1932

Abstract

Antibiotic resistance is a serious public health concern, and new drugs are needed to ensure effective treatment of many bacterial infections. Bacterial type II fatty acid synthesis (FASII) is a vital aspect of bacterial physiology, not only for the formation of membranes but also to produce intermediates used in vitamin production. Nature has evolved a repertoire of antibiotics inhibiting different aspects of FASII, validating these enzymes as potential targets for new antibiotic discovery and development. However, significant obstacles have been encountered in the development of FASII antibiotics, and few FASII drugs have advanced beyond the discovery stage. Most bacteria are capable of assimilating exogenous fatty acids. In some cases they can dispense with FASII if fatty acids are present in the environment, making the prospects for identifying broad-spectrum drugs against FASII targets unlikely. Single-target, pathogen-specific FASII drugs appear the best option, but a major drawback to this approach is the rapid acquisition of resistance via target missense mutations. This complication can be mitigated during drug development by optimizing the compound design to reduce the potential impact of on-target missense mutations at an early stage in antibiotic discovery. The lessons learned from the difficulties in FASII drug discovery that have come to light over the last decade suggest that a refocused approach to designing FASII inhibitors has the potential to add to our arsenal of weapons to combat resistance to existing antibiotics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041320-110408
2022-09-08
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-041320-110408.html?itemId=/content/journals/10.1146/annurev-micro-041320-110408&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdi SN, Ghotaslou R, Ganbarov K, Mobed A, Tanomand A et al. 2020. Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect. Drug Resist. 13:423–34
    [Google Scholar]
  2. 2.
    Abraham EP, Chain E, Fletcher CM, Florey HW, Gardner AD et al. 1992 (1941). Further observations on penicillin. 1941. Eur. J. Clin. Pharmacol. 42:3–9
    [Google Scholar]
  3. 3.
    Ackart DF, Lindsey EA, Podell BK, Melander RJ, Basaraba RJ, Melander C. 2014. Reversal of Mycobacterium tuberculosis phenotypic drug resistance by 2-aminoimidazole-based small molecules. Pathog. Dis. 70:370–78
    [Google Scholar]
  4. 4.
    Ajao C, Andersson MA, Teplova VV, Nagy S, Gahmberg CG et al. 2015. Mitochondrial toxicity of triclosan on mammalian cells. Toxicol. Rep. 2:624–37
    [Google Scholar]
  5. 5.
    Andrews LD, Kane TR, Dozzo P, Haglund CM, Hilderbrandt DJ et al. 2019. Optimization and mechanistic characterization of pyridopyrimidine inhibitors of bacterial biotin carboxylase. J. Med. Chem. 62:7489–505
    [Google Scholar]
  6. 6.
    Bae M, Mevers E, Pishchany G, Whaley SG, Rock CO et al. 2021. Chemical exchanges between multilateral symbionts. Org. Lett. 23:1648–52
    [Google Scholar]
  7. 7.
    Baell JB, Holloway GA. 2010. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53:2719–40
    [Google Scholar]
  8. 8.
    Baell JB, Nissink JWM. 2018. Seven year itch: pan-assay interference compounds (PAINS) in 2017—utility and limitations. ACS Chem. Biol. 13:36–44
    [Google Scholar]
  9. 9.
    Baker ME. 1995. Enoyl-acyl-carrier-protein reductase and Mycobacterium tuberculosis InhA do not conserve the Tyr-Xaa-Xaa-Xaa-Lys motif in mammalian 11b- and 17b-hydroxysteroid dehydrogenases and Drosophila alcohol dehydrogenase. Biochem. J. 309:1029–30
    [Google Scholar]
  10. 10.
    Balemans W, Lounis N, Gilissen R, Guillemont J, Simmen K et al. 2010. Essentiality of FASII pathway for Staphylococcus aureus. Nature 463:E3
    [Google Scholar]
  11. 11.
    Beggs GA, Brennan RG, Arshad M. 2020. MarR family proteins are important regulators of clinically relevant antibiotic resistance. Protein Sci 29:647–53
    [Google Scholar]
  12. 12.
    Biagini GA, O'Neill PM, Nzila A, Ward SA, Bray PG. 2003. Antimalarial chemotherapy: young guns or back to the future?. Trends Parasitol 19:479–87
    [Google Scholar]
  13. 13.
    Blaser MJ, Falkow S. 2009. What are the consequences of the disappearing human microbiota?. Nat. Rev. Microbiol. 7:887–94
    [Google Scholar]
  14. 14.
    Brinster S, Lamberet G, Staels B, Trieu-Cuot P, Gruss A, Poyart C. 2009. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature 458:83–86
    [Google Scholar]
  15. 15.
    Brown AK, Taylor RC, Bhatt A, Futterer K, Besra GS. 2009. Platensimycin activity against mycobacterial β-ketoacyl-ACP synthases. PLOS ONE 4:e6306
    [Google Scholar]
  16. 16.
    Brown ED, Wright GD. 2016. Antibacterial drug discovery in the resistance era. Nature 529:336–43
    [Google Scholar]
  17. 17.
