1932

Abstract

Infectious diseases are a leading cause of global morbidity and mortality, and the threat of infectious diseases to human health is steadily increasing as new diseases emerge, existing diseases reemerge, and antimicrobial resistance expands. The application of imaging technology to the study of infection biology has the potential to uncover new factors that are critical to the outcome of host-pathogen interactions and to lead to innovations in diagnosis and treatment of infectious diseases. This article reviews current and future opportunities for the application of imaging to the study of infectious diseases, with a particular focus on the power of imaging objects across a broad range of sizes to expand the utility of these approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041521-121457
2021-10-08
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-041521-121457.html?itemId=/content/journals/10.1146/annurev-micro-041521-121457&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abtin A, Jain R, Mitchell AJ, Roediger B, Brzoska AJ et al. 2014. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat. Immunol. 15:45–53
    [Google Scholar]
  2. 2. 
    Aksoy SY, Asa S, Ozhan M, Ocak M, Sager MS et al. 2014. FDG and FDG-labelled leucocyte PET/CT in the imaging of prosthetic joint infection. Eur. J. Nucl. Med. Mol. Imaging 41:556–64
    [Google Scholar]
  3. 3. 
    Aron AT, Heffern MC, Lonergan ZR, Vander Wal MN, Blank BR et al. 2017. In vivo bioluminescence imaging of labile iron accumulation in a murine model of Acinetobacter baumannii infection. PNAS 114:4812669–74
    [Google Scholar]
  4. 4. 
    Attia AS, Schroeder KA, Seeley EH, Wilson KJ, Hammer ND et al. 2012. Monitoring the inflammatory response to infection through the integration of MALDI IMS and MRI. Cell Host. Microbe 11:664–73
    [Google Scholar]
  5. 5. 
    Belperron AA, Mao J, Bockenstedt LK. 2018. Two photon intravital microscopy of Lyme Borrelia in mice. Methods Mol. Biol. 1690:279–90
    [Google Scholar]
  6. 6. 
    Bien T, Perl M, Machmuller AC, Nitsche U, Conrad A et al. 2020. MALDI-2 mass spectrometry and immunohistochemistry imaging of Gb3Cer, Gb4Cer, and further glycosphingolipids in human colorectal cancer tissue. Anal. Chem. 92:7096–105
    [Google Scholar]
  7. 7. 
    Blom S, Paavolainen L, Bychkov D, Turkki R, Maki-Teeri P et al. 2017. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci. Rep. 7:15580
    [Google Scholar]
  8. 8. 
    Brandt SL, Klopfenstein N, Wang S, Winfree S, McCarthy BP et al. 2018. Macrophage-derived LTB4 promotes abscess formation and clearance of Staphylococcus aureus skin infection in mice. PLOS Pathog 14:e1007244
    [Google Scholar]
  9. 9. 
    Cameron SJS, Takats Z. 2018. Mass spectrometry approaches to metabolic profiling of microbial communities within the human gastrointestinal tract. Methods 149:13–24
    [Google Scholar]
  10. 10. 
    Campos-Silva R, Brust FR, Trentin DS, Macedo AJ. 2019. Alternative method in Galleria mellonella larvae to study biofilm infection and treatment. Microb. Pathog. 137:103756
    [Google Scholar]
  11. 11. 
    Casal D, Iria I, Ramalho JS, Alves S, Mota-Silva E et al. 2019. BD-2 and BD-3 increase skin flap survival in a model of ischemia and Pseudomonas aeruginosa infection. Sci. Rep. 9:7854
    [Google Scholar]
  12. 12. 
    Cassat JE, Hammer ND, Campbell JP, Benson MA, Perrien DS et al. 2013. A secreted bacterial protease tailors the Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis. Cell Host Microbe 13:759–72
    [Google Scholar]
  13. 13. 
