1932

Abstract

Small regulatory RNA (sRNAs) are key mediators of posttranscriptional gene control in bacteria. Assisted by RNA-binding proteins, a single sRNA often modulates the expression of dozens of genes, and thus sRNAs frequently adopt central roles in regulatory networks. Posttranscriptional regulation by sRNAs comes with several unique features that cannot be achieved by transcriptional regulators. However, for optimal network performance, transcriptional and posttranscriptional control mechanisms typically go hand-in-hand. This view is reflected by the ever-growing class of mixed network motifs involving sRNAs and transcription factors, which are ubiquitous in biology and whose regulatory properties we are beginning to understand. In addition, sRNA activity can be antagonized by base-pairing with sponge RNAs, adding yet another layer of complexity to these networks. In this article, we summarize the regulatory concepts underlying sRNA-mediated gene control in bacteria and discuss how sRNAs shape the output of a network, focusing on several key examples.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041320-025836
2023-09-15
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-041320-025836.html?itemId=/content/journals/10.1146/annurev-micro-041320-025836&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Afonyushkin T, Vecerek B, Moll I, Blasi U, Kaberdin VR. 2005. Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB. Nucleic Acids Res. 33:1678–89
    [Google Scholar]
  2. 2.
    Aoyama JJ, Raina M, Zhong A, Storz G. 2022. Dual-function Spot 42 RNA encodes a 15–amino acid protein that regulates the CRP transcription factor. PNAS 119:e2119866119
    [Google Scholar]
  3. 3.
    Azam MS, Vanderpool CK. 2020. Translation inhibition from a distance: The small RNA SgrS silences a ribosomal protein S1-dependent enhancer. Mol. Microbiol. 114:391–408
    [Google Scholar]
  4. 4.
    Bagg A, Neilands JB. 1987. Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26:5471–77
    [Google Scholar]
  5. 5.
    Ball AS, Chaparian RR, van Kessel JC. 2017. Quorum sensing gene regulation by LuxR/HapR master regulators in vibrios. J. Bacteriol. 199:19e00105–17
    [Google Scholar]
  6. 6.
    Bandyra KJ, Luisi BF. 2018. RNase E and the high-fidelity orchestration of RNA metabolism. Microbiol. Spectr 6:2 https://doi.org/10.1128/microbiolspec.RWR-0008-2017
    [Google Scholar]
  7. 7.
    Bardill JP, Zhao X, Hammer BK. 2011. The Vibrio cholerae quorum sensing response is mediated by Hfq-dependent sRNA/mRNA base pairing interactions. Mol. Microbiol. 80:1381–94
    [Google Scholar]
  8. 8.
    Barquist L, Vogel J. 2015. Accelerating discovery and functional analysis of small RNAs with new technologies. Annu. Rev. Genet. 49:367–94
    [Google Scholar]
  9. 9.
    Beisel CL, Storz G. 2011. The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli. Mol. Cell 41:286–97
    [Google Scholar]
  10. 10.
    Beisel CL, Updegrove TB, Janson BJ, Storz G. 2012. Multiple factors dictate target selection by Hfq-binding small RNAs. EMBO J. 31:1961–74
    [Google Scholar]
  11. 11.
    Bianco CM, Fröhlich KS, Vanderpool CK. 2019. Bacterial cyclopropane fatty acid synthase mRNA is targeted by activating and repressing small RNAs. J. Bacteriol. 201:19e00461–19
    [Google Scholar]
  12. 12.
    Bobrovskyy M, Azam MS, Frandsen JK, Zhang J, Poddar A et al. 2019. Determinants of target prioritization and regulatory hierarchy for the bacterial small RNA SgrS. Mol. Microbiol. 112:1199–218
    [Google Scholar]
  13. 13.
    Bobrovskyy M, Vanderpool CK. 2014. The small RNA SgrS: roles in metabolism and pathogenesis of enteric bacteria. Front. Cell Infect. Microbiol. 4:61
    [Google Scholar]
  14. 14.
    Bobrovskyy M, Vanderpool CK. 2016. Diverse mechanisms of post-transcriptional repression by the small RNA regulator of glucose-phosphate stress. Mol. Microbiol. 99:254–73
    [Google Scholar]
  15. 15.
    Bossi L, Figueroa-Bossi N. 2016. Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria. Nat. Rev. Microbiol. 14:775–84
    [Google Scholar]
  16. 16.
    Brosse A, Guillier M. 2018. Bacterial small RNAs in mixed regulatory networks. Microbiol. Spectr. 6:3 https://doi.org/10.1128/microbiolspec.RWR-0014-2017
    [Google Scholar]
  17. 17.
