1932

Abstract

Despite identification of numerous associations between microbiomes and diseases, the complexity of the human microbiome has hindered identification of individual species and strains that are causative in host phenotype or disease. Uncovering causative microbes is vital to fully understand disease processes and to harness the potential therapeutic benefits of microbiota manipulation. Developments in sequencing technology, animal models, and bacterial culturing have facilitated the discovery of specific microbes that impact the host and are beginning to advance the characterization of host-microbiome interaction mechanisms. We summarize the historical and contemporary experimental approaches taken to uncover microbes from the microbiota that affect host biology and describe examples of commensals that have specific effects on the immune system, inflammation, and metabolism. There is still much to learn, and we lay out challenges faced by the field and suggest potential remedies for common pitfalls encountered in the hunt for causative commensal microbes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041321-042402
2021-10-08
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-041321-042402.html?itemId=/content/journals/10.1146/annurev-micro-041321-042402&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aggarwala V, Mogno I, Li Z, Yang C, Britton GJ et al. 2020. Quantification of discrete gut bacterial strains following fecal transplantation for recurrent Clostridioides difficile infection demonstrates long-term stable engraftment in non-relapsing recipients. bioRxiv 2020.09.10.292136
  2. 2. 
    Ahern PP, Faith JJ, Gordon JI. 2014. Mining the human gut microbiota for effector strains that shape the immune system. Immunity 40:815–23
    [Google Scholar]
  3. 3. 
    Alexeev EE, Lanis JM, Kao DJ, Campbell EL, Kelly CJ et al. 2018. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am. J. Pathol. 188:1183–94
    [Google Scholar]
  4. 4. 
    Alkanani AK, Hara N, Gottlieb PA, Ir D, Robertson CE et al. 2015. Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes 64:351020
    [Google Scholar]
  5. 5. 
    Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M et al. 2008. ATP drives lamina propria TH17 cell differentiation. Nature 455:808–12
    [Google Scholar]
  6. 6. 
    Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y et al. 2015. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163:367–80
    [Google Scholar]
  7. 7. 
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y et al. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–36
    [Google Scholar]
  8. 8. 
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T et al. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–41
    [Google Scholar]
  9. 9. 
    Bachem A, Makhlouf C, Binger KJ, de Souza DP, Tull D et al. 2019. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51:285–97.e5
    [Google Scholar]
  10. 10. 
    Basic M, Bleich A. 2019. Gnotobiotics: past, present and future. Lab. Anim. 53:232–43
    [Google Scholar]
  11. 11. 
    Becker N, Kunath J, Loh G, Blaut M. 2011. Human intestinal microbiota: characterization of a simplified and stable gnotobiotic rat model. Gut Microbes 2:25–33
    [Google Scholar]
  12. 12. 
    Bloom SM, Bijanki VN, Nava GM, Sun L, Malvin NP et al. 2011. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe 9:390–403
    [Google Scholar]
  13. 13. 
    Britton GJ, Contijoch EJ, Mogno I, Vennaro OH, Llewellyn SR et al. 2019. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50:212–24.e4
    [Google Scholar]
  14. 14. 
    Britton GJ, Contijoch EJ, Spindler MP, Aggarwala V, Dogan B et al. 2020. Defined microbiota transplant restores Th17/RORγt+ regulatory T cell balance in mice colonized with inflammatory bowel disease microbiotas. PNAS 117:21536
    [Google Scholar]
  15. 15. 
    Bunker JJ, Erickson SA, Flynn TM, Henry C, Koval JC et al. 2017. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358:eaan6619
    [Google Scholar]
  16. 16. 
    Bunker JJ, Flynn TM, Koval JC, Shaw DG, Meisel M et al. 2015. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43:541–53
    [Google Scholar]
  17. 17. 
    Byrd AL, Segre JA. 2016. Adapting Koch's postulates. Science 351:6270224–26
    [Google Scholar]
  18. 18. 
    Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M et al. 2020. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581:475–79
    [Google Scholar]
  19. 19. 
    Chen H, Nwe P-K, Yang Y, Rosen CE, Bielecka AA et al. 2019. A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology. Cell 177:1217–31.e18
    [Google Scholar]
  20. 20. 
    Cohen LJ, Esterhazy D, Kim S-H, Lemetre C, Aguilar RR et al. 2017. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549:48–53
    [Google Scholar]
  21. 21. 
