JL, Wall RJ, Vahokoski J, Yusuf NA, Ridzuan MAM et al. 2017. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility. J. Biol. Chem. 292:17857–75
    [Google Scholar]
  41. 41.
    Guerreiro A, Deligianni E, Santos JM, Silva PA, Louis C et al. 2014. Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte. Genome Biol 15:493
    [Google Scholar]
  42. 42.
    Guttery DS, Ferguson DJ, Poulin B, Xu Z, Straschil U et al. 2012. A putative homologue of CDC20/CDH1 in the malaria parasite is essential for male gamete development. PLOS Pathog 8:e1002554
    [Google Scholar]
  43. 43.
    Guttery DS, Pandey R, Ferguson DJ, Wall RJ, Brady D et al. 2020. Plasmodium DEH is ER-localized and crucial for oocyst mitotic division during malaria transmission. Life Sci. Alliance 3:e202000879
    [Google Scholar]
  44. 44.
    Guttery DS, Poulin B, Ferguson DJ, Szoor B, Wickstead B et al. 2012. A unique protein phosphatase with kelch-like domains (PPKL) in Plasmodium modulates ookinete differentiation, motility and invasion. PLOS Pathog 8:e1002948
    [Google Scholar]
  45. 45.
    Guttery DS, Poulin B, Ramaprasad A, Wall RJ, Ferguson DJ et al. 2014. Genome-wide functional analysis of Plasmodium protein phosphatases reveals key regulators of parasite development and differentiation. Cell Host Microbe 16:128–40Genome-wide screen of the P. berghei protein phosphatases. Six protein phosphatases are crucial for sexual development.
    [Google Scholar]
  46. 46.
    Guttery DS, Ramaprasad A, Ferguson DJP, Zeeshan M, Pandey R et al. 2020. MRE11 is crucial for malaria parasite transmission and its absence affects expression of interconnected networks of key genes essential for life. Cells 9:2590
    [Google Scholar]
  47. 47.
    Hall N, Karras M, Raine JD, Carlton JM, Kooij TW et al. 2005. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307:82–86
    [Google Scholar]
  48. 48.
    Hammond DM, Bowman GW et al. 1946. The endogenous phase of the life cycle of Eimeria bovis. J. Parasitol. 32:409–27
    [Google Scholar]
  49. 49.
    Hartman MA, Spudich JA. 2012. The myosin superfamily at a glance. J. Cell Sci. 125:1627–32
    [Google Scholar]
  50. 50.
    Heintzelman MB. 2015. Gliding motility in apicomplexan parasites. Semin. Cell Dev. Biol. 46:135–42
    [Google Scholar]
  51. 51.
    Hirano T. 2012. Condensins: universal organizers of chromosomes with diverse functions. Genes Dev 26:1659–78
    [Google Scholar]
  52. 52.
    Houdusse A, Sweeney HL. 2016. How myosin generates force on actin filaments. Trends Biochem. Sci. 41:989–97
    [Google Scholar]
  53. 53.
    Invergo BM, Brochet M, Yu L, Choudhary J, Beltrao P, Billker O. 2017. Sub-minute phosphoregulation of cell cycle systems during Plasmodium gamete formation. Cell Rep 21:2017–29High-resolution time-course study of phosphoproteome signaling during the first minute of gametogenesis.
    [Google Scholar]
  54. 54.
    Iwanaga S, Kaneko I, Kato T, Yuda M. 2012. Identification of an AP2-family protein that is critical for malaria liver stage development. PLOS ONE 7:e47557
    [Google Scholar]
  55. 55.
    Janse CJ, Ponnudurai T, Lensen AH, Meuwissen JH, Ramesar J et al. 1988. DNA synthesis in gametocytes of Plasmodium falciparum. Parasitology 96:Part 11–7
    [Google Scholar]
  56. 56.
    Kadota K, Ishino T, Matsuyama T, Chinzei Y, Yuda M. 2004. Essential role of membrane-attack protein in malarial transmission to mosquito host. PNAS 101:16310–15
    [Google Scholar]
  57. 57.
    Kafsack BF, Rovira-Graells N, Clark TG, Bancells C, Crowley VM et al. 2014. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507:248–52
    [Google Scholar]
  58. 58.
    Kaneko I, Iwanaga S, Kato T, Kobayashi I, Yuda M. 2015. Genome-wide identification of the target genes of AP2-O, a Plasmodium AP2-family transcription factor. PLOS Pathog 11:e1004905
    [Google Scholar]
  59. 59.