    Chandrangsu P, Rensing C, Helmann JD. 2017. Metal homeostasis and resistance in bacteria. Nat. Rev. Microbiol. 15:338–50
    [Google Scholar]
  18. 18.
    Chao Y, Vogel J. 2010. The role of Hfq in bacterial pathogens. Curr. Opin. Microbiol. 13:24–33
    [Google Scholar]
  19. 19.
    Chao Y, Vogel J. 2016. A 3′ UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Mol. Cell 61:352–63
    [Google Scholar]
  20. 20.
    Charbonnier M, Gonzalez-Espinoza G, Kehl-Fie TE, Lalaouna D 2022. Battle for metals: regulatory RNAs at the front line. Front. Cell Infect. Microbiol. 12:952948
    [Google Scholar]
  21. 21.
    Chareyre S, Mandin P. 2018. Bacterial iron homeostasis regulation by sRNAs. Microbiol. Spectr. 6:2 https://doi.org/10.1128/microbiolspec.RWR-0010-2017
    [Google Scholar]
  22. 22.
    Davis BM, Waldor MK. 2007. RNase E-dependent processing stabilizes MicX, a Vibrio cholerae sRNA. Mol. Microbiol. 65:373–85
    [Google Scholar]
  23. 23.
    de Dios R, Santero E, Reyes-Ramirez F. 2021. Extracytoplasmic function σ factors as tools for coordinating stress responses. Int. J. Mol. Sci. 22:83900
    [Google Scholar]
  24. 24.
    Deng Z, Meng X, Su S, Liu Z, Ji X et al. 2012. Two sRNA RyhB homologs from Yersinia pestis biovar microtus expressed in vivo have differential Hfq-dependent stability. Res. Microbiol. 163:413–18
    [Google Scholar]
  25. 25.
    Desnoyers G, Morissette A, Prevost K, Masse E. 2009. Small RNA-induced differential degradation of the polycistronic mRNA iscRSUA. EMBO J. 28:1551–61
    [Google Scholar]
  26. 26.
    Djapgne L, Panja S, Brewer LK, Gans JH, Kane MA et al. 2018. The Pseudomonas aeruginosa PrrF1 and PrrF2 small regulatory RNAs promote 2-alkyl-4-quinolone production through redundant regulation of the antR mRNA. J. Bacteriol. 200:10e00704–17
    [Google Scholar]
  27. 27.
    Durica-Mitic S, Gopel Y, Gorke B. 2018. Carbohydrate utilization in bacteria: making the most out of sugars with the help of small regulatory RNAs. Microbiol. Spectr. 6:2 https://doi.org/10.1128/microbiolspec.RWR-0013-2017
    [Google Scholar]
  28. 28.
    Durieux I, Ginevra C, Attaiech L, Picq K, Juan PA et al. 2019. Diverse conjugative elements silence natural transformation in Legionella species. PNAS 116:18613–18
    [Google Scholar]
  29. 29.
    Dutcher HA, Raghavan R. 2018. Origin, evolution, and loss of bacterial small RNAs. Microbiol. Spectr. 6:2 https://doi.org/10.1128/microbiolspec.RWR-0004-2017
    [Google Scholar]
  30. 30.
    El Mouali Y, Esteva-Martinez G, Garcia-Pedemonte D, Balsalobre C. 2020. Differential regulation of CsrC and CsrB by CRP-cAMP in Salmonella enterica. Front. Microbiol. 11:570536
    [Google Scholar]
  31. 31.
    El Mouali Y, Gaviria-Cantin T, Sanchez-Romero MA, Gibert M, Westermann AJ et al. 2018. CRP-cAMP mediates silencing of Salmonella virulence at the post-transcriptional level. PLOS Genet. 14:e1007401
    [Google Scholar]
  32. 32.
    El Mouali Y, Gerovac M, Mineikaite R, Vogel J. 2021. In vivo targets of Salmonella FinO include a FinP-like small RNA controlling copy number of a cohabitating plasmid. Nucleic Acids Res. 49:5319–35
    [Google Scholar]
  33. 33.
    Feng L, Rutherford ST, Papenfort K, Bagert JD, van Kessel JC et al. 2015. A Qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160:228–40
    [Google Scholar]
  34. 34.
    Figueroa-Bossi N, Bossi L. 2018. Sponges and predators in the small RNA world. Microbiol. Spectr. 6:4 https://doi.org/10.1128/microbiolspec.RWR-0021-2018
    [Google Scholar]
  35. 35.
