1932

Abstract

Heterocyst differentiation that occurs in some filamentous cyanobacteria, such as sp. PCC 7120, provides a unique model for prokaryotic developmental biology. Heterocyst cells are formed in response to combined-nitrogen deprivation and possess a microoxic environment suitable for nitrogen fixation following extensive morphological and physiological reorganization. A filament of is a true multicellular organism, as nitrogen and carbon sources are exchanged among different cells and cell types through septal junctions to ensure filament growth. Because heterocysts are terminally differentiated cells and unable to divide, their activity is an altruistic behavior dedicated to providing fixed nitrogen for neighboring vegetative cells. Heterocyst development is also a process of one-dimensional pattern formation, as heterocysts are semiregularly intercalated among vegetative cells. Morphogens form gradients along the filament and interact with each other in a fashion that fits well into the Turing model, a mathematical framework to explain biological pattern formation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041320-093442
2022-09-08
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-041320-093442.html?itemId=/content/journals/10.1146/annurev-micro-041320-093442&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Arbel-Goren R, Buonfiglio V, Di Patti F, Camargo S, Zhitnitsky A et al. 2021. Robust, coherent, and synchronized circadian clock-controlled oscillations along Anabaena filaments. eLife 10:e64346
    [Google Scholar]
  2. 2.
    Arévalo S, Flores E. 2020. Pentapeptide-repeat, cytoplasmic-membrane protein HglK influences the septal junctions in the heterocystous cyanobacterium Anabaena. Mol. Microbiol. 113:794–806
    [Google Scholar]
  3. 3.
    Arévalo S, Flores E. 2021. Heterocyst septa contain large nanopores that are influenced by the Fra proteins in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 203:e0008121
    [Google Scholar]
  4. 4.
    Arévalo S, Nenninger A, Nieves-Morión M, Herrero A, Mullineaux CW, Flores E. 2021. Coexistence of communicating and noncommunicating cells in the filamentous cyanobacterium Anabaena. mSphere 6:e01091–20
    [Google Scholar]
  5. 5.
    Asai H, Iwamori S, Kawai K, Ehira S, Ishihara J et al. 2009. Cyanobacterial cell lineage analysis of the spatiotemporal hetR expression profile during heterocyst pattern formation in Anabaena sp. PCC 7120 PLOS ONE 4:e7371
    [Google Scholar]
  6. 6.
    Bastet L, Boileau C, Bedu S, Janicki A, Latifi A, Zhang CC. 2010. NtcA regulates patA expression in Anabaena sp. strain PCC 7120. J. Bacteriol. 192:5257–59
    [Google Scholar]
  7. 7.
    Bauer CC, Buikema WJ, Black K, Haselkorn R. 1995. A short-filament mutant of Anabaena sp. strain PCC-7120 that fragments in nitrogen-deficient medium. J. Bacteriol. 177:1520–26
    [Google Scholar]
  8. 8.
    Berendt S, Lehner J, Zhang YV, Rasse TM, Forchhammer K, Maldener I. 2012. Cell wall amidase AmiC1 is required for cellular communication and heterocyst development in the cyanobacterium Anabaena PCC 7120 but not for filament integrity. J. Bacteriol. 194:5218–27
    [Google Scholar]
  9. 9.
    Berman-Frank I, Lundgren P, Chen YB, Küpper H, Kolber Z et al. 2001. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–37
    [Google Scholar]
  10. 10.
    Black K, Buikema WJ, Haselkorn R. 1995. The hglK gene is required for localization of heterocyst-specific glycolipids in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 177:6440–48
    [Google Scholar]
  11. 11.
    Black TA, Cai Y, Wolk CP. 1993. Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol. Microbiol. 9:77–84
    [Google Scholar]
  12. 12.
    Bornikoel J, Carrion A, Fan Q, Flores E, Forchhammer K et al. 2017. Role of two cell wall amidases in septal junction and nanopore formation in the multicellular cyanobacterium Anabaena sp. PCC 7120. Front. Cell Infect. Microbiol. 7:386
    [Google Scholar]
  13. 13.
