1932

Abstract

Related groups of microbes are widely distributed across Earth's habitats, implying numerous dispersal and adaptation events over evolutionary time. However, relatively little is known about the characteristics and mechanisms of these habitat transitions, particularly for populations that reside in animal microbiomes. Here, we review the literature concerning habitat transitions among a variety of bacterial and archaeal lineages, considering the frequency of migration events, potential environmental barriers, and mechanisms of adaptation to new physicochemical conditions, including the modification of protein inventories and other genomic characteristics. Cells dependent on microbial hosts, particularly bacteria from the Candidate Phyla Radiation, have undergone repeated habitat transitions from environmental sources into animal microbiomes. We compare their trajectories to those of both free-living cells—including the , , and methanogenic archaea—and cellular endosymbionts and bacteriophages, which have made similar transitions. We conclude by highlighting major related topics that may be worthy of future study.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041320-032304
2023-09-15
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-041320-032304.html?itemId=/content/journals/10.1146/annurev-micro-041320-032304&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abby SS, Kerou M, Schleper C. 2020. Ancestral reconstructions decipher major adaptations of ammonia-oxidizing archaea upon radiation into moderate terrestrial and marine environments. mBio 11:5e02371–20
    [Google Scholar]
  2. 2.
    Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ et al. 2016. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7:13219
    [Google Scholar]
  3. 3.
    Andrei A-Ş, Salcher MM, Mehrshad M, Rychtecký P, Znachor P, Ghai R 2019. Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. ISME J. 13:41056–71
    [Google Scholar]
  4. 4.
    Auguet J-C, Barberan A, Casamayor EO. 2010. Global ecological patterns in uncultured Archaea. ISME J. 4:2182–90
    [Google Scholar]
  5. 5.
    Austin CR, Goodyear AW, Bartek IL, Stewart A, Sutherland MD et al. 2015. A Burkholderia pseudomallei colony variant necessary for gastric colonization. mBio 6:1e02462–14
    [Google Scholar]
  6. 6.
    Bik EM, Costello EK, Switzer AD, Callahan BJ, Holmes SP et al. 2016. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7:10516
    [Google Scholar]
  7. 7.
    Bižić-Ionescu M, Ionescu D 2016. Crossing the freshwater/saline barrier: a phylogenetic analysis of bacteria inhabiting both freshwater and marine ecosystems. Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective PM Glibert, TM Kana 35–44. Cham, Switz.: Springer
    [Google Scholar]
  8. 8.
    Bor B, McLean JS, Foster KR, Cen L, To TT et al. 2018. Rapid evolution of decreased host susceptibility drives a stable relationship between ultrasmall parasite TM7x and its bacterial host. PNAS 115:4812277–82
    [Google Scholar]
  9. 9.
    Borrel G, Brugère J-F, Gribaldo S, Schmitz RA, Moissl-Eichinger C. 2020. The host-associated archaeome. Nat. Rev. Microbiol. 18:11622–36
    [Google Scholar]
  10. 10.
    Bright M, Bulgheresi S. 2010. A complex journey: transmission of microbial symbionts. Nat. Rev. Microbiol. 8:3218–30
    [Google Scholar]
  11. 11.
    Brooks B, Olm MR, Firek BA, Baker R, Geller-McGrath D et al. 2018. The developing premature infant gut microbiome is a major factor shaping the microbiome of neonatal intensive care unit rooms. Microbiome 6:1112
    [Google Scholar]
  12. 12.
    Brooks B, Olm MR, Firek BA, Baker R, Thomas BC et al. 2017. Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome. Nat. Commun. 8:11814
    [Google Scholar]
  13. 13.
    Cabello-Yeves PJ, Rodriguez-Valera F. 2019. Marine-freshwater prokaryotic transitions require extensive changes in the predicted proteome. Microbiome 7:1117
    [Google Scholar]
  14. 14.
    Castelle CJ, Banfield JF. 2018. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172:61181–97
    [Google Scholar]
  15. 15.
    Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF. 2018. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16:10629–45
    [Google Scholar]
  16. 16.
    Chaudhari NM, Overholt WA, Figueroa-Gonzalez PA, Taubert M, Bornemann TLV et al. 2021. The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers. Environ. Microbiome 16:124
    [Google Scholar]
  17. 17.
    Chen X, Molenda O, Brown CT, Toth CRA, Guo S et al. 2023. Candidatus Nealsonbacteria (OD1) are biomass recycling ectosymbionts of methanogenic archaea in a stable benzene-degrading enrichment culture. bioRxiv 2022.04.20.488981 , Jan. 5
  18. 18.