    Colosimo DA, Kohn JA, Luo PM, Piscotta FJ, Han SM et al. 2019. Mapping interactions of microbial metabolites with human G-protein-coupled receptors. Cell Host Microbe 26:273–82.e7
    [Google Scholar]
  22. 22. 
    Contijoch EJ, Britton GJ, Yang C, Mogno I, Li Z et al. 2019. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife 8:e40553
    [Google Scholar]
  23. 23. 
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 2009. Bacterial community variation in human body habitats across space and time. Science 326:1694–97
    [Google Scholar]
  24. 24. 
    Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA et al. 2015. Gut microbiota: Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science 347:170–75
    [Google Scholar]
  25. 25. 
    Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL et al. 2004. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127:412–21
    [Google Scholar]
  26. 26. 
    Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A et al. 2016. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22:250–53
    [Google Scholar]
  27. 27. 
    Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB et al. 2018. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:795–800
    [Google Scholar]
  28. 28. 
    Eberl C, Ring D, Münch PC, Beutler M, Basic M et al. 2020. Reproducible colonization of germ-free mice with the oligo-mouse-microbiota in different animal facilities. Front. Microbiol. 10:2999
    [Google Scholar]
  29. 29. 
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L et al. 2005. Diversity of the human intestinal microbial flora. Science 308:1635–38
    [Google Scholar]
  30. 30. 
    Estrela AB, Nakashige TG, Lemetre C, Woodworth ID, Weisman JL et al. 2019. Functional multigenomic screening of human-associated bacteria for NF-κB-inducing bioactive effectors. mBio 10:e02587-19
    [Google Scholar]
  31. 31. 
    Eun CS, Mishima Y, Wohlgemuth S, Liu B, Bower M et al. 2014. Induction of bacterial antigen-specific colitis by a simplified human microbiota consortium in gnotobiotic interleukin-10⁻/⁻ mice. Infect. Immun. 82:2239–46
    [Google Scholar]
  32. 32. 
    Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI. 2014. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 6:220ra11
    [Google Scholar]
  33. 33. 
    Faith JJ, Chen-Liaw A, Aggarwala V, Kaakoush NO, Borody TJ et al. 2020. Strain population structure varies widely across bacterial species and predicts strain colonization in unrelated individuals. bioRxiv 2020.10.17.343640
  34. 34. 
    Faith JJ, Colombel JF, Gordon JI 2015. Identifying strains that contribute to complex diseases through the study of microbial inheritance. PNAS 112:633–40
    [Google Scholar]
  35. 35. 
    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H et al. 2013. The long-term stability of the human gut microbiota. Science 341:1237439
    [Google Scholar]
  36. 36. 
    Farkas AM, Panea C, Goto Y, Nakato G, Galan-Diez M et al. 2015. Induction of Th17 cells by segmented filamentous bacteria in the murine intestine. J. Immunol. Methods 421:104–11
    [Google Scholar]
  37. 37. 
    Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E et al. 2019. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37:186–92
    [Google Scholar]
  38. 38. 
    Freter R, Abrams GD. 1972. Function of various intestinal bacteria in converting germfree mice to the normal state. Infect. Immun. 6:119–26
    [Google Scholar]
  39. 39. 
    Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME et al. 2020. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582:566–70
    [Google Scholar]
  40. 40. 
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–50
    [Google Scholar]
  41. 41. 
    Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E et al. 2011. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34:794–806
    [Google Scholar]
  42. 42. 
    Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG et al. 2017. Mining the human gut microbiota for immunomodulatory organisms. Cell 168:928–43.e11
    [Google Scholar]
  43. 43. 
    Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W et al. 2014. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15:382–92
    [Google Scholar]
  44. 44. 
    Gibbons RJ, Socransky SS, Kapsimalis B. 1964. Establishment of human indigenous bacteria in germ-free mice. J. Bacteriol. 88:1316
    [Google Scholar]
  45. 45. 
    Gloux K, Leclerc M, Iliozer H, L'Haridon R, Manichanh C et al. 2007. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl. Environ. Microbiol. 73:3734–37
    [Google Scholar]
  46. 46. 
    Goldberg B, Sichtig H, Geyer C, Ledeboer N, Weinstock GM. 2015. Making the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnostics. mBio 6:e01888-15
    [Google Scholar]
  47. 47. 
    Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A et al. 2011. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. PNAS 108:6252–57
    [Google Scholar]
  48. 48. 
    Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD et al. 2009. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6:279–89
    [Google Scholar]
  49. 49. 