    Bornikoel J, Staiger J, Madlung J, Forchhammer K, Maldener I. 2018. LytM factor Alr3353 affects filament morphology and cell-cell communication in the multicellular cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 108:187–203
    [Google Scholar]
  14. 14.
    Brenes-Álvarez M, Minguet M, Vioque A, Muro-Pastor AM. 2020. NsiR1, a small RNA with multiple copies, modulates heterocyst differentiation in the cyanobacterium Nostoc sp. PCC 7120. Environ. Microbiol. 22:3325–38
    [Google Scholar]
  15. 15.
    Brenes-Álvarez M, Vioque A, Muro-Pastor AM. 2020. The integrity of the cell wall and its remodeling during heterocyst differentiation are regulated by phylogenetically conserved small RNA Yfr1 in Nostoc sp. strain PCC 7120 mBio 11:e02599–19
    [Google Scholar]
  16. 16.
    Buikema WJ, Haselkorn R. 1991. Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Genes Dev 5:321–30
    [Google Scholar]
  17. 17.
    Buikema WJ, Haselkorn R. 2001. Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. PNAS 98:2729–34
    [Google Scholar]
  18. 18.
    Burnat M, Herrero A, Flores E. 2014. Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst forming cyanobacterium. PNAS 111:3823–28
    [Google Scholar]
  19. 19.
    Burnat M, Schleiff E, Flores E. 2014. Cell envelope components influencing filament length in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 196:4026–35
    [Google Scholar]
  20. 20.
    Büttner FM, Faulhaber K, Forchhammer K, Maldener I, Stehle T. 2016. Enabling cell-cell communication via nanopore formation: structure, function and localization of the unique cell wall amidase AmiC2 of Nostoc punctiforme. FEBS J 283:1336–50
    [Google Scholar]
  21. 21.
    Callahan SM, Buikema WJ. 2001. The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120. Mol. Microbiol. 40:941–50
    [Google Scholar]
  22. 22.
    Camargo S, Picossi S, Corrales-Guerrero L, Valladares A, Arévalo S, Herrero A. 2019. ZipN is an essential FtsZ membrane tether and contributes to the septal localization of SepJ in the filamentous cyanobacterium Anabaena. Sci. Rep. 9:2744
    [Google Scholar]
  23. 23.
    Corrales-Guerrero L, Mariscal V, Flores E, Herrero A. 2013. Functional dissection and evidence for intercellular transfer of the heterocyst-differentiation PatS morphogen. Mol. Microbiol. 88:1093–105
    [Google Scholar]
  24. 24.
    Corrales-Guerrero L, Mariscal V, Nürnberg DJ, Elhai J, Mullineaux CW et al. 2014. Subcellular localization and clues for the function of the HetN factor influencing heterocyst distribution in Anabaena sp. strain PCC 7120. J. Bacteriol. 196:3452–60
    [Google Scholar]
  25. 25.
    Corrales-Guerrero L, Tal A, Arbel-Goren R, Mariscal V, Flores E et al. 2015. Spatial fluctuations in expression of the heterocyst differentiation regulatory gene hetR in Anabaena filaments. PLOS Genet. 11:e1005031
    [Google Scholar]
  26. 26.
    Di Patti F, Lavacchi L, Arbel-Goren R, Schein-Lubomirsky L, Fanelli D, Stavans J. 2018. Robust stochastic Turing patterns in the development of a one-dimensional cyanobacterial organism. PLOS Biol. 16:e2004877
    [Google Scholar]
  27. 27.
    Du Y, Cai Y, Hou S, Xu X. 2012. Identification of the HetR recognition sequence upstream of hetZ in Anabaena sp. strain PCC 7120. J. Bacteriol. 194:2297–306
    [Google Scholar]
  28. 28.
    Du YR, Zhang H, Wang H, Wang S, Lei QQ et al. 2020. Expression from DIF1-motif promoters of hetR and patS is dependent on HetZ and modulated by PatU3 during heterocyst differentiation. PLOS ONE 15:e0232383
    [Google Scholar]
  29. 29.