    Figueroa-Bossi N, Valentini M, Malleret L, Fiorini F, Bossi L. 2009. Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. Genes Dev. 23:2004–15
    [Google Scholar]
  36. 36.
    Franze de Fernandez MT, Eoyang L, August JT. 1968. Factor fraction required for the synthesis of bacteriophage Qβ-RNA. Nature 219:588–90
    [Google Scholar]
  37. 37.
    Fröhlich KS, Gottesman S. 2018. Small regulatory RNAs in the enterobacterial response to envelope damage and oxidative stress. Microbiol. Spectr. 6:4 https://doi.org/10.1128/microbiolspec.RWR-0022-2018
    [Google Scholar]
  38. 38.
    Fröhlich KS, Papenfort K. 2020. Regulation outside the box: new mechanisms for small RNAs. Mol. Microbiol. 114:363–66
    [Google Scholar]
  39. 39.
    Fröhlich KS, Papenfort K, Fekete A, Vogel J. 2013. A small RNA activates CFA synthase by isoform-specific mRNA stabilization. EMBO J. 32:2963–79
    [Google Scholar]
  40. 40.
    Gogol EB, Rhodius VA, Papenfort K, Vogel J, Gross CA. 2011. Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon. PNAS 108:12875–80
    [Google Scholar]
  41. 41.
    Gorke B, Stulke J. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6:613–24
    [Google Scholar]
  42. 42.
    Gottesman S. 2019. Trouble is coming: signaling pathways that regulate general stress responses in bacteria. J. Biol. Chem. 294:11685–700
    [Google Scholar]
  43. 43.
    Grabowicz M, Koren D, Silhavy TJ. 2016. The CpxQ sRNA negatively regulates Skp to prevent mistargeting of β-barrel outer membrane proteins into the cytoplasmic membrane. mBio 7:e00312–16
    [Google Scholar]
  44. 44.
    Grabowicz M, Silhavy TJ. 2017. Envelope stress responses: an interconnected safety net. Trends Biochem. Sci 42:232–42
    [Google Scholar]
  45. 45.
    Green ER, Mecsas J. 2016. Bacterial secretion systems: an overview. Microbiol. Spectr. 4:1 https://doi.org/10.1128/microbiolspec.VMBF-0012-2015
    [Google Scholar]
  46. 46.
    Guillier M, Gottesman S, Storz G. 2006. Modulating the outer membrane with small RNAs. Genes Dev. 20:2338–48
    [Google Scholar]
  47. 47.
    Guo MS, Updegrove TB, Gogol EB, Shabalina SA, Gross CA, Storz G. 2014. MicL, a new σE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev. 28:1620–34
    [Google Scholar]
  48. 48.
    Han K, Tjaden B, Lory S 2016. GRIL-seq provides a method for identifying direct targets of bacterial small regulatory RNA by in vivo proximity ligation. Nat. Microbiol. 2:16239
    [Google Scholar]
  49. 49.
    Herzog R, Peschek N, Frohlich KS, Schumacher K, Papenfort K. 2019. Three autoinducer molecules act in concert to control virulence gene expression in Vibrio cholerae. Nucleic Acids Res. 47:3171–83
    [Google Scholar]
  50. 50.
    Holmqvist E, Li L, Bischler T, Barquist L, Vogel J. 2018. Global maps of ProQ binding in vivo reveal target recognition via RNA structure and stability control at mRNA 3′ ends. Mol. Cell 70:971–82.e6
    [Google Scholar]
  51. 51.
    Homberger C, Barquist L, Vogel J. 2022. Ushering in a new era of single-cell transcriptomics in bacteria. microLife 3:uqac020
    [Google Scholar]
  52. 52.
    Hör J, Gorski SA, Vogel J. 2018. Bacterial RNA biology on a genome scale. Mol. Cell 70:785–99
    [Google Scholar]
  53. 53.
    Hör J, Matera G, Vogel J, Gottesman S, Storz G. 2020. Trans-acting small RNAs and their effects on gene expression in Escherichia coli and Salmonella enterica. EcoSal Plus 9: https://doi.org/10.1128/ecosalplus.ESP-0030-2019
    [Google Scholar]
  54. 54.
    Hoyos M, Huber M, Forstner KU, Papenfort K 2020. Gene autoregulation by 3′ UTR-derived bacterial small RNAs. eLife 9:e58836
    [Google Scholar]
  55. 55.
    Huang X, Duddy OP, Silpe JE, Paczkowski JE, Cong J et al. 2020. Mechanism underlying autoinducer recognition in the Vibrio cholerae DPO-VqmA quorum-sensing pathway. J. Biol. Chem. 295:2916–31
    [Google Scholar]
  56. 56.