    Campbell JW, Cronan JE Jr. 2001. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu. Rev. Microbiol. 55:305–32
    [Google Scholar]
  18. 18.
    Chain E, Florey HW, Adelaide MB, Gardner AD, Heatley NG et al. 1993 (1940). Penicillin as a chemotherapeutic agent. 1940. Clin. Orthop. Relat. Res. 1993:3–7
    [Google Scholar]
  19. 19.
    Chalut C, Botella L, de Sousa-D'Auria C, Houssin C, Guilhot C. 2006. The nonredundant roles of two 4′-phosphopantetheinyl transferases in vital processes of Mycobacteria. PNAS 103:228511–16
    [Google Scholar]
  20. 20.
    Chen Y, Kelly EE, Masluk RP, Nelson CL, Cantu DC, Reilly PJ. 2011. Structural classification and properties of ketoacyl synthases. Protein Sci 20:1659–67
    [Google Scholar]
  21. 21.
    Cheng CC, Shipps GW Jr., Yang Z, Sun B, Kawahata N et al. 2009. Discovery and optimization of antibacterial AccC inhibitors. Bioorg. Med. Chem. Lett. 19:6507–14
    [Google Scholar]
  22. 22.
    Cho JY, Kwon YJ, Sohn MJ, Seok SJ, Kim WG. 2011. Phellinstatin, a new inhibitor of enoyl-ACP reductase produced by the medicinal fungus Phellinus linteus. Bioorg. Med. Chem. Lett. 21:1716–18
    [Google Scholar]
  23. 23.
    Choi K-H, Heath RJ, Rock CO. 2000. β-Ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J. Bacteriol. 182:365–70
    [Google Scholar]
  24. 24.
    Choi K-H, Kremer L, Besra GS, Rock CO 2000. Identification and substrate specificity of β-ketoacyl-[acyl carrier protein] synthase III (mtFabH) from Mycobacterium tuberculosis. J. Biol. Chem. 275:28201–7
    [Google Scholar]
  25. 25.
    Chu M, Mierzwa R, Xu L, Yang SW, He L et al. 2003. Structure elucidation of Sch 538415, a novel acyl carrier protein synthase inhibitor from a microorganism. Bioorg. Med. Chem. Lett. 13:3827–29
    [Google Scholar]
  26. 26.
    Clardy J, Fischbach MA, Walsh CT. 2006. New antibiotics from bacterial natural products. Nat. Biotechnol. 24:1541–50
    [Google Scholar]
  27. 27.
    Colclough AL, Alav I, Whittle EE, Pugh HL, Darby EM et al. 2020. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 15:143–57
    [Google Scholar]
  28. 28.
    Cronan JE. 2018. Advances in synthesis of biotin and assembly of lipoic acid. Curr. Opin. Chem. Biol. 47:60–66
    [Google Scholar]
  29. 29.
    Cronan JE Jr., Waldrop GL. 2002. Multi-subunit acetyl-CoA carboxylases. Prog. Lipid Res. 41:407–35
    [Google Scholar]
  30. 30.
    Daniel J, Oh TJ, Lee CM, Kolattukudy PE. 2007. AccD6, a member of the FAS II locus, is a functional carboxyltransferase subunit of the acyl-coenzyme A carboxylase in Mycobacterium tuberculosis. J. Bacteriol. 189:911–17
    [Google Scholar]
  31. 31.
    Davies J. 2006. Where have all the antibiotics gone?. Can. J. Infect. Dis. Med. Microbiol. 17:287–90
    [Google Scholar]
  32. 32.
    Dessen A, Quemard A, Blanchard JS, Jacobs WR Jr., Sacchettini JC. 1995. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267:1638–41
    [Google Scholar]
  33. 33.
    Diacon AH, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A et al. 2012. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 380:986–93
    [Google Scholar]
  34. 34.
    Fang JL, Stingley RL, Beland FA, Harrouk W, Lumpkins DL, Howard P. 2010. Occurrence, efficacy, metabolism, and toxicity of triclosan. J. Environ. Sci. Health C 28:147–71
    [Google Scholar]
  35. 35.
    Feng Z, Chakraborty D, Dewell SB, Reddy BV, Brady SF. 2012. Environmental DNA-encoded antibiotics fasamycins A and B inhibit FabF in type II fatty acid biosynthesis. J. Am. Chem. Soc. 134:2981–87
    [Google Scholar]
  36. 36.
    Flanagan ME, Brickner SJ, Lall M, Casavant J, Deschenes L et al. 2011. Preparation, Gram-negative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols. ACS Med. Chem. Lett. 2:385–90
    [Google Scholar]
  37. 37.
    Fleming A. 2001 (1929). On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull. World. Health Organ. 79:780–90
    [Google Scholar]
  38. 38.
    Foley TL, Rai G, Yasgar A, Daniel T, Baker HL et al. 2014. 4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth. J. Med. Chem. 57:1063–78
    [Google Scholar]
  39. 39.