    Ehira S, Ohmori M. 2006. NrrA directly regulates expression of hetR during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 188:8520–25
    [Google Scholar]
  30. 30.
    Ehira S, Ohmori M. 2006. NrrA, a nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol. Microbiol. 59:1692–703
    [Google Scholar]
  31. 31.
    Elhai J, Khudyakov I. 2018. Ancient association of cyanobacterial multicellularity with the regulator HetR and an RGSGR pentapeptide-containing protein (PatX). Mol. Microbiol. 110:931–54
    [Google Scholar]
  32. 32.
    Feldmann EA, Ni SS, Sahu ID, Mishler CH, Leyengood JD et al. 2012. Differential binding between PatS C-terminal peptide fragments and HetR from Anabaena sp. PCC 7120. Biochemistry 51:2436–42
    [Google Scholar]
  33. 33.
    Flaherty BL, Johnson DB, Golden JW. 2014. Deep sequencing of HetR-bound DNA reveals novel HetR targets in Anabaena sp. strain PCC7120. BMC Microbiol. 14:255
    [Google Scholar]
  34. 34.
    Flores E, Herrero A. 2010. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat. Rev. Microbiol. 8:39–50
    [Google Scholar]
  35. 35.
    Flores E, Herrero A, Forchhammer K, Maldener I. 2016. Septal junctions in filamentous heterocyst-forming cyanobacteria. Trends Microbiol. 24:79–82
    [Google Scholar]
  36. 36.
    Flores E, Nieves-Morión M, Mullineaux CW. 2018. Cyanobacterial septal junctions: properties and regulation. Life 9:1
    [Google Scholar]
  37. 37.
    Flores E, Picossi S, Valladares A, Herrero A. 2019. Transcriptional regulation of development in heterocyst-forming cyanobacteria. Biochim. Biophys. Acta Gene Regul. Mech. 1862:673–84
    [Google Scholar]
  38. 38.
    Gambacorta A, Romano I, Trincone A, Soriente A, Giordano M, Sodano G. 1996. Heterocyst glycolipids from five nitrogen-fixing cyanobacteria. Gazz. Chim. Ital. 126:653–56
    [Google Scholar]
  39. 39.
    Gollan PJ, Muth-Pawlak D, Aro EM 2020. Rapid transcriptional reprogramming triggered by alteration of the carbon/nitrogen balance has an impact on energy metabolism in Nostoc sp. PCC 7120 Life 10:297
    [Google Scholar]
  40. 40.
    Halimatul HSM, Ehira S, Awai K. 2014. Fatty alcohols can complement functions of heterocyst specific glycolipids in Anabaena sp. PCC 7120. Biochem. Biophys. Res. Commun. 450:178–83
    [Google Scholar]
  41. 41.
    Herrero A, Stavans J, Flores E. 2016. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol. Rev. 40:831–54
    [Google Scholar]
  42. 42.
    Higa KC, Callahan SM. 2010. Ectopic expression of hetP can partially bypass the need for hetR in heterocyst differentiation by Anabaena sp. strain PCC 7120 Mol. Microbiol. 77:562–74
    [Google Scholar]
  43. 43.
    Higa KC, Rajagopalan R, Risser DD, Rivers OS, Tom SK et al. 2012. The RGSGR amino acid motif of the intercellular signalling protein, HetN, is required for patterning of heterocysts in Anabaena sp. strain PCC 7120. Mol. Microbiol. 83:682–93
    [Google Scholar]
  44. 44.
    Higo A, Nishiyama E, Nakamura K, Hihara Y, Ehira S. 2019. cyAbrB transcriptional regulators as safety devices to inhibit heterocyst differentiation in Anabaena sp. strain PCC 7120. J. Bacteriol. 201:e00244–19
    [Google Scholar]
  45. 45.
    Hu HX, Jiang YL, Zhao MX, Cai K, Liu S et al. 2015. Structural insights into HetR-PatS interaction involved in cyanobacterial pattern formation. Sci. Rep. 5:16470
    [Google Scholar]
  46. 46.