    Gopalakrishna KP, Macadangdang BR, Rogers MB, Tometich JT, Firek BA et al. 2019. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat. Med. 25:1110–15
    [Google Scholar]
  50. 50. 
    Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC et al. 2018. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359:97–103
    [Google Scholar]
  51. 51. 
    Guo CJ, Allen BM, Hiam KJ, Dodd D, Van Treuren W et al. 2019. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science 366:eaav1282
    [Google Scholar]
  52. 51a. 
    Han S, Van Treuren W, Fischer CR, Merrill BD, DeFelice BCet al 2021. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature 595:786741520
    [Google Scholar]
  53. 52. 
    Hang S, Paik D, Yao L, Kim E, Trinath J et al. 2019. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576:143–48
    [Google Scholar]
  54. 53. 
    Hegazy AN, West NR, Stubbington MJT, Wendt E, Suijker KIM et al. 2017. Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153:1320–37.e16
    [Google Scholar]
  55. 54. 
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–98
    [Google Scholar]
  56. 55. 
    Ivanov II, de Llanos Frutos R, Manel N, Yoshinaga K, Rifkin DB et al. 2008. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–49
    [Google Scholar]
  57. 56. 
    Jacob V, Crawford C, Cohen-Mekelburg S, Viladomiu M, Putzel GG et al. 2017. Single delivery of high-diversity fecal microbiota preparation by colonoscopy is safe and effective in increasing microbial diversity in active ulcerative colitis. Inflamm. Bowel Dis. 23:6903–11
    [Google Scholar]
  58. 57. 
    Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, Camacho DM, Fadel CW et al. 2019. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3:520–31
    [Google Scholar]
  59. 58. 
    James KR, Gomes T, Elmentaite R, Kumar N, Gulliver EL et al. 2020. Distinct microbial and immune niches of the human colon. Nat. Immunol. 21:343–53
    [Google Scholar]
  60. 59. 
    Jangi S, Gandhi R, Cox LM, Li N, von Glehn F et al. 2016. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7:12015
    [Google Scholar]
  61. 60. 
    Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L et al. 2016. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165:1708–20
    [Google Scholar]
  62. 61. 
    Kau AL, Planer JD, Liu J, Rao S, Yatsunenko T et al. 2015. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl. Med. 7:276ra24
    [Google Scholar]
  63. 62. 
    Kittana H, Gomes-Neto JC, Heck K, Geis AL, Segura Muñoz RR et al. 2018. Commensal Escherichia coli strains can promote intestinal inflammation via differential interleukin-6 production. Front. Immunol. 9:2318
    [Google Scholar]
  64. 63. 
    Klaasen HL, Van der Heijden PJ, Stok W, Poelma FG, Koopman JP et al. 1993. Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect. Immun. 61:303–6
    [Google Scholar]
  65. 64. 
    Korpela K, Helve O, Kolho K-L, Saisto T, Skogberg K et al. 2020. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183:324–34.e5
    [Google Scholar]
  66. 65. 
    Kusters JG, van Vliet AHM, Kuipers EJ. 2006. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 19:449
    [Google Scholar]
  67. 66. 
    Ladinsky MS, Araujo LP, Zhang X, Veltri J, Galan-Diez M et al. 2019. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science 363:eaat4042
    [Google Scholar]
  68. 67. 
    Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N et al. 2016. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1:16203
    [Google Scholar]
  69. 68. 
    Lakhdari O, Tap J, Béguet-Crespel F, Le Roux K, de Wouters T et al. 2011. Identification of NF-κB modulation capabilities within human intestinal commensal bacteria. J. Biomed. Biotechnol. 2011 282356
    [Google Scholar]
  70. 69. 
    Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC. 2015. Current and future resources for functional metagenomics. Front. Microbiol. 6:1196
    [Google Scholar]
  71. 70. 
    Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK. 2013. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501:426–29
    [Google Scholar]
  72. 71. 
    Lee Y-S, Kim T-Y, Kim Y, Lee S-H, Kim S et al. 2018. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe 24:833–46.e6
    [Google Scholar]
  73. 72. 
    Lee YK, Menezes JS, Umesaki Y, Mazmanian SK 2011. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. PNAS 108:Suppl. 14615–22
    [Google Scholar]
  74. 73. 
    Li SS, Zhu A, Benes V, Costea PI, Hercog R et al. 2016. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 352:586–89
    [Google Scholar]
  75. 74. 