    Frank MW, Yao J, Batte JL, Gullett JM, Subramanian C et al. 2020. Host fatty acid utilization by Staphylococcus aureus at the infection site. mBio 11:e00920
    [Google Scholar]
  40. 40.
    Freiberg C, Brunner NA, Schiffer G, Lampe T, Pohlmann J et al. 2004. Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. J. Biol. Chem. 279:26066–73
    [Google Scholar]
  41. 41.
    Frimodt-Moller J, Lobner-Olesen A. 2019. Efflux-pump upregulation: from tolerance to high-level antibiotic resistance?. Trends Microbiol 27:291–93
    [Google Scholar]
  42. 42.
    Gilbert AM, Kirisits M, Toy P, Nunn DS, Failli A et al. 2004. Anthranilate 4H-oxazol-5-ones: novel small molecule antibacterial acyl carrier protein synthase (AcpS) inhibitors. Bioorg. Med. Chem. Lett. 14:37–41
    [Google Scholar]
  43. 43.
    Halavaty AS, Kim Y, Minasov G, Shuvalova L, Dubrovska I et al. 2012. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria. Acta Crystallogr. D 68:1359–70
    [Google Scholar]
  44. 44.
    Hartkoorn RC, Sala C, Neres J, Pojer F, Magnet S et al. 2012. Towards a new tuberculosis drug: pyridomycin—nature's isoniazid. EMBO Mol. Med. 4:1032–42
    [Google Scholar]
  45. 45.
    He X, Reeve AM, Desai UR, Kellogg GE, Reynolds KA. 2004. 1:,2 -Dithiole-3-ones as potent inhibitors of the bacterial 3-ketoacyl acyl carrier protein synthase III (FabH). Antimicrob. Agents Chemother. 48:3093–102
    [Google Scholar]
  46. 46.
    Heath RJ, Rock CO. 2000. A triclosan-resistant bacterial enzyme. Nature 406:145–46
    [Google Scholar]
  47. 47.
    Heath RJ, Rock CO. 2002. The Claisen condensation in biology. Nat. Prod. Rep. 19:581–96
    [Google Scholar]
  48. 48.
    Heath RJ, Su N, Murphy CK, Rock CO. 2000. The enoyl-[acyl-carrier-protein] reductases FabI and FabL from Bacillus subtilis. J. Biol. Chem. 275:40128–33
    [Google Scholar]
  49. 49.
    Hevener KE, Santarsiero BD, Lee H, Jones JA, Boci T et al. 2018. Structural characterization of Porphyromonas gingivalis enoyl-ACP reductase II (FabK). Acta Crystallogr. F 74:105–12
    [Google Scholar]
  50. 50.
    Igler C, Rolff J, Regoes R. 2021. Multi-step versus single-step resistance evolution under different drugs, pharmacokinetics, and treatment regimens. eLife 10:e64116
    [Google Scholar]
  51. 51.
    Jancel T, Dudas V. 2002. Management of uncomplicated urinary tract infections. West. J. Med. 176:51–55
    [Google Scholar]
  52. 52.
    Jansen PAM, van der Krieken DA, Botman PNM, Blaauw RH, Cavina L et al. 2019. Stable pantothenamide bioisosteres: novel antibiotics for Gram-positive bacteria. J. Antibiot. 72:682–92
    [Google Scholar]
  53. 53.
    Jayasuriya H, Herath KB, Ondeyka JG, Zink DL, Burgess B, Wang J, Singh SB 2008. Structure of homoplatensimide A: a potential key biosynthetic intermediate of platensimycin isolated from Streptomyces platensis. Tetrahedron Lett 49:3648–51
    [Google Scholar]
  54. 54.
    Jeon AB, Ackart DF, Li W, Jackson M, Melander RJ et al. 2019. 2-Aminoimidazoles collapse mycobacterial proton motive force and block the electron transport chain. Sci. Rep. 9:1513
    [Google Scholar]
  55. 55.
    Jerga A, Rock CO. 2009. Acyl-acyl carrier protein regulates transcription of fatty acid biosynthetic genes via the FabT repressor in Streptococcus pneumoniae. J. Biol. Chem. 284:15364–68
    [Google Scholar]
  56. 56.
    Jones JA, Prior AM, Marreddy RKR, Wahrmund RD, Hurdle JG et al. 2019. Small-molecule inhibition of the C. difficile FAS-II enzyme, FabK, results in selective activity. ACS Chem. Biol. 14:1528–35
    [Google Scholar]
  57. 57.
    Jones PB, Parrish NM, Houston TA, Stapon A, Bansal NP et al. 2000. A new class of antituberculosis agents. J. Med. Chem. 43:3304–14
    [Google Scholar]
  58. 58.
    Joseph-McCarthy D, Parris K, Huang A, Failli A, Quagliato D et al. 2005. Use of structure-based drug design approaches to obtain novel anthranilic acid acyl carrier protein synthase inhibitors. J. Med. Chem. 48:7960–69
    [Google Scholar]
  59. 59.