    Huang M, Zhang J-Y, Zeng X, Zhang C-C. 2021. c-di-GMP homeostasis is critical for heterocyst development in Anabaena sp. PCC 7120 Front. Microbiol. 12:793336
    [Google Scholar]
  47. 47.
    Huang X, Dong YQ, Zhao JD. 2004. HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. PNAS 101:4848–53
    [Google Scholar]
  48. 48.
    Jang JC, Shi L, Tan H, Janicki A, Zhang CC. 2009. Mutual regulation of ntcA and hetR during heterocyst differentiation requires two similar PP2C-type protein phosphatases, PrpJ1 and PrpJ2, in Anabaena sp. strain PCC 7120. J. Bacteriol. 191:6059–66
    [Google Scholar]
  49. 49.
    Jang JC, Wang L, Jeanjean R, Zhang CC. 2007. PrpJ, a PP2C-type protein phosphatase located on the plasma membrane, is involved in heterocyst maturation in the cyanobacterium Anabaena sp. PCC 7120. Mol. Microbiol. 64:347–58
    [Google Scholar]
  50. 50.
    Kang RJ, Shi DJ, Cong W, Cai ZL, Ouyang F. 2005. Regulation of CO on heterocyst differentiation and nitrate uptake in the cyanobacterium Anabaena sp. PCC 7120. J. Appl. Microbiol. 98:693–98
    [Google Scholar]
  51. 51.
    Khudyakov I, Wolk CP. 1996. Evidence that the hanA gene coding for HU protein is essential for heterocyst differentiation in, and cyanophage A-4(L) sensitivity of, Anabaena sp. strain PCC 7120. J. Bacteriol. 178:3572–77
    [Google Scholar]
  52. 52.
    Kim Y, Joachimiak G, Ye Z, Binkowski TA, Zhang R et al. 2011. Structure of transcription factor HetR required for heterocyst differentiation in cyanobacteria. PNAS 108:10109–14
    [Google Scholar]
  53. 53.
    Kim Y, Ye Z, Joachimiak G, Videau P, Young J et al. 2013. Structures of complexes comprised of Fischerella transcription factor HetR with Anabaena DNA targets. PNAS 110:E1716–23
    [Google Scholar]
  54. 54.
    Kumar K, Mella-Herrera RA, Golden JW. 2010. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2:a000315
    [Google Scholar]
  55. 55.
    Kurio Y, Koike Y, Kanesaki Y, Watanabe S, Ehira S. 2020. The CRP-family transcriptional regulator DevH regulates expression of heterocyst-specific genes at the later stage of differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. Mol. Microbiol. 114:553–62
    [Google Scholar]
  56. 56.
    Laurent S, Chen H, Bedu S, Ziarelli F, Peng L, Zhang CC. 2005. Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120 PNAS 102:9907–12
    [Google Scholar]
  57. 57.
    Leganés F, Blanco-Rivero A, Fernández-Piñas F, Redondo M, Fernández-Valiente E et al. 2005. Wide variation in the cyanobacterial complement of presumptive penicillin-binding proteins. Arch. Microbiol. 184:234–48
    [Google Scholar]
  58. 58.
    Lehner J, Berendt S, Dorsam B, Perez R, Forchhammer K, Maldener I. 2013. Prokaryotic multicellularity: a nanopore array for bacterial cell communication. FASEB J 27:2293–300
    [Google Scholar]
  59. 59.
    Lehner J, Zhang Y, Berendt S, Rasse TM, Forchhammer K, Maldener I. 2011. The morphogene AmiC2 is pivotal for multicellular development in the cyanobacterium Nostoc punctiforme. Mol. Microbiol. 79:1655–69
    [Google Scholar]
  60. 60.
    Liang J, Scappino L, Haselkorn R. 1992. The patA gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120. PNAS 89:5655–59
    [Google Scholar]
  61. 61.
    Liu DA, Golden JW. 2002. hetL overexpression stimulates heterocyst formation in Anabaena sp. strain PCC 7120. J. Bacteriol. 184:6873–81
    [Google Scholar]
  62. 62.