    Kappe SH, Buscaglia CA, Nussenzweig V. 2004. Plasmodium sporozoite molecular cell biology. Annu. Rev. Cell Dev. Biol. 20:29–59
    [Google Scholar]
  60. 60.
    Kariu T, Ishino T, Yano K, Chinzei Y, Yuda M. 2006. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Mol. Microbiol. 59:1369–79
    [Google Scholar]
  61. 61.
    Kariu T, Yuda M, Yano K, Chinzei Y. 2002. MAEBL is essential for malarial sporozoite infection of the mosquito salivary gland. J. Exp. Med. 195:1317–23
    [Google Scholar]
  62. 62.
    Keeley A, Soldati D 2004. The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends Cell Biol 14:528–32
    [Google Scholar]
  63. 63.
    Khan SM, Franke-Fayard B, Mair GR, Lasonder E, Janse CJ et al. 2005. Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121:675–87
    [Google Scholar]
  64. 64.
    Konjikusic MJ, Gray RS, Wallingford JB. 2021. The developmental biology of kinesins. Dev. Biol. 469:26–36
    [Google Scholar]
  65. 65.
    Lal K, Prieto JH, Bromley E, Sanderson SJ, Yates JR 3rd et al. 2009. Characterisation of Plasmodium invasive organelles: an ookinete microneme proteome. Proteomics 9:1142–51
    [Google Scholar]
  66. 66.
    Laurentino EC, Taylor S, Mair GR, Lasonder E, Bartfai R et al. 2011. Experimentally controlled downregulation of the histone chaperone FACT in Plasmodium berghei reveals that it is critical to male gamete fertility. Cell. Microbiol. 13:1956–74
    [Google Scholar]
  67. 67.
    Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK et al. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:1503–8
    [Google Scholar]
  68. 68.
    Li Z, Cui H, Guan J, Liu C, Yang Z, Yuan J 2021. Plasmodium transcription repressor AP2-O3 regulates sex-specific identity of gene expression in female gametocytes. EMBO Rep 22:e51660
    [Google Scholar]
  69. 69.
    Licausi F, Ohme-Takagi M, Perata P. 2013. APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–49
    [Google Scholar]
  70. 70.
    Lindner SE, Mikolajczak SA, Vaughan AM, Moon W, Joyce BR et al. 2013. Perturbations of Plasmodium Puf2 expression and RNA-seq of Puf2-deficient sporozoites reveal a critical role in maintaining RNA homeostasis and parasite transmissibility. Cell Microbiol 15:1266–83
    [Google Scholar]
  71. 71.
    Liu Y, Tewari R, Ning J, Blagborough AM, Garbom S et al. 2008. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev 22:1051–68
    [Google Scholar]
  72. 72.
    Mair GR, Braks JA, Garver LS, Wiegant JC, Hall N et al. 2006. Regulation of sexual development of Plasmodium by translational repression. Science 313:667–69
    [Google Scholar]
  73. 73.
    Mair GR, Lasonder E, Garver LS, Franke-Fayard BM, Carret CK et al. 2010. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLOS Pathog 6:e1000767
    [Google Scholar]
  74. 74.
    Malumbres M. 2014. Cyclin-dependent kinases. Genome Biol 15:122
    [Google Scholar]
  75. 75.
    Mamoun CB, Sullivan DJ Jr., Banerjee R, Goldberg DE. 1998. Identification and characterization of an unusual double serine/threonine protein phosphatase 2C in the malaria parasite Plasmodium falciparum. J. Biol. Chem. 273:11241–47
    [Google Scholar]
  76. 76.
    Marques SR, Ramakrishnan C, Carzaniga R, Blagborough AM, Delves MJ et al. 2015. An essential role of the basal body protein SAS-6 in Plasmodium male gamete development and malaria transmission. Cell Microbiol 17:191–206
    [Google Scholar]
  77. 77.
    McRobert L, Taylor CJ, Deng W, Fivelman QL, Cummings RM et al. 2008. Gametogenesis in malaria parasites is mediated by the cGMP-dependent protein kinase. PLOS Biol 6:e139
    [Google Scholar]
  78. 78.
    Meissner M, Schluter D, Soldati D. 2002. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298:837–40
    [Google Scholar]
  79. 79.