    Karlowsky JA, Kaplan N, Hafkin B, Hoban DJ, Zhanel GG. 2009. AFN-1252, a FabI inhibitor, demonstrates a Staphylococcus-specific spectrum of activity. Antimicrob. Agents Chemother. 53:3544–48
    [Google Scholar]
  60. 60.
    Keating DH, Carey MR, Cronan JE Jr. 1995. The unmodified (Apo) form of Escherichia coli acyl carrier protein is a potent inhibitor of cell growth. J. Biol. Chem. 270:22229–35
    [Google Scholar]
  61. 61.
    Kengmo Tchoupa A, Peschel A 2020. Staphylococcus aureus releases proinflammatory membrane vesicles to resist antimicrobial fatty acids. mSphere 5:e00804
    [Google Scholar]
  62. 62.
    Khandekar SS, Gentry DR, Van Aller GS, Warren P, Xiang H et al. 2001. Identification, substrate specificity, and inhibition of the Streptococcus pneumoniae β-ketoacyl-acyl carrier protein synthase III (FabH). J. Biol. Chem. 276:30024–30
    [Google Scholar]
  63. 63.
    Kim KH, Ha BH, Kim SJ, Hong SK, Hwang KY, Kim EE. 2011. Crystal structures of enoyl-ACP reductases I (FabI) and III (FabL) from B. subtilis. J. Mol. Biol. 406:403–15
    [Google Scholar]
  64. 64.
    Kim N, Sohn MJ, Kim CJ, Kwon HJ, Kim WG. 2012. Verrulactones A and B, new inhibitors of Staphylococcus aureus enoyl-ACP reductase produced by Penicillium verruculosum F375. Bioorg. Med. Chem. Lett. 22:2503–6
    [Google Scholar]
  65. 65.
    Kim N, Sohn MJ, Koshino H, Kim EH, Kim WG. 2014. Verrulactone C with an unprecedented dispiro skeleton, a new inhibitor of Staphylococcus aureus enoyl-ACP reductase, from Penicillium verruculosum F375. Bioorg. Med. Chem. Lett. 24:83–86
    [Google Scholar]
  66. 66.
    Kim SJ, Ha BH, Kim KH, Hong SK, Shin KJ et al. 2010. Dimeric and tetrameric forms of enoyl-acyl carrier protein reductase from Bacillus cereus. Biochem. Biophys. Res. Commun. 400:517–22
    [Google Scholar]
  67. 67.
    Kremer L, Douglas JD, Baulard AR, Morehouse C, Guy MR et al. 2000. Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J. Biol. Chem. 275:16857–64
    [Google Scholar]
  68. 68.
    Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA. 2000. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. PNAS 97:3450–54
    [Google Scholar]
  69. 69.
    Kulkarni HM, Nagaraj R, Jagannadham MV. 2015. Protective role of E. coli outer membrane vesicles against antibiotics. Microbiol. Res. 181:1–7
    [Google Scholar]
  70. 70.
    Kwon YJ, Fang Y, Xu GH, Kim WG. 2009. Aquastatin A, a new inhibitor of enoyl-acyl carrier protein reductase from Sporothrix sp. FN611. Biol. Pharm. Bull. 32:2061–64
    [Google Scholar]
  71. 71.
    Kwon YJ, Kim HJ, Kim WG. 2015. Complestatin exerts antibacterial activity by the inhibition of fatty acid synthesis. Biol. Pharm. Bull. 38:715–21
    [Google Scholar]
  72. 72.
    Lambalot RH, Walsh CT. 1995. Cloning, overproduction, and characterization of the Escherichia coli holo-acyl carrier protein synthase. J. Biol. Chem. 270:24658–61
    [Google Scholar]
  73. 73.
    Lappann M, Otto A, Becher D, Vogel U. 2013. Comparative proteome analysis of spontaneous outer membrane vesicles and purified outer membranes of Neisseria meningitidis. J. Bacteriol. 195:4425–35
    [Google Scholar]
  74. 74.
    Larson EC, Lim AL, Pond CD, Craft M, Cavuzic M et al. 2020. Pyrrolocin C and equisetin inhibit bacterial acetyl-CoA carboxylase. PLOS ONE 15:e0233485
    [Google Scholar]
  75. 75.
    Leblanc C, Prudhomme T, Tabouret G, Ray A, Burbaud S et al. 2012. 4′-Phosphopantetheinyl transferase PptT, a new drug target required for Mycobacterium tuberculosis growth and persistence in vivo. PLOS Pathog 8:e1003097
    [Google Scholar]
  76. 76.
    Ledger EVK, Pader V, Edwards AM. 2017. Enterococcus faecalis and pathogenic streptococci inactivate daptomycin by releasing phospholipids. Microbiology 163:1502–8
    [Google Scholar]
  77. 77.
    Leonardi R, Chohnan S, Zhang Y-M, Virga KG, Lee RE et al. 2005. A pantothenate kinase from Staphylococcus aureus refractory to feedback regulation by coenzyme A. J. Biol. Chem. 280:3314–22
    [Google Scholar]
  78. 78.