    Chiriac MC, Haber M, Salcher MM. 2022. Adaptive genetic traits in pelagic freshwater microbes. Environ. Microbiol. 25:3606–41
    [Google Scholar]
  19. 19.
    Chowdhury N, Marschner P, Burns R. 2011. Response of microbial activity and community structure to decreasing soil osmotic and matric potential. Plant Soil 344:1241–54
    [Google Scholar]
  20. 20.
    Cohan FM, Koeppel AF. 2008. The origins of ecological diversity in prokaryotes. Curr. Biol. 18:21R1024–34
    [Google Scholar]
  21. 21.
    Collingro A, Köstlbacher S, Horn M. 2020. Chlamydiae in the environment. Trends Microbiol. 28:11877–88
    [Google Scholar]
  22. 22.
    Crisci MA, Chen L-X, Devoto AE, Borges AL, Bordin N et al. 2021. Closely related Lak megaphages replicate in the microbiomes of diverse animals. iScience 24:8102875
    [Google Scholar]
  23. 23.
    Cross KL, Campbell JH, Balachandran M, Campbell AG, Cooper SJ et al. 2019. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 37:111314–21
    [Google Scholar]
  24. 24.
    Danczak RE, Johnston MD, Kenah C, Slattery M, Wrighton KC, Wilkins MJ. 2017. Members of the Candidate Phyla Radiation are functionally differentiated by carbon- and nitrogen-cycling capabilities. Microbiome 5:1112
    [Google Scholar]
  25. 25.
    de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE. 2019. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 27:151–63
    [Google Scholar]
  26. 26.
    de Wit R, Bouvier T. 2006. “Everything is everywhere, but, the environment selects”; what did Baas Becking and Beijerinck really say?. Environ. Microbiol. 8:4755–58
    [Google Scholar]
  27. 27.
    Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. 2022. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20:2109–21
    [Google Scholar]
  28. 28.
    Devoto AE, Santini JM, Olm MR, Anantharaman K, Munk P et al. 2019. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat. Microbiol. 4:4693–700
    [Google Scholar]
  29. 29.
    Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA et al. 2013. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife 2:e01102
    [Google Scholar]
  30. 30.
    Dupont CL, Larsson J, Yooseph S, Ininbergs K, Goll J et al. 2014. Functional tradeoffs underpin salinity-driven divergence in microbial community composition. PLOS ONE 9:2e89549
    [Google Scholar]
  31. 31.
    Dyall SD, Brown MT, Johnson PJ. 2004. Ancient invasions: from endosymbionts to organelles. Science 304:5668253–57
    [Google Scholar]
  32. 32.
    Eiler A, Mondav R, Sinclair L, Fernandez-Vidal L, Scofield DG et al. 2016. Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria. ISME J. 10:81902–14
    [Google Scholar]
  33. 33.
    Fan Y, Pedersen O. 2021. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19:155–71
    [Google Scholar]
  34. 34.
    Faure E, Kwong K, Nguyen D. 2018. Pseudomonas aeruginosa in chronic lung infections: how to adapt within the host?. Front. Immunol. 9:2416
    [Google Scholar]
  35. 35.
    Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V et al. 2018. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:1133–45.e5
    [Google Scholar]
  36. 36.
    Fischer WW, Hemp J, Valentine JS. 2016. How did life survive Earth's great oxygenation?. Curr. Opin. Chem. Biol. 31:166–78
    [Google Scholar]
  37. 37.
    Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. 2017. The evolution of the host microbiome as an ecosystem on a leash. Nature 548:766543–51
    [Google Scholar]
  38. 38.
    Frigaard N-U, Martinez A, Mincer TJ, DeLong EF. 2006. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439:7078847–50
    [Google Scholar]
  39. 39.
    Gadagkar SR, Rosenberg MS, Kumar S. 2005. Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J. Exp. Zool. B 304:164–74
    [Google Scholar]
  40. 40.
    Getz EW, Tithi SS, Zhang L, Aylward FO. 2018. Parallel evolution of genome streamlining and cellular bioenergetics across the marine radiation of a bacterial phylum. mBio 9:5e01089–18
    [Google Scholar]
  41. 41.
    Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL et al. 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:57381242–45
    [Google Scholar]
  42. 42.
    He C, Keren R, Whittaker ML, Farag IF, Doudna JA et al. 2021. Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nat. Microbiol. 6:3354–65
    [Google Scholar]
  43. 43.