    Lim B, Zimmermann M, Barry NA, Goodman AL. 2017. Engineered regulatory systems modulate gene expression of human commensals in the gut. Cell 169:547–58.e15
    [Google Scholar]
  76. 75. 
    Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J et al. 2017. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550:61–66
    [Google Scholar]
  77. 76. 
    Loesche WJ. 1969. Effect of bacterial contamination on cecal size and cecal contents of gnotobiotic rodents. J. Bacteriol. 99:520–26
    [Google Scholar]
  78. 77. 
    Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K et al. 2020. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369:148189
    [Google Scholar]
  79. 78. 
    Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C et al. 2018. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359:115661
    [Google Scholar]
  80. 79. 
    Mark Welch JL, Hasegawa Y, McNulty NP, Gordon JI, Borisy GG 2017. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. PNAS 114:E9105
    [Google Scholar]
  81. 80. 
    Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y et al. 2018. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 359:104–8
    [Google Scholar]
  82. 81. 
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–18
    [Google Scholar]
  83. 82. 
    Mehta RS, Abu-Ali GS, Drew DA, Lloyd-Price J, Subramanian A et al. 2018. Stability of the human faecal microbiome in a cohort of adult men. Nat. Microbiol. 3:347–55
    [Google Scholar]
  84. 83. 
    Mimee M, Tucker AC, Voigt CA, Lu TK. 2015. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst 1:62–71
    [Google Scholar]
  85. 84. 
    Miyauchi E, Kim S-W, Suda W, Kawasumi M, Onawa S et al. 2020. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature 585:102–6
    [Google Scholar]
  86. 85. 
    Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M et al. 2015. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149:102–9.e6
    [Google Scholar]
  87. 86. 
    Naik S, Bouladoux N, Linehan JL, Han S-J, Harrison OJ et al. 2015. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520:104–8
    [Google Scholar]
  88. 87. 
    Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M et al. 2015. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 5:16148
    [Google Scholar]
  89. 88. 
    Neff CP, Rhodes ME, Arnolds KL, Collins CB, Donnelly J et al. 2016. Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties. Cell Host Microbe 20:535–47
    [Google Scholar]
  90. 89. 
    Neville BA, Forster SC, Lawley TD. 2018. Commensal Koch's postulates: establishing causation in human microbiota research. Curr. Opin. Microbiol. 42:47–52
    [Google Scholar]
  91. 90. 
    Nguyen BD, Valdivia RH 2012. Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches. PNAS 109:1263–68
    [Google Scholar]
  92. 91. 
    Olm MR, Crits-Christoph A, Bouma-Gregson K, Firek BA, Morowitz MJ, Banfield JF. 2021. inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains. Nat. Biotechnol. 39:727–36
    [Google Scholar]
  93. 92. 
    Onderdonk AB, Bronson R, Cisneros R. 1987. Comparison of Bacteroides vulgatus strains in the enhancement of experimental ulcerative colitis. Infect. Immunity 55:83536
    [Google Scholar]
  94. 93. 
    Pabst O, Slack E. 2020. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol 13:12–21
    [Google Scholar]
  95. 94. 
    Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J et al. 2014. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158:1000–10
    [Google Scholar]
  96. 95. 
    Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J et al. 2017. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389:1218–28
    [Google Scholar]
  97. 96. 
    Planer JD, Peng Y, Kau AL, Blanton LV, Ndao IM et al. 2016. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534:263–66
    [Google Scholar]
  98. 97. 
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65
    [Google Scholar]
  99. 98. 
    Quraishi MN, Oo YH, Beggs A, Withers D, Acharjee A et al. 2020. OP09 Immunomodulatory mechanisms of faecal microbiota transplantation are associated with clinical response in ulcerative colitis: early results from STOP-Colitis. J. Crohn's Colitis 14:S010
    [Google Scholar]
  100. 99. 
    Quraishi MN, Shaheen W, Oo YH, Iqbal TH. 2020. Immunological mechanisms underpinning faecal microbiota transplantation for the treatment of inflammatory bowel disease. Clin. Exp. Immunol. 199:24–38
    [Google Scholar]
  101. 100. 
    Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE Jr. et al. 1996. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J. Clin. Investig. 98:945–53
    [Google Scholar]
  102. 101. 
    Rath HC, Wilson KH, Sartor RB. 1999. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect. Immun. 67:2969–74
    [Google Scholar]
  103. 102. 
    Relman DA, Schmidt TM, MacDermott RP, Falkow S. 1992. Identification of the uncultured bacillus of Whipple's disease. N. Engl. J. Med. 327:293–301
    [Google Scholar]
  104. 103. 