    Lin S, Hanson RE, Cronan JE. 2010. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat. Chem. Biol. 6:682–88
    [Google Scholar]
  79. 79.
    Lu H, Tonge PJ. 2008. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Acc. Chem. Res. 41:11–20
    [Google Scholar]
  80. 80.
    Lu H, Tonge PJ. 2010. Mechanism and inhibition of the FabV enoyl-ACP reductase from Burkholderia mallei. Biochemistry 49:1281–89
    [Google Scholar]
  81. 81.
    Manabe Y, Shibamoto Y, Baba F, Yanagi T, Iwata H et al. 2018. Definitive radiotherapy for hilar and/or mediastinal lymph node metastases after stereotactic body radiotherapy or surgery for stage I non-small cell lung cancer: 5-year results. Jpn. J. Radiol. 36:719–25
    [Google Scholar]
  82. 82.
    Marreddy RKR, Wu X, Sapkota M, Prior AM, Jones JA et al. 2019. The fatty acid synthesis protein enoyl-ACP reductase II (FabK) is a target for narrow-spectrum antibacterials for Clostridium difficile infection. ACS Infect. Dis. 5:208–17
    [Google Scholar]
  83. 83.
    Massengo-Tiasse RP, Cronan JE 2008. Vibrio cholerae fabV defines a new class of enoyl acyl-carrier-protein reductase. J. Biol. Chem. 283:1308–16
    [Google Scholar]
  84. 84.
    Mattheus W, Masschelein J, Gao LJ, Herdewijn P, Landuyt B et al. 2010. The kalimantacin/batumin biosynthesis operon encodes a self-resistance isoform of the FabI bacterial target. Chem. Biol. 17:1067–71
    [Google Scholar]
  85. 85.
    Maxson T, Mitchell DA. 2016. Targeted treatment for bacterial infections: prospects for pathogen-specific antibiotics coupled with rapid diagnostics. Tetrahedron 72:3609–24
    [Google Scholar]
  86. 86.
    McAllister KA, Peery RB, Meier TI, Fischl AS, Zhao G. 2000. Biochemical and molecular analyses of the Streptococcus pneumoniae acyl carrier protein synthase, an enzyme essential for fatty acid biosynthesis. J. Biol. Chem. 275:30864–72
    [Google Scholar]
  87. 87.
    McKinney DC, Eyermann CJ, Gu RF, Hu J, Kazmirski SL et al. 2016. Antibacterial FabH inhibitors with mode of action validated in Haemophilus influenzae by in vitro resistance mutation mapping. ACS Infect. Dis. 2:456–64
    [Google Scholar]
  88. 88.
    Menetrey A, Janin A, Pullman J, Overcash JS, Haouala A et al. 2019. Bone and joint tissue penetration of the Staphylococcus-selective antibiotic afabicin in patients undergoing elective hip replacement surgery. Antimicrob. Agents Chemother. 63:e01669–18
    [Google Scholar]
  89. 89.
    Meyerovich M, Mamou G, Ben-Yehuda S. 2010. Visualizing high error levels during gene expression in living bacterial cells. PNAS 107:11543–48
    [Google Scholar]
  90. 90.
    Miller JR, Dunham S, Mochalkin I, Banotai C, Bowman M et al. 2009. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore. PNAS 106:1737–42
    [Google Scholar]
  91. 91.
    Miyakawa S, Suzuki K, Noto T, Harada Y, Okazaki H. 1982. Thiolactomycin, a new antibiotic. IV. Biological properties and chemotherapeutic activity in mice. J. Antibiot. 35:411–19
    [Google Scholar]
  92. 92.
    Mochalkin I, Miller JR, Narasimhan L, Thanabal V, Erdman P et al. 2009. Discovery of antibacterial biotin carboxylase inhibitors by virtual screening and fragment-based approaches. ACS Chem. Biol. 4:473–83
    [Google Scholar]
  93. 93.
    Moche M, Schneider G, Edwards P, Dehesh K, Lindqvist Y. 1999. Structure of the complex between the antibiotic cerulenin and its target, β-ketoacyl-acyl carrier protein synthase. J. Biol. Chem. 274:6031–34
    [Google Scholar]
  94. 94.
    Morita YS, Paul KS, Englund PT. 2000. Specialized fatty acid synthesis in African trypanosomes: myristate for GPI anchors. Science 288:140–43
    [Google Scholar]
  95. 95.
    Narasimha RK, Lakshminarasimhan A, Joseph S, Lekshmi SU, Lau MS et al. 2015. AFN-1252 is a potent inhibitor of enoyl-ACP reductase from Burkholderia pseudomallei—crystal structure, mode of action, and biological activity. Protein Sci 24:5832–40
    [Google Scholar]
  96. 96.
    Nevot M, Deroncele V, Messner P, Guinea J, Mercade E. 2006. Characterization of outer membrane vesicles released by the psychrotolerant bacterium Pseudoalteromonas antarctica NF3. Environ. Microbiol. 8:1523–33
    [Google Scholar]
  97. 97.