    Mikolajczak SA, Silva-Rivera H, Peng X, Tarun AS, Camargo N et al. 2008. Distinct malaria parasite sporozoites reveal transcriptional changes that cause differential tissue infection competence in the mosquito vector and mammalian host. Mol. Cell Biol. 28:6196–207
    [Google Scholar]
  80. 80.
    Modrzynska K, Pfander C, Chappell L, Yu L, Suarez C et al. 2017. A knockout screen of ApiAP2 genes reveals networks of interacting transcriptional regulators controlling the Plasmodium life cycle. Cell Host Microbe 21:11–22Systematic knockout screen in P. berghei identified 10 ApiAP2 genes essential for mosquito transmission.
    [Google Scholar]
  81. 81.
    Moon RW, Taylor CJ, Bex C, Schepers R, Goulding D et al. 2009. A cyclic GMP signalling module that regulates gliding motility in a malaria parasite. PLOS Pathog 5:e1000599
    [Google Scholar]
  82. 82.
    Morgan DO. 1999. Regulation of the APC and the exit from mitosis. Nat. Cell Biol. 1:E47–53
    [Google Scholar]
  83. 83.
    Mori T, Hirai M, Kuroiwa T, Miyagishima SY. 2010. The functional domain of GCS1-based gamete fusion resides in the amino terminus in plant and parasite species. PLOS ONE 5:e15957
    [Google Scholar]
  84. 84.
    Mueller C, Graindorge A, Soldati-Favre D. 2017. Functions of myosin motors tailored for parasitism. Curr. Opin. Microbiol. 40:113–22
    [Google Scholar]
  85. 85.
    Muller K, Matuschewski K, Silvie O 2011. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite. PLOS ONE 6:e19860
    [Google Scholar]
  86. 86.
    Neuwald AF, Hirano T. 2000. HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions. Genome Res 10:1445–52
    [Google Scholar]
  87. 87.
    Oberstaller J, Pumpalova Y, Schieler A, Llinas M, Kissinger JC. 2014. The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems. Nucleic Acids Res 42:8271–84
    [Google Scholar]
  88. 88.
    Pandey R, Abel S, Boucher M, Wall RJ, Zeeshan M et al. 2020. Plasmodium condensin core subunits SMC2/SMC4 mediate atypical mitosis and are essential for parasite proliferation and transmission. Cell Rep 30:1883–97.e6First study to show essential function of condensin core subunits SMC2/4 in oocyst development.
    [Google Scholar]
  89. 89.
    Patzewitz EM, Guttery DS, Poulin B, Ramakrishnan C, Ferguson DJ et al. 2013. An ancient protein phosphatase, SHLP1, is critical to microneme development in Plasmodium ookinetes and parasite transmission. Cell Rep 3:622–29
    [Google Scholar]
  90. 90.
    Philip N, Vaikkinen HJ, Tetley L, Waters AP. 2012. A unique Kelch domain phosphatase in Plasmodium regulates ookinete morphology, motility and invasion. PLOS ONE 7:e44617
    [Google Scholar]
  91. 91.
    Philip N, Waters AP. 2015. Conditional degradation of Plasmodium calcineurin reveals functions in parasite colonization of both host and vector. Cell Host Microbe 18:122–31Developed the auxin-inducible degron (AID) system to conditionally regulate protein degradation at specific life cycle stages.
    [Google Scholar]
  92. 92.
    Ponzi M, Siden-Kiamos I, Bertuccini L, Curra C, Kroeze H et al. 2009. Egress of Plasmodium berghei gametes from their host erythrocyte is mediated by the MDV-1/PEG3 protein. Cell Microbiol 11:1272–88
    [Google Scholar]
  93. 93.
    Poulin B, Patzewitz EM, Brady D, Silvie O, Wright MH et al. 2013. Unique apicomplexan IMC sub-compartment proteins are early markers for apical polarity in the malaria parasite. Biol. Open. 2:1160–70
    [Google Scholar]
  94. 94.
    Quenault T, Lithgow T, Traven A. 2011. PUF proteins: repression, activation and mRNA localization. Trends Cell Biol 21:104–12
    [Google Scholar]
  95. 95.
    Raabe A, Berry L, Sollelis L, Cerdan R, Tawk L et al. 2011. Genetic and transcriptional analysis of phosphoinositide-specific phospholipase C in Plasmodium. Exp. Parasitol. 129:75–80
    [Google Scholar]
  96. 96.