    Cassat JE, Moore JL, Wilson KJ, Stark Z, Prentice BM et al. 2018. Integrated molecular imaging reveals tissue heterogeneity driving host-pathogen interactions. Sci. Transl. Med. 10:eaan6361
    [Google Scholar]
  14. 14. 
    Chai Q, Wang X, Qiang L, Zhang Y, Ge P et al. 2019. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat. Commun. 10:1973
    [Google Scholar]
  15. 15. 
    Charles-Orszag A, Tsai FC, Bonazzi D, Manriquez V, Sachse M et al. 2018. Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting. Nat. Commun. 9:4450
    [Google Scholar]
  16. 16. 
    Chowdhury S, Happonen L, Khakzad H, Malmstrom L, Malmstrom J. 2020. Structural proteomics, electron cryo-microscopy and structural modeling approaches in bacteria-human protein interactions. Med. Microbiol. Immunol. 209:265–75
    [Google Scholar]
  17. 17. 
    Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS et al. 2013. Structural and molecular interrogation of intact biological systems. Nature 497:332–37
    [Google Scholar]
  18. 18. 
    Cronan MR, Rosenberg AF, Oehlers SH, Saelens JW, Sisk DM et al. 2015. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections. Dis. Model. Mech. 8:1643–50
    [Google Scholar]
  19. 19. 
    Cyrklaff M, Linaroudis A, Boicu M, Chlanda P, Baumeister W et al. 2007. Whole cell cryo-electron tomography reveals distinct disassembly intermediates of vaccinia virus. PLOS ONE 2:e420
    [Google Scholar]
  20. 20. 
    Davis SL, Be NA, Lamichhane G, Nimmagadda S, Pomper MG et al. 2009. Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals. PLOS ONE 4:e6297
    [Google Scholar]
  21. 21. 
    DePas WH, Starwalt-Lee R, Van Sambeek L, Ravindra Kumar S, Gradinaru V, Newman DK 2016. Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA labeling. mBio 7:e00796-16
    [Google Scholar]
  22. 22. 
    Du Z, Lin JR, Rashid R, Maliga Z, Wang S et al. 2019. Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging. Nat. Protoc. 14:2900–30
    [Google Scholar]
  23. 23. 
    Duheron V, Moreau M, Collin B, Sali W, Bernhard C et al. 2014. Dual labeling of lipopolysaccharides for SPECT-CT imaging and fluorescence microscopy. ACS Chem. Biol. 9:656–62
    [Google Scholar]
  24. 24. 
    Dumarey N, Egrise D, Blocklet D, Stallenberg B, Remmelink M et al. 2006. Imaging infection with 18F-FDG–labeled leukocyte PET/CT: initial experience in 21 patients. J. Nucl. Med. 47:625–32
    [Google Scholar]
  25. 25. 
    Fiole D, Deman P, Trescos Y, Mayol JF, Mathieu J et al. 2014. Two-photon intravital imaging of lungs during anthrax infection reveals long-lasting macrophage-dendritic cell contacts. Infect. Immun. 82:864–72
    [Google Scholar]
  26. 26. 
    Formosa-Dague C, Speziale P, Foster TJ, Geoghegan JA, Dufrene YF 2016. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. PNAS 113:410–15
    [Google Scholar]
  27. 27. 
    Fox D, Mathur A, Xue Y, Liu Y, Tan WH et al. 2020. Bacillus cereus non-haemolytic enterotoxin activates the NLRP3 inflammasome. Nat. Commun. 11:760
    [Google Scholar]
  28. 28. 
    Gao M, Lola CM, Wang M, Miller KD, Sledge GW et al. 2010. Synthesis of carbon-11-labeled tricyclic necroptosis inhibitors as new potential PET agents for imaging of tumor necrosis factor alpha (TNF-α). Appl. Radiat. Isot. 68:1950–58
    [Google Scholar]
  29. 29. 
    Garcia-Betancur JC, Yepes A, Schneider J, Lopez D. 2012. Single-cell analysis of Bacillus subtilis biofilms using fluorescence microscopy and flow cytometry. J. Vis. Exp. 2012:6e3796
    [Google Scholar]
  30. 30. 