    Liu J, Xing W-Y, Zhang J-Y, Zeng X, Yang Y, Zhang C-C. 2021. Functions of the essential gene mraY in cellular morphogenesis and development of the filamentous cyanobacterium Anabaena PCC 7120. Front. Microbiol. 12:765878
    [Google Scholar]
  63. 63.
    Maldener I, Summers ML, Sukenik A. 2014. Cellular differentiation in filamentous cyanobacteria. The Cell Biology of Cyanobacteria E Flores, A Herrero 263–91 Norfolk, VA: Caister Acad.
    [Google Scholar]
  64. 64.
    Mariscal V, Herrero A, Flores E. 2007. Continuous periplasm in a filamentous, heterocyst-forming cyanobacterium. Mol. Microbiol. 65:1139–45
    [Google Scholar]
  65. 65.
    Mariscal V, Nürnberg DJ, Herrero A, Mullineaux CW, Flores E. 2016. Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena. Mol. Microbiol. 101:968–81
    [Google Scholar]
  66. 66.
    Meeks JC, Elhai J. 2002. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol. Mol. Biol. Rev. 66:94–121
    [Google Scholar]
  67. 67.
    Meinhardt H. 2008. Models of biological pattern formation: from elementary steps to the organization of embryonic axes. Curr. Top. Dev. Biol. 81:1–63
    [Google Scholar]
  68. 68.
    Merino-Puerto V, Mariscal V, Mullineaux CW, Herrero A, Flores E. 2010. Fra proteins influencing filament integrity, diazotrophy and localization of septal protein SepJ in the heterocyst-forming cyanobacterium Anabaena sp. Mol. Microbiol. 75:1159–70
    [Google Scholar]
  69. 69.
    Mitschke J, Vioque A, Haas F, Hess WR, Muro-Pastor AM. 2011. Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120 PNAS 108:20130–35
    [Google Scholar]
  70. 70.
    Mullineaux CW, Mariscal V, Nenninger A, Khanum H, Herrero A et al. 2008. Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO J. 27:1299–308
    [Google Scholar]
  71. 71.
    Muñoz-García J, Ares S. 2016. Formation and maintenance of nitrogen-fixing cell patterns in filamentous cyanobacteria. PNAS 113:6218–23
    [Google Scholar]
  72. 72.
    Muro-Pastor AM, Valladares A, Flores E, Herrero A. 2002. Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NtcA during heterocyst development. Mol. Microbiol. 44:1377–85
    [Google Scholar]
  73. 73.
    Nayar AS, Yamaura H, Rajagopalan R, Risser DD, Callahan SM 2007. FraG is necessary for filament integrity and heterocyst maturation in the cyanobacterium Anabaena sp. strain PCC 7120. Microbiology 153:601–7
    [Google Scholar]
  74. 74.
    Nicolaisen K, Hahn A, Schleiff E. 2009. The cell wall in heterocyst formation by Anabaena sp. PCC 7120. J. Basic Microbiol. 49:5–24
    [Google Scholar]
  75. 75.
    Nieves-Morión M, Lechno-Yossef S, López-Igual R, Frías JE, Mariscal V et al. 2017. Specific glucoside transporters influence septal structure and function in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 199:e00876–16
    [Google Scholar]
  76. 76.
    Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauss N et al. 2015. Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium. mBio 6:e02109
    [Google Scholar]
  77. 77.
    Omairi-Nasser A, Haselkorn R, Austin J 2014. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria. FASEB J 28:3016–22
    [Google Scholar]
  78. 78.
    Omairi-Nasser A, Mariscal V, Austin JR, Haselkorn R. 2015. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 PNAS 112:E4458–64
    [Google Scholar]
  79. 79.
    Orozco CC, Risser DD, Callahan SM. 2006. Epistasis analysis of four genes from Anabaena sp. strain PCC 7120 suggests a connection between PatA and PatS in heterocyst pattern formation. J. Bacteriol. 188:1808–16
    [Google Scholar]
  80. 80.