    Huber M, Frohlich KS, Radmer J, Papenfort K. 2020. Switching fatty acid metabolism by an RNA-controlled feed forward loop. PNAS 117:8044–54
    [Google Scholar]
  57. 57.
    Huber M, Lippegaus A, Melamed S, Siemers M, Wucher BR et al. 2022. An RNA sponge controls quorum sensing dynamics and biofilm formation in Vibrio cholerae. Nature Commun. 13:7585
    [Google Scholar]
  58. 58.
    Hunke S, Keller R, Muller VS. 2012. Signal integration by the Cpx-envelope stress system. FEMS Microbiol. Lett. 326:12–22
    [Google Scholar]
  59. 59.
    Ishihama A. 2010. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol. Rev. 34:628–45
    [Google Scholar]
  60. 60.
    Johansen J, Eriksen M, Kallipolitis B, Valentin-Hansen P. 2008. Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP–CRP- and σE-dependent CyaR-ompX regulatory case. J. Mol. Biol. 383:1–9
    [Google Scholar]
  61. 61.
    Johansen J, Rasmussen AA, Overgaard M, Valentin-Hansen P. 2006. Conserved small non-coding RNAs that belong to the σE regulon: role in down-regulation of outer membrane proteins. J. Mol. Biol. 364:1–8
    [Google Scholar]
  62. 62.
    Jung SA, Chapman CA, Ng WL. 2015. Quadruple quorum-sensing inputs control Vibrio cholerae virulence and maintain system robustness. PLOS Pathog. 11:e1004837
    [Google Scholar]
  63. 63.
    Kavita K, de Mets F, Gottesman S. 2018. New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr. Opin. Microbiol. 42:53–61
    [Google Scholar]
  64. 64.
    Kavita K, Zhang A, Tai CH, Majdalani N, Storz G, Gottesman S. 2022. Multiple in vivo roles for the C-terminal domain of the RNA chaperone Hfq. Nucleic Acids Res. 50:1718–33
    [Google Scholar]
  65. 65.
    Klein G, Raina S 2017. Small regulatory bacterial RNAs regulating the envelope stress response. Biochem. Soc. Trans. 45:417–25
    [Google Scholar]
  66. 66.
    Lai Y-J, Yakhnin H, Pannuri A, Pourciau C, Babitzke P, Romeo T. 2022. CsrA regulation via binding to the base-pairing small RNA Spot 42. Mol. Microbiol. 117:132–53
    [Google Scholar]
  67. 67.
    Lalaouna D, Carrier MC, Semsey S, Brouard JS, Wang J et al. 2015. A 3′ external transcribed spacer in a tRNA transcript acts as a sponge for small RNAs to prevent transcriptional noise. Mol. Cell 58:393–405
    [Google Scholar]
  68. 68.
    Lalaouna D, Masse E. 2015. Identification of sRNA interacting with a transcript of interest using MS2-affinity purification coupled with RNA sequencing (MAPS) technology. Genom. Data 5:136–38
    [Google Scholar]
  69. 69.
    Lee KC, Yeo WS, Roe JH. 2008. Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli. J. Bacteriol. 190:8244–47
    [Google Scholar]
  70. 70.
    Lempp M, Farke N, Kuntz M, Freibert SA, Lill R, Link H. 2019. Systematic identification of metabolites controlling gene expression in E. coli. Nat. Commun. 10:4463
    [Google Scholar]
  71. 71.
    Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82
    [Google Scholar]
  72. 72.
    Lloyd CR, Park S, Fei J, Vanderpool CK. 2017. The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. J. Bacteriol. 199:11e00869–16
    [Google Scholar]
  73. 73.
    Lu R, Osei-Adjei G, Huang X, Zhang Y. 2018. Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios. Future Microbiol. 13:383–91
    [Google Scholar]
  74. 74.
    Majdalani N, Chen S, Murrow J, St. John K, Gottesman S 2001. Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol. Microbiol. 39:1382–94
    [Google Scholar]
  75. 75.
    Majdalani N, Cunning C, Sledjeski D, Elliott T, Gottesman S. 1998. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. PNAS 95:12462–67
    [Google Scholar]
  76. 76.
    Maki K, Morita T, Otaka H, Aiba H. 2010. A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA. Mol. Microbiol. 76:782–92
    [Google Scholar]
  77. 77.
    Masse E, Escorcia FE, Gottesman S. 2003. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev. 17:2374–83
    [Google Scholar]
  78. 78.