    Rangarajan R, Bei AK, Jethwaney D, Maldonado P, Dorin D et al. 2005. A mitogen-activated protein kinase regulates male gametogenesis and transmission of the malaria parasite Plasmodium berghei. EMBO Rep 6:464–69
    [Google Scholar]
  97. 97.
    Reece-Hoyes JS, Deplancke B, Shingles J, Grove CA, Hope IA, Walhout AJ. 2005. A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks. Genome Biol 6:R110
    [Google Scholar]
  98. 98.
    Reininger L, Billker O, Tewari R, Mukhopadhyay A, Fennell C et al. 2005. A NIMA-related protein kinase is essential for completion of the sexual cycle of malaria parasites. J. Biol. Chem. 280:31957–64
    [Google Scholar]
  99. 99.
    Reininger L, Tewari R, Fennell C, Holland Z, Goldring D et al. 2009. An essential role for the Plasmodium Nek-2 Nima-related protein kinase in the sexual development of malaria parasites. J. Biol. Chem. 284:20858–68
    [Google Scholar]
  100. 100.
    Riechmann JL, Meyerowitz EM. 1998. The AP2/EREBP family of plant transcription factors. Biol. Chem. 379:633–46
    [Google Scholar]
  101. 101.
    Roques M, Wall RJ, Douglass AP, Ramaprasad A, Ferguson DJ et al. 2015. Plasmodium P-type cyclin CYC3 modulates endomitotic growth during oocyst development in mosquitoes. PLOS Pathog 11:e1005273
    [Google Scholar]
  102. 102.
    Russell AJC, Sanderson T, Bushell E, Talman AM, Anar B et al. 2021. Regulators of male and female sexual development critical for transmission of a malaria parasite. bioRxiv 2021.08.04.455056. https://doi.org/10.1101/2021.08.04.455056
  103. 103.
    Sato J, Shimizu H, Kasama T, Yabuta N, Nojima H. 2009. GAK, a regulator of clathrin-mediated membrane trafficking, localizes not only in the cytoplasm but also in the nucleus. Genes Cells 14:627–41
    [Google Scholar]
  104. 104.
    Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F. 2003. Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol. Cell 11:571–75
    [Google Scholar]
  105. 105.
    Schliwa M, Woehlke G. 2003. Molecular motors. Nature 422:759–65
    [Google Scholar]
  106. 106.
    Sebastian S, Brochet M, Collins MO, Schwach F, Jones ML et al. 2012. A Plasmodium calcium-dependent protein kinase controls zygote development and transmission by translationally activating repressed mRNAs. Cell Host Microbe 12:9–19
    [Google Scholar]
  107. 107.
    Shiao SH, Whitten MM, Zachary D, Hoffmann JA, Levashina EA. 2006. Fz2 and Cdc42 mediate melanization and actin polymerization but are dispensable for Plasmodium killing in the mosquito midgut. PLOS Pathog 2:e133
    [Google Scholar]
  108. 108.
    Shimizu H, Nagamori I, Yabuta N, Nojima H. 2009. GAK, a regulator of clathrin-mediated membrane traffic, also controls centrosome integrity and chromosome congression. J. Cell Sci. 122:3145–52
    [Google Scholar]
  109. 109.
    Siciliano G, Costa G, Suarez-Cortes P, Valleriani A, Alano P, Levashina EA. 2020. Critical steps of Plasmodium falciparum ookinete maturation. Front. Microbiol. 11:269
    [Google Scholar]
  110. 110.
    Siden-Kiamos I, Ecker A, Nyback S, Louis C, Sinden RE, Billker O. 2006. Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Mol. Microbiol. 60:1355–63
    [Google Scholar]
  111. 111.
    Siden-Kiamos I, Ganter M, Kunze A, Hliscs M, Steinbuchel M et al. 2011. Stage-specific depletion of myosin A supports an essential role in motility of malarial ookinetes. Cell Microbiol 13:1996–2006
    [Google Scholar]
  112. 112.
    Sinden RE. 1991. Mitosis and meiosis in malarial parasites. Acta Leiden 60:19–27
    [Google Scholar]
  113. 113.
    Sinden RE. 2002. Molecular interactions between Plasmodium and its insect vectors. Cell Microbiol 4:713–24
    [Google Scholar]
  114. 114.
    Sinden RE. 2015. The cell biology of malaria infection of mosquito: advances and opportunities. Cell Microbiol 17:451–66
    [Google Scholar]
  115. 115.