    Picossi S, Flores E, Herrero A 2014. ChIP analysis unravels an exceptionally wide distribution of DNA binding sites for the NtcA transcription factor in a heterocyst-forming cyanobacterium. BMC Genom 15:22
    [Google Scholar]
  81. 81.
    Ramos-León F, Mariscal V, Battchikova N, Aro EM, Flores E. 2017. Septal protein SepJ from the heterocyst-forming cyanobacterium Anabaena forms multimers and interacts with peptidoglycan. FEBS OpenBio 7:1515–26
    [Google Scholar]
  82. 82.
    Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1–61
    [Google Scholar]
  83. 83.
    Risser DD, Callahan SM. 2008. HetF and PatA control levels of HetR in Anabaena sp. strain PCC 7120. J. Bacteriol. 190:7645–54
    [Google Scholar]
  84. 84.
    Risser DD, Callahan SM. 2009. Genetic and cytological evidence that heterocyst patterning is regulated by inhibitor gradients that promote activator decay. PNAS 106:19884–88
    [Google Scholar]
  85. 85.
    Roumezi B, Xu XM, Risoul V, Fan YP, Lebrun R, Latifi A. 2020. The Pkn22 kinase of Nostoc PCC 7120 is required for cell differentiation via the phosphorylation of HetR on a residue highly conserved in genomes of heterocyst-forming cyanobacteria. Front. Microbiol. 10:3140
    [Google Scholar]
  86. 86.
    Rudolf M, Tetik N, Ramos-León F, Flinner N, Ngo G et al. 2015. The peptidoglycan-binding protein SjcF1 influences septal junction function and channel formation in the filamentous cyanobacterium Anabaena. mBio 6:e00376
    [Google Scholar]
  87. 87.
    Saha SK, Golden JW. 2011. Overexpression of pknE blocks heterocyst development in Anabaena sp. strain PCC 7120. J. Bacteriol. 193:2619–29
    [Google Scholar]
  88. 88.
    Saito T, Awai K. 2020. A polyketide synthase HglEA, but not HglE2, synthesizes heterocyst specific glycolipids in Anabaena sp. PCC 7120 J. Gen. Appl. Microbiol. 66:99–105
    [Google Scholar]
  89. 89.
    Sakr S, Jeanjean R, Zhang CC, Arcondeguy T. 2006. Inhibition of cell division suppresses heterocyst development in Anabaena sp. strain PCC 7120. J. Bacteriol. 188:1396–404
    [Google Scholar]
  90. 90.
    Sánchez-Baracaldo P, Bianchini G, Wilson JD, Knoll AH. 2021. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol 30:143–57
    [Google Scholar]
  91. 91.
    Schatzle H, Arévalo S, Flores E, Schleiff E 2021. A TonB-like protein, SjdR, is involved in the structural definition of the intercellular septa in the heterocyst-forming cyanobacterium Anabaena. mBio 12:e0048321
    [Google Scholar]
  92. 92.
    Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC. 2013. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. PNAS 110:1791–96
    [Google Scholar]
  93. 93.
    Shi L, Li JH, Cheng Y, Wang L, Chen WL, Zhang CC. 2007. Two genes encoding protein kinases of the HstK family are involved in synthesis of the minor heterocyst-specific glycolipid in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 189:5075–81
    [Google Scholar]
  94. 94.
    Shi T, Ilikchyan I, Rabouille S, Zehr JP. 2010. Genome-wide analysis of diel gene expression in the unicellular N2-fixing cyanobacterium Crocosphaera watsonii WH 8501. ISME J 4:621–32
    [Google Scholar]
  95. 95.
    Shvarev D, Maldener I. 2019. Roles of DevBCA-like ABC transporters in the physiology of Anabaena sp. PCC 7120. Int. J. Med. Microbiol. 309:325–30
    [Google Scholar]
  96. 96.
    Shvarev D, Nishi CN, Maldener I 2019. Glycolipid composition of the heterocyst envelope of Anabaena sp. PCC 7120 is crucial for diazotrophic growth and relies on the UDP-galactose 4-epimerase HgdA. MicrobiologyOpen 8:e00811
    [Google Scholar]
  97. 97.