    Rodriguez-Palacios A, Aladyshkina N, Ezeji JC, Erkkila HL, Conger M et al. 2018.. ‘ Cyclical bias’ in microbiome research revealed by a portable germ-free housing system using nested isolation. Sci. Rep. 8:3801
    [Google Scholar]
  105. 104. 
    Romano KA, Vivas EI, Amador-Noguez D, Rey FE. 2015. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6:e02481-14
    [Google Scholar]
  106. 104a. 
    Roswall J, Olsson LM, Kovatcheva-Datchary P, Nilsson S, Tremaroli Vet al 2021. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe 29:576576.e3
    [Google Scholar]
  107. 105. 
    Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT et al. 2018. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 359:91–97
    [Google Scholar]
  108. 106. 
    Sano T, Huang W, Hall JA, Yang Y, Chen A et al. 2015. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163:381–93
    [Google Scholar]
  109. 107. 
    Schaedler RW, Dubs R, Costello R. 1965. Association of germfree mice with bacteria isolated from normal mice. J. Exp. Med. 122:77–82
    [Google Scholar]
  110. 108. 
    Schloss PD, Iverson KD, Petrosino JF, Schloss SJ 2014. The dynamics of a family's gut microbiota reveal variations on a theme. Microbiome 2:25
    [Google Scholar]
  111. 109. 
    Sczesnak A, Segata N, Qin X, Gevers D, Petrosino JF et al. 2011. The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 10:260–72
    [Google Scholar]
  112. 110. 
    Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D et al. 2015. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349:993–97
    [Google Scholar]
  113. 111. 
    Seo S-U, Kamada N, Muñoz-Planillo R, Kim Y-G, Kim D et al. 2015. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 42:744–55
    [Google Scholar]
  114. 112. 
    Sheth RU, Li M, Jiang W, Sims PA, Leong KW, Wang HH. 2019. Spatial metagenomic characterization of microbial biogeography in the gut. Nat. Biotechnol. 37:877–83
    [Google Scholar]
  115. 113. 
    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K et al. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 350:108489
    [Google Scholar]
  116. 114. 
    Smillie CS, Sauk J, Gevers D, Friedman J, Sung J et al. 2018. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe 23:229–40.e5
    [Google Scholar]
  117. 115. 
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–73
    [Google Scholar]
  118. 116. 
    Stappenbeck TS, Virgin HW. 2016. Accounting for reciprocal host-microbiome interactions in experimental science. Nature 534:191–99
    [Google Scholar]
  119. 117. 
    Stein RR, Tanoue T, Szabady RL, Bhattarai SK, Olle B et al. 2018. Computer-guided design of optimal microbial consortia for immune system modulation. eLife 7:e30916
    [Google Scholar]
  120. 118. 
    Surana NK, Kasper DL. 2017. Moving beyond microbiome-wide associations to causal microbe identification. Nature 552:244–47
    [Google Scholar]
  121. 119. 
    Syed SA, Abrams GD, Freter R. 1970. Efficiency of various intestinal bacteria in assuming normal functions of enteric flora after association with germ-free mice. Infect. Immun. 2:376–86
    [Google Scholar]
  122. 120. 
    Tan TG, Sefik E, Geva-Zatorsky N, Kua L, Naskar D et al. 2016. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. PNAS 113:E8141–50
    [Google Scholar]
  123. 121. 
    Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W et al. 2019. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565:600–5
    [Google Scholar]
  124. 122. 
    Tomkovich S, Stough JMA, Bishop L, Schloss PD. 2020. The initial gut microbiota and response to antibiotic perturbation influence Clostridioides difficile clearance in mice. mSphere 5:e00869-20
    [Google Scholar]
  125. 123. 
    Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20:159–66
    [Google Scholar]
  126. 124. 
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al. 2009. A core gut microbiome in obese and lean twins. Nature 457:480–84
    [Google Scholar]
  127. 125. 
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31
    [Google Scholar]
  128. 126. 
    van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG et al. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368:407–15
    [Google Scholar]
  129. 127. 
    Vatanen T, Plichta DR, Somani J, Münch PC, Arthur TD et al. 2019. Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. Nat. Microbiol. 4:470–79
    [Google Scholar]
  130. 128. 