    Sinden RE, Canning EU, Spain B. 1976. Gametogenesis and fertilization in Plasmodium yoelii nigeriensis: a transmission electron microscope study. Proc. R. Soc. B 193:55–76
    [Google Scholar]
  116. 116.
    Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C et al. 2014. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507:253–57
    [Google Scholar]
  117. 117.
    Smith RC, Barillas-Mury C. 2016. Plasmodium oocysts: overlooked targets of mosquito immunity. Trends Parasitol 32:979–90
    [Google Scholar]
  118. 118.
    Stanway RR, Bushell E, Chiappino-Pepe A, Roques M, Sanderson T et al. 2019. Genome-scale identification of essential metabolic processes for targeting the Plasmodium liver stage. Cell 179:1112–28.e26Discovery of 461 genes required for transmission, through the liver stage and back into the bloodstream.
    [Google Scholar]
  119. 119.
    Straschil U, Talman AM, Ferguson DJ, Bunting KA, Xu Z et al. 2010. The Armadillo repeat protein PF16 is essential for flagellar structure and function in Plasmodium male gametes. PLOS ONE 5:e12901
    [Google Scholar]
  120. 120.
    Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J et al. 1995. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6:185–97
    [Google Scholar]
  121. 121.
    Tandel J, English ED, Sateriale A, Gullicksrud JA, Beiting DP et al. 2019. Life cycle progression and sexual development of the apicomplexan parasite Cryptosporidium parvum. Nat. Microbiol. 4:2226–36
    [Google Scholar]
  122. 122.
    Tewari R, Dorin D, Moon R, Doerig C, Billker O. 2005. An atypical mitogen-activated protein kinase controls cytokinesis and flagellar motility during male gamete formation in a malaria parasite. Mol. Microbiol. 58:1253–63
    [Google Scholar]
  123. 123.
    Tewari R, Straschil U, Bateman A, Bohme U, Cherevach I et al. 2010. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe 8:377–87Systematic functional screen of the P. berghei protein kinases. Thirteen are essential for parasite transmission.
    [Google Scholar]
  124. 124.
    Thompson J, Fernandez-Reyes D, Sharling L, Moore SG, Eling WM et al. 2007. Plasmodium cysteine repeat modular proteins 1–4: complex proteins with roles throughout the malaria parasite life cycle. Cell Microbiol 9:1466–80
    [Google Scholar]
  125. 125.
    van der Voet M, Lorson MA, Srinivasan DG, Bennett KL, van den Heuvel S. 2009. C. elegans mitotic cyclins have distinct as well as overlapping functions in chromosome segregation. Cell Cycle 8:4091–102
    [Google Scholar]
  126. 126.
    van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JA et al. 2001. A central role for P48/45 in malaria parasite male gamete fertility. Cell 104:153–64
    [Google Scholar]
  127. 127.
    van Schaijk BC, Kumar TR, Vos MW, Richman A, van Gemert GJ et al. 2014. Type II fatty acid biosynthesis is essential for Plasmodium falciparum sporozoite development in the midgut of Anopheles mosquitoes. Eukaryot. Cell 13:550–59
    [Google Scholar]
  128. 128.
    van Schaijk BC, van Dijk MR, van de Vegte-Bolmer M, van Gemert GJ, van Dooren MW et al. 2006. Pfs47, paralog of the male fertility factor Pfs48/45, is a female specific surface protein in Plasmodium falciparum. Mol. Biochem. Parasitol. 149:216–22
    [Google Scholar]
  129. 129.
    Wall RJ, Ferguson DJP, Freville A, Franke-Fayard B, Brady D et al. 2018. Plasmodium APC3 mediates chromosome condensation and cytokinesis during atypical mitosis in male gametogenesis. Sci. Rep. 8:5610
    [Google Scholar]
  130. 130.
    Wall RJ, Roques M, Katris NJ, Koreny L, Stanway RR et al. 2016. SAS6-like protein in Plasmodium indicates that conoid-associated apical complex proteins persist in invasive stages within the mosquito vector. Sci. Rep. 6:28604
    [Google Scholar]
  131. 131.
    Wall RJ, Zeeshan M, Katris NJ, Limenitakis R, Rea E et al. 2019. Systematic analysis of Plasmodium myosins reveals differential expression, localisation, and function in invasive and proliferative parasite stages. Cell Microbiol 21:e13082
    [Google Scholar]
  132. 132.