    He X, McLean JS, Edlund A, Yooseph S, Hall AP et al. 2015. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. PNAS 112:1244–49
    [Google Scholar]
  44. 44.
    Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5:101571–79
    [Google Scholar]
  45. 45.
    Jaffe AL, Konno M, Kawasaki Y, Kataoka C, Béjà O et al. 2022. Saccharibacteria harness light energy using type-1 rhodopsins that may rely on retinal sourced from microbial hosts. ISME J. 16:82056–59
    [Google Scholar]
  46. 46.
    Jaffe AL, Thomas AD, He C, Keren R, Valentin-Alvarado LE et al. 2021. Patterns of gene content and co-occurrence constrain the evolutionary path toward animal association in Candidate Phyla Radiation bacteria. mBio 12:4e0052121
    [Google Scholar]
  47. 47.
    Jamy M, Biwer C, Vaulot D, Obiol A, Jing H et al. 2022. Global patterns and rates of habitat transitions across the eukaryotic tree of life. Nat. Ecol. Evol. 6:101458–70
    [Google Scholar]
  48. 48.
    Jurdzinski KT, Mehrshad M, Delgado LF, Deng Z, Bertilsson S, Andersson AF. 2023. Large-scale phylogenomics of aquatic bacteria reveal molecular mechanisms for adaptation to salinity. Sci. Adv. 9:eadg2059
  49. 49.
    Kantor RS, Wrighton KC, Handley KM, Sharon I, Hug LA et al. 2013. Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla. mBio 4:5e00708–13
    [Google Scholar]
  50. 50.
    Kerou M, Ponce-Toledo RI, Zhao R, Abby SS, Hirai M et al. 2021. Genomes of Thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. ISME J. 15:2792–808
    [Google Scholar]
  51. 51.
    Köstlbacher S, Collingro A, Halter T, Schulz F, Jungbluth SP, Horn M. 2021. Pangenomics reveals alternative environmental lifestyles among chlamydiae. Nat. Commun. 12:14021
    [Google Scholar]
  52. 52.
    Kuroda K, Yamamoto K, Nakai R, Hirakata Y, Kubota K et al. 2022. Symbiosis between Candidatus Patescibacteria and archaea discovered in wastewater-treating bioreactors. mBio 13:5e0171122
    [Google Scholar]
  53. 53.
    Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 2008. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6:10776–88
    [Google Scholar]
  54. 54.
    Lieberman TD, Michel J-B, Aingaran M, Potter-Bynoe G, Roux D et al. 2011. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat. Genet. 43:121275–80
    [Google Scholar]
  55. 55.
    Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. 2009. Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol. 17:9414–22
    [Google Scholar]
  56. 56.
    Logares R, Bråte J, Heinrich F, Shalchian-Tabrizi K, Bertilsson S. 2010. Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11). Mol. Biol. Evol. 27:2347–57
    [Google Scholar]
  57. 57.
    Losos JB, Jackman TR, Larson A, Queiroz K, Rodriguez-Schettino L. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:53592115–18
    [Google Scholar]
  58. 58.
    Lou YC, Olm MR, Diamond S, Crits-Christoph A, Firek BA et al. 2021. Infant gut strain persistence is associated with maternal origin, phylogeny, and traits including surface adhesion and iron acquisition. Cell Rep. Med. 2:9100393
    [Google Scholar]
  59. 59.
    Lozupone CA, Knight R. 2007. Global patterns in bacterial diversity. PNAS 104:2711436–40
    [Google Scholar]
  60. 60.
    Luef B, Frischkorn KR, Wrighton KC, Holman H-YN, Birarda G et al. 2015. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat. Commun. 6:6372
    [Google Scholar]
  61. 61.
    Matheus Carnevali PB, Schulz F, Castelle CJ, Kantor RS, Shih PM et al. 2019. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nat. Commun. 10:1463 Erratum 2019. Nat. Commun. 10:11451
    [Google Scholar]
  62. 62.
    McLean JS, Bor B, Kerns KA, Liu Q, To TT et al. 2020. Acquisition and adaptation of ultra-small parasitic reduced genome bacteria to mammalian hosts. Cell Rep. 32:3107939
    [Google Scholar]
  63. 63.
    Méheust R, Castelle CJ, Matheus Carnevali PB, Farag IF, He C et al. 2020. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J. 14:122907–22
    [Google Scholar]
  64. 64.