    Masse E, Gottesman S. 2002. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. PNAS 99:4620–25
    [Google Scholar]
  79. 79.
    Masse E, Vanderpool CK, Gottesman S. 2005. Effect of RyhB small RNA on global iron use in Escherichia coli. J. Bacteriol. 187:6962–71
    [Google Scholar]
  80. 80.
    Melamed S. 2020. New sequencing methodologies reveal interplay between multiple RNA-binding proteins and their RNAs. Curr. Genet. 66:713–17
    [Google Scholar]
  81. 81.
    Melamed S, Adams PP, Zhang A, Zhang H, Storz G. 2020. RNA-RNA interactomes of ProQ and Hfq reveal overlapping and competing roles. Mol. Cell 77:411–25.e7
    [Google Scholar]
  82. 82.
    Melamed S, Peer A, Faigenbaum-Romm R, Gatt YE, Reiss N et al. 2016. Global mapping of small RNA-target interactions in bacteria. Mol. Cell 63:884–97
    [Google Scholar]
  83. 83.
    Mey AR, Craig SA, Payne SM. 2005. Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect. Immun. 73:5706–19
    [Google Scholar]
  84. 84.
    Milner JL, Wood JM. 1989. Insertion proQ220::Tn5 alters regulation of proline porter II, a transporter of proline and glycine betaine in Escherichia coli. J. Bacteriol. 171:947–51
    [Google Scholar]
  85. 85.
    Mitchell AM, Silhavy TJ. 2019. Envelope stress responses: balancing damage repair and toxicity. Nat. Rev. Microbiol. 17:417–28
    [Google Scholar]
  86. 86.
    Moller T, Franch T, Udesen C, Gerdes K, Valentin-Hansen P. 2002. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev. 16:1696–706
    [Google Scholar]
  87. 87.
    Morita T, Maki K, Aiba H. 2005. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev. 19:2176–86
    [Google Scholar]
  88. 88.
    Murphy ER, Payne SM. 2007. RyhB, an iron-responsive small RNA molecule, regulates Shigelladysenteriae virulence. Infect. Immun. 75:3470–77
    [Google Scholar]
  89. 89.
    Mutalik VK, Nonaka G, Ades SE, Rhodius VA, Gross CA. 2009. Promoter strength properties of the complete sigma E regulon of Escherichia coli and Salmonella enterica. J. Bacteriol. 191:7279–87
    [Google Scholar]
  90. 90.
    Ng WL, Bassler BL. 2009. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43:197–222
    [Google Scholar]
  91. 91.
    Oglesby-Sherrouse AG, Murphy ER. 2013. Iron-responsive bacterial small RNAs: variations on a theme. Metallomics 5:276–86
    [Google Scholar]
  92. 92.
    Olejniczak M, Storz G. 2017. ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers?. Mol. Microbiol. 104:905–15
    [Google Scholar]
  93. 93.
    Otaka H, Ishikawa H, Morita T, Aiba H. 2011. PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. PNAS 108:13059–64
    [Google Scholar]
  94. 94.
    Overgaard M, Johansen J, Moller-Jensen J, Valentin-Hansen P. 2009. Switching off small RNA regulation with trap-mRNA. Mol. Microbiol. 73:790–800
    [Google Scholar]
  95. 95.
    Padalon-Brauch G, Hershberg R, Elgrably-Weiss M, Baruch K, Rosenshine I et al. 2008. Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res. 36:1913–27
    [Google Scholar]
  96. 96.
    Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14:576–88
    [Google Scholar]
  97. 97.
    Papenfort K, Bouvier M, Mika F, Sharma CM, Vogel J. 2010. Evidence for an autonomous 5′ target recognition domain in an Hfq-associated small RNA. PNAS 107:20435–40
    [Google Scholar]
  98. 98.
    Papenfort K, Espinosa E, Casadesus J, Vogel J. 2015. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. PNAS 112:E4772–81
    [Google Scholar]
  99. 99.
    Papenfort K, Forstner KU, Cong JP, Sharma CM, Bassler BL. 2015. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. PNAS 112:E766–75
    [Google Scholar]
  100. 100.
    Papenfort K, Pfeiffer V, Lucchini S, Sonawane A, Hinton JC, Vogel J. 2008. Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. Mol. Microbiol. 68:890–906
    [Google Scholar]
  101. 101.
    Papenfort K, Pfeiffer V, Mika F, Lucchini S, Hinton JC, Vogel J. 2006. σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol. Microbiol. 62:1674–88
    [Google Scholar]
  102. 102.