    Nie Z, Perretta C, Lu J, Su Y, Margosiak S et al. 2005. Structure-based design, synthesis, and study of potent inhibitors of β-ketoacylacyl carrier protein synthase III as potential antimicrobial agents. J. Med. Chem. 48:1596–609
    [Google Scholar]
  98. 98.
    Oh TJ, Daniel J, Kim HJ, Sirakova TD, Kolattukudy PE. 2006. Identification and characterization of Rv3281 as a novel subunit of a biotin-dependent acyl-CoA carboxylase in Mycobacterium tuberculosis H37Rv. J. Biol. Chem. 281:3899–908
    [Google Scholar]
  99. 99.
    Oishi H, Noto T, Sasaki H, Suzuki K, Hayashi T et al. 1982. Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism, fermentation and biological properties. J. Antibiot. 35:391–95
    [Google Scholar]
  100. 100.
    Omura S. 1976. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol. Rev. 40:681–97
    [Google Scholar]
  101. 101.
    Pader V, Hakim S, Painter KL, Wigneshweraraj S, Clarke TB, Edwards AM. 2016. Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids. Nat. Microbiol. 2:16194
    [Google Scholar]
  102. 102.
    Parikh S, Moynihan DP, Xiao G, Tonge PJ 1999. Roles of tyrosine 158 and lysine 165 in the catalytic mechanism of InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis. Biochemistry 38:13623–34
    [Google Scholar]
  103. 103.
    Park AJ, Surette MD, Khursigara CM. 2014. Antimicrobial targets localize to the extracellular vesicle-associated proteome of Pseudomonas aeruginosa grown in a biofilm. Front. Microbiol. 5:464
    [Google Scholar]
  104. 104.
    Parker EN, Drown BS, Geddes EJ, Lee HY, Ismail N et al. 2020. Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens. Nat. Microbiol. 5:67–75
    [Google Scholar]
  105. 105.
    Parrish NM, Kuhajda FP, Heine HS, Bishai WR, Dick JD. 1999. Antimycobacterial activity of cerulenin and its effects on lipid biosynthesis. J. Antimicrob. Chemother. 43:219–26
    [Google Scholar]
  106. 106.
    Parsons JB, Broussard TC, Bose JL, Rosch JW, Jackson P et al. 2014. Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by Staphylococcus aureus. PNAS 111:10532–37
    [Google Scholar]
  107. 107.
    Parsons JB, Frank MW, Subramanian C, Saenkham P, Rock CO. 2011. Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors. PNAS 108:15378–83
    [Google Scholar]
  108. 108.
    Parsons JB, Rock CO. 2013. Bacterial lipids: metabolism and membrane homeostasis. Prog. Lipid Res. 52:249–76
    [Google Scholar]
  109. 109.
    Parsons JB, Yao J, Frank MW, Jackson P, Rock CO 2012. Membrane disruption by antimicrobial fatty acids releases low molecular weight proteins from Staphylococcus aureus. J. Bacteriol. 194:5294–304
    [Google Scholar]
  110. 110.
    Parsons JB, Yao J, Frank MW, Rock CO. 2015. FabH mutations confer resistance to FabF-directed antibiotics in Staphylococcus aureus. Antimicrob. Agents Chemother. 59:849–58
    [Google Scholar]
  111. 111.
    Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. 2007. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6:29–40
    [Google Scholar]
  112. 112.
    Petersen RC. 2016. Triclosan antimicrobial polymers. AIMS Mol. Sci. 3:88–103
    [Google Scholar]
  113. 113.
    Pishchany G, Mevers E, Ndousse-Fetter S, Horvath DJ Jr., Paludo CR et al. 2018. Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen. PNAS 115:10124–29
    [Google Scholar]
  114. 114.
    Price AC, Choi KH, Heath RJ, Li Z, Rock CO, White SW 2001. Inhibition of β-ketoacyl-[acyl carrier protein] synthases by thiolactomycin and cerulenin: structure and mechanism. J. Biol. Chem. 276:6551–59
    [Google Scholar]
  115. 115.
    Radka CD, Frank MW, Yao J, Seetharaman J, Miller DJ, Rock CO. 2020. The genome of a Bacteroidetes inhabitant of the human gut encodes a structurally distinct enoyl-acyl carrier protein reductase (FabI). J. Biol. Chem. 295:7635–52
    [Google Scholar]
  116. 116.
    Raetz CR, Reynolds CM, Trent MS, Bishop RE. 2007. Lipid A modification systems in Gram-negative bacteria. Annu. Rev. Biochem. 76:295–329
    [Google Scholar]
  117. 117.
    Rana P, Ghouse SM, Akunuri R, Madhavi YV, Chopra S, Nanduri S. 2020. FabI (enoyl acyl carrier protein reductase)—a potential broad spectrum therapeutic target and its inhibitors. Eur. J. Med. Chem. 208:112757
    [Google Scholar]
  118. 118.