    Mehrshad M, Salcher MM, Okazaki Y, Nakano S-I, Šimek K et al. 2018. Hidden in plain sight—highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome 6:1176
    [Google Scholar]
  65. 65.
    Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L et al. 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6:9701–10
    [Google Scholar]
  66. 66.
    Moran NA, Munson MA, Baumann P, Ishikawa H. 1993. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc. R. Soc. Lond. B 253:1337167–71
    [Google Scholar]
  67. 67.
    Moran NA, Wernegreen JJ. 2000. Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol. Evol. 15:8321–26
    [Google Scholar]
  68. 68.
    Moreira D, Zivanovic Y, López-Archilla AI, Iniesto M, López-García P. 2021. Reductive evolution and unique predatory mode in the CPR bacterium Vampirococcus lugosii. Nat. Commun. 12:12454
    [Google Scholar]
  69. 69.
    Naud S, Ibrahim A, Valles C, Maatouk M, Bittar F et al. 2022. Candidate Phyla Radiation, an underappreciated division of the human microbiome, and its impact on health and disease. Clin. Microbiol. Rev. 35:3e0014021
    [Google Scholar]
  70. 70.
    Nicolas AM, Jaffe AL, Nuccio EE, Taga ME, Firestone MK, Banfield JF. 2021. Soil Candidate Phyla Radiation bacteria encode components of aerobic metabolism and co-occur with nanoarchaea in the rare biosphere of rhizosphere grassland communities. mSystems 6:4e0120520
    [Google Scholar]
  71. 71.
    Ngugi DK, Salcher MM, Andrei AS, Ghai R, Klotz F et al. 2023. Postglacial adaptations enabled colonization and quasi-clonal dispersal of ammonia-oxidizing archaea in modern European large lakes. Sci. Adv. 9:5eadc9392
    [Google Scholar]
  72. 72.
    Nyholm SV, McFall-Ngai MJ. 1998. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri. Biol. Bull. 195:289–97
    [Google Scholar]
  73. 73.
    Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M et al. 2016. Uncovering Earth's virome. Nature 536:7617425–30
    [Google Scholar]
  74. 74.
    Paver SF, Muratore D, Newton RJ, Coleman ML. 2018. Reevaluating the salty divide: phylogenetic specificity of transitions between marine and freshwater systems. mSystems 3:6e00232–18
    [Google Scholar]
  75. 75.
    Penn K, Jensen PR 2012. Comparative genomics reveals evidence of marine adaptation in Salinispora species. BMC Genom. 13:86
    [Google Scholar]
  76. 76.
    Preiswerk D, Walser J-C, Ebert D. 2018. Temporal dynamics of microbiota before and after host death. ISME J. 12:82076–85
    [Google Scholar]
  77. 77.
    Raina J-B, Eme L, Pollock FJ, Spang A, Archibald JM, Williams TA. 2018. Symbiosis in the microbial world: from ecology to genome evolution. Biol. Open 7:2bio032524
    [Google Scholar]
  78. 78.
    Ramachandran A, McLatchie S, Walsh DA. 2021. A novel freshwater to marine evolutionary transition revealed within methylophilaceae bacteria from the arctic ocean. mBio 12:3e0130621
    [Google Scholar]
  79. 79.
    Ren M, Feng X, Huang Y, Wang H, Hu Z et al. 2019. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. 13:92150–61
    [Google Scholar]
  80. 80.
    Ren M, Wang J. 2022. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. ISME J. 16:61491–501
    [Google Scholar]
  81. 81.
    Ruby EG, Asato LM. 1993. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159:2160–67
    [Google Scholar]
  82. 82.
    Salcher MM, Schaefle D, Kaspar M, Neuenschwander SM, Ghai R. 2019. Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae. ISME J. 13:112764–77
    [Google Scholar]
  83. 83.
    Schnorr SL, Sankaranarayanan K, Lewis CM Jr., Warinner C. 2016. Insights into human evolution from ancient and contemporary microbiome studies. Curr. Opin. Genet. Dev. 41:14–26
    [Google Scholar]
  84. 84.
    Serres MH, Kerr ARW, McCormack TJ, Riley M. 2009. Evolution by leaps: gene duplication in bacteria. Biol. Direct. 4:46
    [Google Scholar]
  85. 85.
    Shade A, Dunn RR, Blowes SA, Keil P, Bohannan BJM et al. 2018. Macroecology to unite all life, large and small. Trends Ecol. Evol. 33:10731–44
    [Google Scholar]
  86. 86.