    Springstein BL, Arévalo S, Helbig AO, Herrero A, Stucken K et al. 2020. A novel septal protein of multicellular heterocystous cyanobacteria is associated with the divisome. Mol. Microbiol. 113:1140–54
    [Google Scholar]
  98. 98.
    Stanier RY, Cohen-Bazire G. 1977. Phototrophic prokaryotes: the cyanobacteria. Annu. Rev. Microbiol. 31:225–74
    [Google Scholar]
  99. 99.
    Tanigawa R, Shirokane M, Maeda Si S, Omata T, Tanaka K, Takahashi H 2002. Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro. PNAS 99:4251–55
    [Google Scholar]
  100. 100.
    Turing AM. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237:37–72
    [Google Scholar]
  101. 101.
    Valladares A, Flores E, Herrero A. 2016. The heterocyst differentiation transcriptional regulator HetR of the filamentous cyanobacterium Anabaena forms tetramers and can be regulated by phosphorylation. Mol. Microbiol. 99:808–19
    [Google Scholar]
  102. 102.
    Valladares A, Velázquez-Suárez C, Herrero A 2020. Interactions of PatA with the divisome during heterocyst differentiation in Anabaena. mSphere 5:e00188–20
    [Google Scholar]
  103. 103.
    Videau P, Ni SS, Rivers OS, Ushijima B, Feldmann EA et al. 2014. Expanding the direct HetR regulon in Anabaena sp. strain PCC 7120. J. Bacteriol. 196:1113–21
    [Google Scholar]
  104. 104.
    Videau P, Rivers OS, Hurd K, Ushijima B, Oshiro RT et al. 2016. The heterocyst regulatory protein HetP and its homologs modulate heterocyst commitment in Anabaena sp. strain PCC 7120 PNAS 113:E6984–92
    [Google Scholar]
  105. 105.
    Videau P, Rivers OS, Tom SK, Oshiro RT, Ushijima B et al. 2018. The hetZ gene indirectly regulates heterocyst development at the level of pattern formation in Anabaena sp. strain PCC 7120. Mol. Microbiol. 101:91–104
    [Google Scholar]
  106. 106.
    Videau P, Rivers OS, Ushijima B, Oshiro RT, Kim MJ et al. 2016. Mutation of the murC and murB genes impairs heterocyst differentiation in Anabaena sp. strain PCC 7120. J. Bacteriol. 198:1196–206
    [Google Scholar]
  107. 107.
    Wang L, Niu TC, Valladares A, Lin GM, Zhang JY et al. 2021. The developmental regulator PatD modulates assembly of the cell-division protein FtsZ in the cyanobacterium Anabaena sp. PCC 7120. Environ. Microbiol. 23:4823–37
    [Google Scholar]
  108. 108.
    Weiss GL, Kieninger AK, Maldener I, Forchhammer K, Pilhofer M. 2019. Structure and function of a bacterial gap junction analog. Cell 178:374–84.e15
    [Google Scholar]
  109. 109.
    Wilk L, Strauss M, Rudolf M, Nicolaisen K, Flores E et al. 2011. Outer membrane continuity and septosome formation between vegetative cells in the filaments of Anabaena sp. PCC 7120 Cell Microbiol 13:1744–54
    [Google Scholar]
  110. 110.
    Wolk CPEA, Elhai J 1995. Heterocyst metabolism and development. The Molecular Biology of Cyanobacteria DA Bryant 769–823 Dordrecht, Neth: Springer
    [Google Scholar]
  111. 111.
    Wong FCY, Meeks JC. 2001. The hetF gene product is essential to heterocyst differentiation and affects HetR function in the cyanobacterium Nostoc punctiforme. J. Bacteriol. 183:2654–61
    [Google Scholar]
  112. 112.
    Wu XQ, Liu D, Lee MH, Golden JW. 2004. patS minigenes inhibit heterocyst development of Anabaena sp. strain PCC 7120. J. Bacteriol. 186:6422–29
    [Google Scholar]
  113. 113.