    Papenfort K, Podkaminski D, Hinton JC, Vogel J. 2012. The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair. PNAS 109:E757–64
    [Google Scholar]
  103. 103.
    Papenfort K, Silpe JE, Schramma KR, Cong JP, Seyedsayamdost MR, Bassler BL. 2017. A Vibrio cholerae autoinducer-receptor pair that controls biofilm formation. Nat. Chem. Biol. 13:551–57
    [Google Scholar]
  104. 104.
    Papenfort K, Sun Y, Miyakoshi M, Vanderpool CK, Vogel J. 2013. Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153:426–37
    [Google Scholar]
  105. 105.
    Papenfort K, Vanderpool CK. 2015. Target activation by regulatory RNAs in bacteria. FEMS Microbiol. Rev. 39:362–78
    [Google Scholar]
  106. 106.
    Papenfort K, Vogel J. 2009. Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. Res. Microbiol. 160:278–87
    [Google Scholar]
  107. 107.
    Papenfort K, Vogel J. 2014. Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front. Cell Infect. Microbiol. 4:91
    [Google Scholar]
  108. 108.
    Penaloza D, Acuna LG, Barros MJ, Nunez P, Montt F et al. 2021. The small RNA RyhB homologs from Salmonella Typhimurium restrain the intracellular growth and modulate the SPI-1 gene expression within RAW264.7 macrophages. Microorganisms 9:3635
    [Google Scholar]
  109. 109.
    Peschek N, Herzog R, Singh PK, Sprenger M, Meyer F et al. 2020. RNA-mediated control of cell shape modulates antibiotic resistance in Vibrio cholerae. Nat. Commun. 11:6067
    [Google Scholar]
  110. 110.
    Peschek N, Hoyos M, Herzog R, Forstner KU, Papenfort K. 2019. A conserved RNA seed-pairing domain directs small RNA-mediated stress resistance in enterobacteria. EMBO J. 38:e101650
    [Google Scholar]
  111. 111.
    Pfeiffer V, Papenfort K, Lucchini S, Hinton JC, Vogel J. 2009. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat. Struct. Mol. Biol. 16:840–46
    [Google Scholar]
  112. 112.
    Pfeiffer V, Sittka A, Tomer R, Tedin K, Brinkmann V, Vogel J. 2007. A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol. Microbiol. 66:1174–91
    [Google Scholar]
  113. 113.
    Polayes DA, Rice PW, Garner MM, Dahlberg JE. 1988. Cyclic AMP-cyclic AMP receptor protein as a repressor of transcription of the spf gene of Escherichia coli. J. Bacteriol. 170:3110–14
    [Google Scholar]
  114. 114.
    Ponath F, Hör J, Vogel J. 2022. An overview of gene regulation in bacteria by small RNAs derived from mRNA 3′ ends. FEMS Microbiol. Rev. 46:5fuac017
    [Google Scholar]
  115. 115.
    Ponath F, Tawk C, Zhu Y, Barquist L, Faber F, Vogel J. 2021. RNA landscape of the emerging cancer-associated microbe Fusobacterium nucleatum. Nat. Microbiol. 6:1007–20
    [Google Scholar]
  116. 116.
    Ponath F, Zhu Y, Cosi V, Vogel J. 2022. Expanding the genetic toolkit helps dissect a global stress response in the early-branching species Fusobacterium nucleatum. PNAS 119:e2201460119
    [Google Scholar]
  117. 117.
    Prabhakar PK. 2020. Bacterial siderophores and their potential applications: a review. Curr. Mol. Pharmacol. 13:295–305
    [Google Scholar]
  118. 118.
    Prevost K, Salvail H, Desnoyers G, Jacques JF, Phaneuf E, Masse E. 2007. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol. Microbiol. 64:1260–73
    [Google Scholar]
  119. 119.
    Raina M, Aoyama JJ, Bhatt S, Paul BJ, Zhang A et al. 2022. Dual-function AzuCR RNA modulates carbon metabolism. PNAS 119:e2117930119
    [Google Scholar]
  120. 120.
    Raina M, King A, Bianco C, Vanderpool CK. 2018. Dual-function RNAs. Microbiol. Spectr. 6:5 https://doi.org/10.1128/microbiolspec.RWR-0032-2018
    [Google Scholar]
  121. 121.
    Rasmussen AA, Eriksen M, Gilany K, Udesen C, Franch T et al. 2005. Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth phase-dependent control. Mol. Microbiol. 58:1421–29
    [Google Scholar]
  122. 122.