    Rao NK, Nataraj V, Ravi M, Panchariya L, Palai K et al. 2020. Ternary complex formation of AFN-1252 with Acinetobacter baumannii FabI and NADH: crystallographic and biochemical studies. Chem. Biol. Drug Des. 96:704–13
    [Google Scholar]
  119. 119.
    Reddy MC, Breda A, Bruning JB, Sherekar M, Valluru S et al. 2014. Structure, activity, and inhibition of the carboxyltransferase β-subunit of acetyl coenzyme A carboxylase (AccD6) from Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 58:6122–32
    [Google Scholar]
  120. 120.
    Rock CO, Cronan JE Jr. 1996. Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochim. Biophys. Acta 1302:1–16
    [Google Scholar]
  121. 121.
    Rodriguez-Gonzalez A, Ramirez de Molina A, Fernandez F, Lacal JC. 2004. Choline kinase inhibition induces the increase in ceramides resulting in a highly specific and selective cytotoxic antitumoral strategy as a potential mechanism of action. Oncogene 23:8247–59
    [Google Scholar]
  122. 122.
    Saito J, Yamada M, Watanabe T, Iida M, Kitagawa H et al. 2008. Crystal structure of enoyl-acyl carrier protein reductase (FabK) from Streptococcus pneumoniae reveals the binding mode of an inhibitor. Protein Sci 17:691–99
    [Google Scholar]
  123. 123.
    Sharma S, Ramya TN, Surolia A, Surolia N. 2003. Triclosan as a systemic antibacterial agent in a mouse model of acute bacterial challenge. Antimicrob. Agents Chemother. 47:3859–66
    [Google Scholar]
  124. 124.
    Shen HC, Ding FX, Singh SB, Parthasarathy G, Soisson SM et al. 2009. Synthesis and biological evaluation of platensimycin analogs. Bioorg. Med. Chem. Lett. 19:1623–27
    [Google Scholar]
  125. 125.
    Silvers MA, Pakhomova S, Neau DB, Silvers WC, Anzalone N et al. 2016. Crystal structure of carboxyltransferase from Staphylococcus aureus bound to the antibacterial agent moiramide B. Biochemistry 55:4666–74
    [Google Scholar]
  126. 126.
    Silvers MA, Robertson GT, Taylor CM, Waldrop GL. 2014. Design, synthesis, and antibacterial properties of dual-ligand inhibitors of acetyl-CoA carboxylase. J. Med. Chem. 57:8947–59
    [Google Scholar]
  127. 127.
    Singh SB, Jayasuriya H, Ondeyka JG, Herath KB, Zhang C et al. 2006. Isolation, structure, and absolute stereochemistry of platensimycin, a broad spectrum antibiotic discovered using an antisense differential sensitivity strategy. J. Am. Chem. Soc. 128:11916–20
    [Google Scholar]
  128. 128.
    Stewart MJ, Parikh S, Xiao G, Tonge PJ, Kisker C. 1999. Structural basis and mechanism of enoyl reductase inhibition by triclosan. J. Mol. Biol. 290:859–65
    [Google Scholar]
  129. 129.
    Strauss E, Begley TP. 2002. The antibiotic activity of N-pentylpantothenamide results from its conversion to ethyldethia-coenzyme A, a coenzyme A antimetabolite. J. Biol. Chem. 277:48205–9
    [Google Scholar]
  130. 130.
    Su M, Qiu L, Deng Y, Ruiz CH, Rudolf JD et al. 2019. Evaluation of platensimycin and platensimycin-inspired thioether analogues against methicillin-resistant Staphylococcus aureus in topical and systemic infection mouse models. Mol. Pharm. 16:3065–71
    [Google Scholar]
  131. 131.
    Takiff HE, Baker T, Copeland T, Chen S-M, Court DL. 1992. Locating essential Escherichia coli genes by using mini-Tn10 transposons: the pdxJ operon. J. Bacteriol. 174:1544–53
    [Google Scholar]
  132. 132.
    TB Alliance 2008. Isoniazid. Tuberculosis 88:112–16
    [Google Scholar]
  133. 133.
    Theuretzbacher U, Outterson K, Engel A, Karlen A 2020. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 18:275–85
    [Google Scholar]
  134. 134.
    Waller RF, Keeling PJ, Donald RGK, Striepen B, Handman E et al. 1998. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. PNAS 95:12352–57
    [Google Scholar]
  135. 135.
    Wang J, Kodali S, Lee SH, Galgoci A, Painter R et al. 2007. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. PNAS 104:7612–16
    [Google Scholar]
  136. 136.
    Wang J, Soisson SM, Young K, Shoop W, Kodali S et al. 2006. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441:358–61
    [Google Scholar]
  137. 137.
    Wang J, Ye X, Yang X, Cai Y, Wang S et al. 2020. Discovery of novel antibiotics as covalent inhibitors of fatty acid synthesis. ACS Chem. Biol. 15:1826–34
    [Google Scholar]
  138. 138.
    Wang Y, Ma S. 2013. Recent advances in inhibitors of bacterial fatty acid synthesis type II (FASII) system enzymes as potential antibacterial agents. ChemMedChem 8:1589–608
    [Google Scholar]
  139. 139.