    Viladomiu M, Kivolowitz C, Abdulhamid A, Dogan B, Victorio D et al. 2017. IgA-coated E. coli enriched in Crohn's disease spondyloarthritis promote TH17-dependent inflammation. Sci. Transl. Med. 9:376eaaf9655
    [Google Scholar]
  131. 128a. 
    Vogl T, Klompus S, Leviatan S, Kalka IN, Weinberger Aet al 2021. Population-wide diversity and stability of serum antibody epitope repertoires against human microbiota. Nat. Med. In press. https://doi.org/10.1038/s41591-021-01409-3
    [Crossref] [Google Scholar]
  132. 129. 
    Vuong HE, Hsiao EY. 2017. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry 81:411–23
    [Google Scholar]
  133. 130. 
    Walter J, Armet AM, Finlay BB, Shanahan F. 2020. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180:221–32
    [Google Scholar]
  134. 131. 
    Wegorzewska MM, Glowacki RWP, Hsieh SA, Donermeyer DL, Hickey CA et al. 2019. Diet modulates colonic T cell responses by regulating the expression of a Bacteroides thetaiotaomicron antigen. Sci. Immunol. 4:eaau9079
    [Google Scholar]
  135. 132. 
    Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L et al. 2008. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455:1109–13
    [Google Scholar]
  136. 133. 
    Wilson ID, Nicholson JK. 2017. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. 179:204–22
    [Google Scholar]
  137. 134. 
    Wintermute EH, Silver PA. 2010. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6:407
    [Google Scholar]
  138. 135. 
    Wostmann B, Bruckner-Kardoss E. 1959. Development of cecal distention in germ-free baby rats. Am. J. Physiol. 197:1345–46
    [Google Scholar]
  139. 136. 
    Wu HJ, Ivanov II, Darce J, Hattori K, Shima T et al. 2010. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–27
    [Google Scholar]
  140. 137. 
    Wu W, Sun M, Chen F, Cao AT, Liu H et al. 2017. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol 10:946–56
    [Google Scholar]
  141. 138. 
    Wullaert A, Lamkanfi M, McCoy KD. 2018. Defining the impact of host genotypes on microbiota composition requires meticulous control of experimental variables. Immunity 48:605–7
    [Google Scholar]
  142. 139. 
    Xu M, Pokrovskii M, Ding Y, Yi R, Au C et al. 2018. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554:373–77
    [Google Scholar]
  143. 140. 
    Yang C, Mogno I, Contijoch EJ, Borgerding JN, Aggarwala V et al. 2020. Fecal IgA levels are determined by strain-level differences in Bacteroides ovatus and are modifiable by gut microbiota manipulation. Cell Host Microbe 27:467–75.e6
    [Google Scholar]
  144. 141. 
    Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M et al. 2014. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510:152–56
    [Google Scholar]
  145. 142. 
    Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P et al. 2015. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–76
    [Google Scholar]
  146. 143. 
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG et al. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–27
    [Google Scholar]
  147. 144. 
    Yaung SJ, Deng L, Li N, Braff JL, Church GM et al. 2015. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics. Mol. Syst. Biol. 11:788
    [Google Scholar]
  148. 145. 
    Yin Y, Wang Y, Zhu L, Liu W, Liao N et al. 2013. Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. ISME J 7:615–21
    [Google Scholar]
  149. 146. 
    Yissachar N, Zhou Y, Ung L, Lai NY, Mohan JF et al. 2017. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell 168:1135–48.e12
    [Google Scholar]
  150. 147. 
    Zhang J, Huang Y-J, Yoon JY, Kemmitt J, Wright C et al. 2021. Primary human colonic mucosal barrier crosstalk with super oxygen-sensitive Faecalibacterium prausnitzii in continuous culture. Med 2:174–98.e9
    [Google Scholar]
  151. 148. 
    Zhang X, Zhang D, Jia H, Feng Q, Wang D et al. 2015. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21:895–905
    [Google Scholar]
  152. 149. 
    Zhao S, Dai CL, Evans ED, Lu Z, Alm EJ. 2020. Tracking strains predicts personal microbiomes and reveals recent adaptive evolution. bioRxiv 2020.09.14.296970
  153. 150. 
    Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM et al. 2019. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25:656–67.e8
    [Google Scholar]
  154. 151. 
    Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. 2019. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570:462–67
    [Google Scholar]
  155. 152. 
    Zou Y, Xue W, Luo G, Deng Z, Qin P et al. 2019. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol. 37:179–85
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041321-042402
Loading
/content/journals/10.1146/annurev-micro-041321-042402
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error