    Wang Q, Fujioka H, Nussenzweig V. 2005. Exit of Plasmodium sporozoites from oocysts is an active process that involves the circumsporozoite protein. PLOS Pathog 1:e9
    [Google Scholar]
  133. 133.
    Wang X, Qian P, Cui H, Yao L, Yuan J. 2020. A protein palmitoylation cascade regulates microtubule cytoskeleton integrity in Plasmodium. EMBO J 39:e104168
    [Google Scholar]
  134. 134.
    Ward P, Equinet L, Packer J, Doerig C 2004. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genom 5:79
    [Google Scholar]
  135. 135.
    Whitten MM, Shiao SH, Levashina EA. 2006. Mosquito midguts and malaria: cell biology, compartmentalization and immunology. Parasite Immunol 28:121–30
    [Google Scholar]
  136. 136.
    Wirth CC, Bennink S, Scheuermayer M, Fischer R, Pradel G. 2015. Perforin-like protein PPLP4 is crucial for mosquito midgut infection by Plasmodium falciparum. Mol. Biochem. Parasitol. 201:90–99
    [Google Scholar]
  137. 137.
    Wirth CC, Glushakova S, Scheuermayer M, Repnik U, Garg S et al. 2014. Perforin-like protein PPLP2 permeabilizes the red blood cell membrane during egress of Plasmodium falciparum gametocytes. Cell. Microbiol. 16:709–33
    [Google Scholar]
  138. 138.
    Yuda M, Iwanaga S, Shigenobu S, Kato T, Kaneko I. 2010. Transcription factor AP2-Sp and its target genes in malarial sporozoites. Mol. Microbiol. 75:854–63
    [Google Scholar]
  139. 139.
    Yuda M, Iwanaga S, Shigenobu S, Mair GR, Janse CJ et al. 2009. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites. Mol. Microbiol. 71:1402–14
    [Google Scholar]
  140. 140.
    Yuda M, Sakaida H, Chinzei Y. 1999. Targeted disruption of the Plasmodium berghei CTRP gene reveals its essential role in malaria infection of the vector mosquito. J. Exp. Med. 190:1711–16
    [Google Scholar]
  141. 141.
    Yusuf NA, Green JL, Wall RJ, Knuepfer E, Moon RW et al. 2015. The Plasmodium class XIV myosin, MyoB, has a distinct subcellular location in invasive and motile stages of the malaria parasite and an unusual light chain. J. Biol. Chem. 290:12147–64
    [Google Scholar]
  142. 142.
    Zeeshan M, Brady D, Stanway RR, Moores CA, Holder AA, Tewari R. 2020. Plasmodium berghei kinesin-5 associates with the spindle apparatus during cell division and is important for efficient production of infectious sporozoites. Front. Cell Infect. Microbiol. 10:583812
    [Google Scholar]
  143. 143.
    Zeeshan M, Ferguson DJ, Abel S, Burrrell A, Rea E et al. 2019. Kinesin-8B controls basal body function and flagellum formation and is key to malaria transmission. Life Sci. Alliance 2:e201900488
    [Google Scholar]
  144. 144.
    Zeeshan M, Pandey R, Ferguson DJP, Tromer EC, Markus R et al. 2020. Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation. J. Cell Sci. 134:jcs245753
    [Google Scholar]
  145. 145.
    Zeeshan M, Pandey R, Subudhi AK, Ferguson DJP, Kaur G et al. 2021. Protein phosphatase 1 regulates atypical mitotic and meiotic division in Plasmodium sexual stages. Commun. Biol. 4:760
    [Google Scholar]
  146. 146.
    Zeeshan M, Rashpa R, Ferguson DJ, Abel S, Chahine Z et al. 2022. Location and function of all Plasmodium kinesins: key roles in parasite proliferation, polarity and transmission. PLOS Biol In press
    [Google Scholar]
  147. 147.
    Zeeshan M, Shilliday F, Liu T, Abel S, Mourier T et al. 2019. Plasmodium kinesin-8X associates with mitotic spindles and is essential for oocyst development during parasite proliferation and transmission. PLOS Pathog 15:e1008048
    [Google Scholar]
  148. 148.
    Zhang C, Li Z, Cui H, Jiang Y, Yang Z et al. 2017. Systematic CRISPR-Cas9-mediated modifications of Plasmodium yoelii ApiAP2 genes reveal functional insights into parasite development. mBio 8:e01986–17
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041320-010046
Loading
/content/journals/10.1146/annurev-micro-041320-010046
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error