    Gibson HM, McKnight BN, Malysa A, Dyson G, Wiesend WN et al. 2018. IFNγ PET imaging as a predictive tool for monitoring response to tumor immunotherapy. Cancer Res 78:5706–17
    [Google Scholar]
  31. 31. 
    Glaros TG, Blancett CD, Bell TM, Natesan M, Ulrich RG. 2015. Serum biomarkers of Burkholderia mallei infection elucidated by proteomic imaging of skin and lung abscesses. Clin. Proteom. 12:7
    [Google Scholar]
  32. 32. 
    Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M et al. 2018. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174:968–81.e15
    [Google Scholar]
  33. 33. 
    Gowrishankar G, Hardy J, Wardak M, Namavari M, Reeves RE et al. 2017. Specific imaging of bacterial infection using 6ʺ-18F-fluoromaltotriose: a second-generation PET tracer targeting the maltodextrin transporter in bacteria. J. Nucl. Med. 58:1679–84
    [Google Scholar]
  34. 34. 
    Guo N, van Unen V, Ijsselsteijn ME, Ouboter LF, van der Meulen AE et al. 2020. A 34-marker panel for imaging mass cytometric analysis of human snap-frozen tissue. Front. Immunol. 11:1466
    [Google Scholar]
  35. 35. 
    Hampton CM, Strauss JD, Ke Z, Dillard RS, Hammonds JE et al. 2017. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nat. Protoc. 12:150–67
    [Google Scholar]
  36. 36. 
    Harper J, Skerry C, Davis SL, Tasneen R, Weir M et al. 2012. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J. Infect. Dis. 205:595–602
    [Google Scholar]
  37. 37. 
    Harvie EA, Huttenlocher A. 2015. Neutrophils in host defense: new insights from zebrafish. J. Leukoc. Biol. 98:523–37
    [Google Scholar]
  38. 38. 
    Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M et al. 2020. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367:eaaz5357
    [Google Scholar]
  39. 39. 
    Hosseini R, Lamers GE, Hodzic Z, Meijer AH, Schaaf MJ, Spaink HP. 2014. Correlative light and electron microscopy imaging of autophagy in a zebrafish infection model. Autophagy 10:1844–57
    [Google Scholar]
  40. 40. 
    Hulme HE, Meikle LM, Wessel H, Strittmatter N, Swales J et al. 2017. Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection. Sci. Rep. 7:2786
    [Google Scholar]
  41. 41. 
    Hunter RC, Hitchcock AP, Dynes JJ, Obst M, Beveridge TJ. 2008. Mapping the speciation of iron in Pseudomonas aeruginosa biofilms using scanning transmission X-ray microscopy. Environ. Sci. Technol. 42:8766–72
    [Google Scholar]
  42. 42. 
    Juttukonda LJ, Green ER, Lonergan ZR, Heffern MC, Chang CJ, Skaar EP. 2018. Acinetobacter baumannii OxyR regulates the transcriptional response to hydrogen peroxide. Infect. Immun. 87:1e00413-18
    [Google Scholar]
  43. 43. 
    Khusainov I, Fatkhullin B, Pellegrino S, Bikmullin A, Liu WT et al. 2020. Mechanism of ribosome shutdown by RsfS in Staphylococcus aureus revealed by integrative structural biology approach. Nat. Commun. 11:1656
    [Google Scholar]
  44. 44. 
    Kommnick C, Lepper A, Hensel M. 2019. Correlative light and scanning electron microscopy (CLSEM) for analysis of bacterial infection of polarized epithelial cells. Sci. Rep. 9:17079
    [Google Scholar]
  45. 45. 
    Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JA. 2011. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 192:111–19
    [Google Scholar]
  46. 46. 