    Xing WY, Liu J, Wang ZQ, Zhang JY, Zeng X et al. 2021. HetF protein is a new divisome component in a filamentous and developmental cyanobacterium. mBio 12:e0138221
    [Google Scholar]
  114. 114.
    Xing WY, Zhang CC. 2019. Preventing accidental heterocyst development in cyanobacteria. J. Bacteriol. 201:e00349–19
    [Google Scholar]
  115. 115.
    Xu XM, Risoul V, Byrne D, Champ S, Douzi B, Latifi A 2020. HetL, HetR and PatS form a reaction-diffusion system to control pattern formation in the cyanobacterium nostoc PCC 7120. eLife 9:e59190
    [Google Scholar]
  116. 116.
    Yoon HS, Golden JW. 1998. Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–38
    [Google Scholar]
  117. 117.
    Yoon HS, Golden JW. 2001. PatS and products of nitrogen fixation control heterocyst pattern. J. Bacteriol. 183:2605–13
    [Google Scholar]
  118. 118.
    Young-Robbins SS, Risser DD, Moran JR, Haselkorn R, Callahan SM. 2010. Transcriptional regulation of the heterocyst patterning gene patA from Anabaena sp. strain PCC 7120. J. Bacteriol. 192:4732–40
    [Google Scholar]
  119. 119.
    Zhang CC, Zhou CZ, Burnap RL, Peng L. 2018. Carbon/nitrogen metabolic balance: lessons from cyanobacteria. Trends Plant Sci 23:1116–30
    [Google Scholar]
  120. 120.
    Zhang H, Wang S, Wang Y, Xu X. 2018. Functional overlap of hetP and hetZ in regulation of heterocyst differentiation in Anabaena sp. strain PCC 7120. J. Bacteriol. 200:e00707–17
    [Google Scholar]
  121. 121.
    Zhang H, Xu X. 2018. Manipulation of pattern of cell differentiation in a hetR mutant of Anabaena sp. PCC 7120 by overexpressing hetZ alone or with hetP. Life 8:60
    [Google Scholar]
  122. 122.
    Zhang JY, Lin GM, Xing WY, Zhang CC. 2018. Diversity of growth patterns probed in live cyanobacterial cells using a fluorescent analog of a peptidoglycan precursor. Front. Microbiol. 9:791
    [Google Scholar]
  123. 123.
    Zhang LC, Chen YF, Chen WL, Zhang CC. 2008. Existence of periplasmic barriers preventing green fluorescent protein diffusion from cell to cell in the cyanobacterium Anabaena sp. strain PCC 7120. Mol. Microbiol. 70:814–23
    [Google Scholar]
  124. 124.
    Zhang LL, Zhou F, Wang S, Xu XD. 2017. Processing of PatS, a morphogen precursor, in cell extracts of Anabaena sp. PCC 7120 FEBS Lett 591:751–59
    [Google Scholar]
  125. 125.
    Zhang SR, Lin GM, Chen WL, Wang L, Zhang CC 2013. ppGpp metabolism is involved in heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 195:4536–44
    [Google Scholar]
  126. 126.
    Zhang W, Du Y, Khudyakov I, Fan Q, Gao H et al. 2007. A gene cluster that regulates both heterocyst differentiation and pattern formation in Anabaena sp. strain PCC 7120. Mol. Microbiol. 66:1429–43
    [Google Scholar]
  127. 127.
    Zhang X, Ward BB, Sigman DM. 2020. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chem. Rev. 120:5308–51
    [Google Scholar]
  128. 128.
    Zhao MX, Jiang YL, He YX, Chen YF, Teng YB et al. 2010. Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. PNAS 107:12487–92
    [Google Scholar]
  129. 129.
    Zheng ZG, Amin ON, Li XY, Dong CX, Lin Y et al. 2017. An amidase is required for proper intercellular communication in the filamentous cyanobacterium Anabaena sp. PCC 7120. PNAS 114:E1405–12
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041320-093442
Loading
/content/journals/10.1146/annurev-micro-041320-093442
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error