    Reinhart AA, Powell DA, Nguyen AT, O'Neill M, Djapgne L et al. 2015. The prrF-encoded small regulatory RNAs are required for iron homeostasis and virulence of Pseudomonas aeruginosa. Infect. Immun. 83:863–75
    [Google Scholar]
  123. 123.
    Rice JB, Vanderpool CK. 2011. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. Nucleic Acids Res. 39:3806–19
    [Google Scholar]
  124. 124.
    Rutherford ST, Valastyan JS, Taillefumier T, Wingreen NS, Bassler BL. 2015. Comprehensive analysis reveals how single nucleotides contribute to noncoding RNA function in bacterial quorum sensing. PNAS 112:E6038–47
    [Google Scholar]
  125. 125.
    Rutherford ST, van Kessel JC, Shao Y, Bassler BL. 2011. AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev. 25:397–408
    [Google Scholar]
  126. 126.
    Ryan D, Jenniches L, Reichardt S, Barquist L, Westermann AJ. 2020. A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron. Nat. Commun. 11:3557
    [Google Scholar]
  127. 127.
    Sabharwal D, Song T, Papenfort K, Wai SN. 2015. The VrrA sRNA controls a stationary phase survival factor Vrp of Vibrio cholerae. RNA Biol. 12:186–96
    [Google Scholar]
  128. 128.
    Salvail H, Caron MP, Belanger J, Masse E. 2013. Antagonistic functions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the antibiotic colicin. EMBO J. 32:2764–78
    [Google Scholar]
  129. 129.
    Santiago-Frangos A, Jeliazkov JR, Gray JJ, Woodson SA 2017. Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife 6:e27049
    [Google Scholar]
  130. 130.
    Santiago-Frangos A, Kavita K, Schu DJ, Gottesman S, Woodson SA. 2016. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. PNAS 113:E6089–96
    [Google Scholar]
  131. 131.
    Santiago-Frangos A, Woodson SA. 2018. Hfq chaperone brings speed dating to bacterial sRNA. Wiley Interdiscip. Rev. RNA 9:e1475
    [Google Scholar]
  132. 132.
    Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ et al. 2001. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. PNAS 98:14895–900
    [Google Scholar]
  133. 133.
    Shao Y, Bassler BL. 2012. Quorum-sensing non-coding small RNAs use unique pairing regions to differentially control mRNA targets. Mol. Microbiol. 83:599–611
    [Google Scholar]
  134. 134.
    Shao Y, Feng L, Rutherford ST, Papenfort K, Bassler BL. 2013. Functional determinants of the quorum-sensing non-coding RNAs and their roles in target regulation. EMBO J. 32:2158–71
    [Google Scholar]
  135. 135.
    Sittka A, Pfeiffer V, Tedin K, Vogel J. 2007. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol. Microbiol. 63:193–217
    [Google Scholar]
  136. 136.
    Smirnov A, Wang C, Drewry LL, Vogel J. 2017. Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA. EMBO J. 36:1029–45
    [Google Scholar]
  137. 137.
    Song T, Mika F, Lindmark B, Liu Z, Schild S et al. 2008. A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol. Microbiol. 70:100–11
    [Google Scholar]
  138. 138.
    Song T, Sabharwal D, Wai SN. 2010. VrrA mediates Hfq-dependent regulation of OmpT synthesis in Vibrio cholerae. J. Mol. Biol. 400:682–88
    [Google Scholar]
  139. 139.
    Storz G, Vogel J, Wassarman KM. 2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43:880–91
    [Google Scholar]
  140. 140.
    Sun Y, Vanderpool CK. 2011. Regulation and function of Escherichia coli sugar efflux transporter A (SetA) during glucose-phosphate stress. J. Bacteriol. 193:143–53
    [Google Scholar]
  141. 141.
    Svenningsen SL. 2018. Small RNA-based regulation of bacterial quorum sensing and biofilm formation. Microbiol. Spectr. 6:4 https://doi.org/10.1128/microbiolspec.RWR-0017-2018
    [Google Scholar]
  142. 142.
    Svenningsen SL, Tu KC, Bassler BL. 2009. Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing. EMBO J. 28:429–39
    [Google Scholar]
  143. 143.
    Thompson KM, Rhodius VA, Gottesman S. 2007. σE regulates and is regulated by a small RNA in Escherichia coli. J. Bacteriol. 189:4243–56
    [Google Scholar]
  144. 144.
    Tokumoto U, Takahashi Y. 2001. Genetic analysis of the isc operon in Escherichia coli involved in the biogenesis of cellular iron-sulfur proteins. J. Biochem. 130:63–71
    [Google Scholar]
  145. 145.