    Ward WH, Holdgate GA, Rowsell S, McLean EG, Pauptit RA et al. 1999. Kinetic and structural characteristics of the inhibition of enoyl (acyl carrier protein) reductase by triclosan. Biochemistry 38:12514–25
    [Google Scholar]
  140. 140.
    White SW, Zheng J, Zhang Y-M, Rock CO. 2005. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74:791–831
    [Google Scholar]
  141. 141.
    Wittke F, Vincent C, Chen J, Heller B, Kabler H et al. 2020. Afabicin, a first-in-class antistaphylococcal antibiotic, in the treatment of acute bacterial skin and skin structure infections: clinical noninferiority to vancomycin/linezolid. Antimicrob. Agents Chemother. 64:10e00250–20
    [Google Scholar]
  142. 142.
    Wozniak CE, Lin Z, Schmidt EW, Hughes KT, Liou TG. 2018. Thailandamide, a fatty acid synthesis antibiotic that is coexpressed with a resistant target gene. Antimicrob. Agents Chemother. 62:e00463–18
    [Google Scholar]
  143. 143.
    Xiang S, Callaghan MM, Watson KG, Tong L. 2009. A different mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by tepraloxydim. PNAS 106:20723–27
    [Google Scholar]
  144. 144.
    Yao J, Abdelrahman YM, Robertson RM, Cox JV, Belland RJ et al. 2014. Type II fatty acid synthesis is essential for the replication of Chlamydia trachomatis. J. Biol. Chem. 289:22365–76
    [Google Scholar]
  145. 145.
    Yao J, Carter RA, Vuagniaux G, Barbier M, Rosch JW, Rock CO. 2016. A pathogen-selective antibiotic minimizes disturbance to the microbiome. Antimicrob. Agents Chemother. 60:4264–73
    [Google Scholar]
  146. 146.
    Yao J, Ericson ME, Frank MW, Rock CO. 2016. Enoyl-acyl carrier protein reductase I (FabI) is essential for the intracellular growth of Listeria monocytogenes. Infect. Immun. 84:3597–607
    [Google Scholar]
  147. 147.
    Yao J, Maxwell JB, Rock CO. 2013. Resistance to AFN-1252 arises from missense mutations in Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI). J. Biol. Chem. 288:36261–71
    [Google Scholar]
  148. 148.
    Yao J, Rock CO. 2016. Resistance mechanisms and the future of bacterial enoyl-acyl carrier protein reductase (FabI) antibiotics. Cold Spring Harb. . Perspect. Med. 6:a027045
    [Google Scholar]
  149. 149.
    Yu LP, Kim YS, Tong L. 2010. Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden. PNAS 107:22072–77
    [Google Scholar]
  150. 150.
    Zhang H, Tweel B, Tong L. 2004. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by haloxyfop and diclofop. PNAS 101:5910–15
    [Google Scholar]
  151. 151.
    Zhang Y-M, Frank MW, Virga KG, Lee RE, Rock CO, Jackowski S 2004. Acyl carrier protein is a cellular target for the antibacterial action of the pantothenamide class of pantothenate antimetabolites. J. Biol. Chem. 279:50969–75
    [Google Scholar]
  152. 152.
    Zhang Y-M, Marrakchi H, White SW, Rock CO. 2003. The application of computational methods to explore the diversity and structure of bacterial fatty acid synthase. J. Lipid Res. 44:1–10
    [Google Scholar]
  153. 153.
    Zhang Y-M, White SW, Rock CO 2006. Inhibiting bacterial fatty acid synthesis. J. Biol. Chem. 281:17541–44
    [Google Scholar]
  154. 154.
    Zheng CJ, Sohn MJ, Chi SW, Kim WG 2010. Methyl-branched fatty acids, inhibitors of enoyl-ACP reductase with antibacterial activity from Streptomyces sp. A251. J. Microbiol. Biotechnol. 20:875–80
    [Google Scholar]
  155. 155.
    Zheng CJ, Sohn MJ, Kim WG. 2009. Vinaxanthone, a new FabI inhibitor from Penicillium sp. J. Antimicrob. Chemother. 63:949–53
    [Google Scholar]
  156. 156.
    Zheng CJ, Sohn MJ, Lee S, Hong YS, Kwak JH, Kim WG. 2007. Cephalochromin, a FabI-directed antibacterial of microbial origin. Biochem. Biophys. Res. Commun. 362:1107–12
    [Google Scholar]
  157. 157.
    Zheng CJ, Sohn MJ, Lee S, Kim WG 2013. Meleagrin, a new FabI inhibitor from Penicillium chryosogenum with at least one additional mode of action. PLOS ONE 8:e78922
    [Google Scholar]
  158. 158.
    Zhu L, Lin J, Ma J, Cronan JE, Wang H. 2010. Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob. Agents Chemother. 54:689–98
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041320-110408
Loading
/content/journals/10.1146/annurev-micro-041320-110408
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error