    Shaiber A, Willis AD, Delmont TO, Roux S, Chen L-X et al. 2020. Functional and genetic markers of niche partitioning among enigmatic members of the human oral microbiome. Genome Biol. 21:1292
    [Google Scholar]
  87. 87.
    Sheridan PO, Raguideau S, Quince C, Holden J, Zhang L et al. 2020. Gene duplication drives genome expansion in a major lineage of Thaumarchaeota. Nat. Commun. 11:15494
    [Google Scholar]
  88. 88.
    Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I et al. 2017. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 11:61483–99
    [Google Scholar]
  89. 89.
    Soppa J. 2006. From genomes to function: haloarchaea as model organisms. Microbiology 152:Part 3585–90
    [Google Scholar]
  90. 90.
    Starr EP, Shi S, Blazewicz SJ, Probst AJ, Herman DJ et al. 2018. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome 6:1122
    [Google Scholar]
  91. 91.
    Szöllősi GJ, Rosikiewicz W, Boussau B, Tannier E, Daubin V. 2013. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62:6901–12
    [Google Scholar]
  92. 92.
    Tang X, Yu L, Yi Y, Wang J, Wang S et al. 2021. Phylogenomic analysis reveals a two-stage process of the evolutionary transition of Shewanella from the upper ocean to the hadal zone. Environ. Microbiol. 23:2744–56
    [Google Scholar]
  93. 93.
    Telford RJ, Vandvik V, Birks HJB. 2006. Dispersal limitations matter for microbial morphospecies. Science 312:57761015
    [Google Scholar]
  94. 94.
    Thomas CM, Desmond-Le Quéméner E, Gribaldo S, Borrel G 2022. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat. Commun. 13:13358
    [Google Scholar]
  95. 95.
    Thomas CM, Taib N, Gribaldo S, Borrel G. 2021. Comparative genomic analysis of Methanimicrococcus blatticola provides insights into host adaptation in archaea and the evolution of methanogenesis. ISME Commun. 1:47
    [Google Scholar]
  96. 96.
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J et al. 2017. A communal catalogue reveals Earth's multiscale microbial diversity. Nature 551:7681457–63
    [Google Scholar]
  97. 97.
    Tian J, Utter DR, Cen L, Dong P-T, Shi W et al. 2022. Acquisition of the arginine deiminase system benefits epiparasitic Saccharibacteria and their host bacteria in a mammalian niche environment. PNAS 119:2e2114909119
    [Google Scholar]
  98. 98.
    Tischler AH, Hodge-Hanson KM, Visick KL. 2019. Vibrio fischeri–squid symbiosis. eLS Chichester, UK: John Wiley & Sons https://doi.org/10.1002/9780470015902.a0028395
    [Google Scholar]
  99. 99.
    Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ et al. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:697837–43
    [Google Scholar]
  100. 100.
    Vermeij GJ, Dudley R. 2000. Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems?. Biol. J. Linnean Soc. 70:4541–54
    [Google Scholar]
  101. 101.
    Viklund J, Ettema TJG, Andersson SGE. 2012. Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol. Biol. Evol. 29:2599–615
    [Google Scholar]
  102. 102.
    von Mering C, Hugenholtz P, Raes J, Tringe SG, Doerks T et al. 2007. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315:58151126–30
    [Google Scholar]
  103. 103.
    Whitaker RJ, Grogan DW, Taylor JW. 2003. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:5635976–78
    [Google Scholar]
  104. 104.
    Yebra G, Harling-Lee JD, Lycett S, Aarestrup FM, Larsen G et al. 2022. Multiclonal human origin and global expansion of an endemic bacterial pathogen of livestock. PNAS 119:50e2211217119
    [Google Scholar]
  105. 105.
    Youngblut ND, Reischer GH, Dauser S, Maisch S, Walzer C et al. 2021. Vertebrate host phylogeny influences gut archaeal diversity. Nat. Microbiol. 6:111443–54
    [Google Scholar]
  106. 106.
    Zhang H, Yoshizawa S, Sun Y, Huang Y, Chu X et al. 2019. Repeated evolutionary transitions of flavobacteria from marine to non-marine habitats. Environ. Microbiol. 21:2648–66
    [Google Scholar]
  107. 107.
    Zhou Z, Tran PQ, Kieft K, Anantharaman K. 2020. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. ISME J. 14:82060–77
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041320-032304
Loading
/content/journals/10.1146/annurev-micro-041320-032304
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error