    Troxell B, Hassan HM. 2013. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front. Cell Infect. Microbiol. 3:59
    [Google Scholar]
  146. 146.
    Tu KC, Bassler BL. 2007. Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes Dev. 21:221–33
    [Google Scholar]
  147. 147.
    Tu KC, Long T, Svenningsen SL, Wingreen NS, Bassler BL. 2010. Negative feedback loops involving small regulatory RNAs precisely control the Vibrio harveyi quorum-sensing response. Mol. Cell 37:567–79
    [Google Scholar]
  148. 148.
    Udekwu KI, Darfeuille F, Vogel J, Reimegard J, Holmqvist E, Wagner EG. 2005. Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev. 19:2355–66
    [Google Scholar]
  149. 149.
    Udekwu KI, Wagner EG. 2007. Sigma E controls biogenesis of the antisense RNA MicA. Nucleic Acids Res. 35:1279–88
    [Google Scholar]
  150. 150.
    Updegrove TB, Kouse AB, Bandyra KJ, Storz G. 2019. Stem-loops direct precise processing of 3′ UTR-derived small RNA MicL. Nucleic Acids Res. 47:31482–92
    [Google Scholar]
  151. 151.
    Updegrove TB, Shabalina SA, Storz G. 2015. How do base-pairing small RNAs evolve?. FEMS Microbiol. Rev. 39:379–91
    [Google Scholar]
  152. 152.
    Valentin-Hansen P, Johansen J, Rasmussen AA. 2007. Small RNAs controlling outer membrane porins. Curr. Opin. Microbiol. 10:152–55
    [Google Scholar]
  153. 153.
    Vanderpool CK, Gottesman S. 2004. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol. Microbiol. 54:1076–89
    [Google Scholar]
  154. 154.
    Vanderpool CK, Gottesman S. 2007. The novel transcription factor SgrR coordinates the response to glucose-phosphate stress. J. Bacteriol. 189:2238–48
    [Google Scholar]
  155. 155.
    Vecerek B, Moll I, Blasi U 2007. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J. 26:965–75
    [Google Scholar]
  156. 156.
    Venkat K, Hoyos M, Haycocks JR, Cassidy L, Engelmann B et al. 2021. A dual-function RNA balances carbon uptake and central metabolism in Vibrio cholerae. EMBO J. 40:e108542
    [Google Scholar]
  157. 157.
    Vogel J, Luisi BF. 2011. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 9:578–89
    [Google Scholar]
  158. 158.
    Vogel J, Papenfort K. 2006. Small non-coding RNAs and the bacterial outer membrane. Curr. Opin. Microbiol. 9:605–11
    [Google Scholar]
  159. 159.
    Wadler CS, Vanderpool CK. 2007. A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. PNAS 104:20454–59
    [Google Scholar]
  160. 160.
    Wagner EG. 2013. Cycling of RNAs on Hfq. RNA Biol. 10:619–26
    [Google Scholar]
  161. 161.
    Wall E, Majdalani N, Gottesman S. 2018. The complex Rcs regulatory cascade. Annu. Rev. Microbiol. 72:111–39
    [Google Scholar]
  162. 162.
    Westermann AJ, Venturini E, Sellin ME, Forstner KU, Hardt WD, Vogel J. 2019. The major RNA-binding protein ProQ impacts virulence gene expression in Salmonella enterica serovar Typhimurium. mBio 10:1e02504–18
    [Google Scholar]
  163. 163.
    Whiteley M, Diggle SP, Greenberg EP. 2017. Progress in and promise of bacterial quorum sensing research. Nature 551:313–20
    [Google Scholar]
  164. 164.
    Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S et al. 2004. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. PNAS 101:9792–97
    [Google Scholar]
  165. 165.
    Wright PR, Richter AS, Papenfort K, Mann M, Vogel J et al. 2013. Comparative genomics boosts target prediction for bacterial small RNAs. PNAS 110:E3487–96
    [Google Scholar]
  166. 166.
    Wu H, Li M, Peng C, Yin Y, Guo H et al. 2019. Large conformation shifts of Vibrio cholerae VqmA dimer in the absence of target DNA provide insight into DNA-binding mechanisms of LuxR-type receptors. Biochem. Biophys. Res. Commun. 520:399–405
    [Google Scholar]
  167. 167.
    Yang M, Frey EM, Liu Z, Bishar R, Zhu J. 2010. The virulence transcriptional activator AphA enhances biofilm formation by Vibrio cholerae by activating expression of the biofilm regulator VpsT. Infect. Immun. 78:697–703
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041320-025836
Loading
/content/journals/10.1146/annurev-micro-041320-025836
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error