    Lankinen P, Makinen TJ, Poyhonen TA, Virsu P, Salomaki S et al. 2008. 68Ga-DOTAVAP-P1 PET imaging capable of demonstrating the phase of inflammation in healing bones and the progress of infection in osteomyelitic bones. Eur. J. Nucl. Med. Mol. Imaging 35:352–64
    [Google Scholar]
  47. 47. 
    Lankinen P, Noponen T, Autio A, Luoto P, Frantzen J et al. 2018. A comparative 68Ga-citrate and 68Ga-chloride PET/CT imaging of Staphylococcus aureus osteomyelitis in the rat tibia. Contrast Media Mol. Imaging 2018 9892604
    [Google Scholar]
  48. 48. 
    Lee JK, Enciso GA, Boassa D, Chander CN, Lou TH et al. 2018. Replication-dependent size reduction precedes differentiation in Chlamydia trachomatis. Nat. Commun. 9:45
    [Google Scholar]
  49. 49. 
    Li AG, Burggraf LW, Xing Y. 2016. Nanomechanical characterization of Bacillus anthracis spores by atomic force microscopy. Appl. Environ. Microbiol. 82:2988–99
    [Google Scholar]
  50. 50. 
    Li B, Dunham SJB, Ellis JF, Lange JD, Smith JR et al. 2018. A versatile strategy for characterization and imaging of drip flow microbial biofilms. Anal. Chem. 90:6725–34
    [Google Scholar]
  51. 51. 
    Li N, van Unen V, Abdelaal T, Guo N, Kasatskaya SA et al. 2019. Memory CD4+ T cells are generated in the human fetal intestine. Nat. Immunol. 20:301–12
    [Google Scholar]
  52. 52. 
    Locke LW, Chordia MD, Zhang Y, Kundu B, Kennedy D et al. 2009. A novel neutrophil-specific PET imaging agent: cFLFLFK-PEG-64Cu. J. Nucl. Med. 50:790–97
    [Google Scholar]
  53. 53. 
    Lu Y, Yang K, Zhou K, Pang B, Wang G et al. 2014. An integrated quad-modality molecular imaging system for small animals. J. Nucl. Med. 55:1375–79
    [Google Scholar]
  54. 54. 
    Lucic V, Rigort A, Baumeister W. 2013. Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202:407–19
    [Google Scholar]
  55. 55. 
    Luque D, Caston JR. 2020. Cryo-electron microscopy for the study of virus assembly. Nat. Chem. Biol. 16:231–39
    [Google Scholar]
  56. 56. 
    Moormeier DE, Bose JL, Horswill AR, Bayles KW. 2014. Temporal and stochastic control of Staphylococcus aureus biofilm development. mBio 5:e01341-14
    [Google Scholar]
  57. 57. 
    Morgan CE, Huang W, Rudin SD, Taylor DJ, Kirby JE et al. 2020. Cryo-electron microscopy structure of the Acinetobacter baumannii 70S ribosome and implications for new antibiotic development. mBio 11:e03117-19
    [Google Scholar]
  58. 58. 
    Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR. 2010. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol. Ecol. 72:1–21
    [Google Scholar]
  59. 59. 
    Nguyen M, Rizvi J, Hecht G. 2015. Expression of enteropathogenic Escherichia coli map is significantly different than that of other type III secreted effectors in vivo. Infect. Immun. 83:130–37
    [Google Scholar]
  60. 60. 
    Ning X, Seo W, Lee S, Takemiya K, Rafi M et al. 2014. PET imaging of bacterial infections with fluorine-18-labeled maltohexaose. Angew. Chem. Int. Ed. Engl. 53:14096–101
    [Google Scholar]
  61. 61. 
    O'Sullivan JDB, Cruickshank SM, Starborg T, Withers PJ, Else KJ. 2020. Characterisation of cuticular inflation development and ultrastructure in Trichuris muris using correlative X-ray computed tomography and electron microscopy. Sci. Rep. 10:5846
    [Google Scholar]
  62. 62. 
    Ordonez AA, Wang H, Magombedze G, Ruiz-Bedoya CA, Srivastava S et al. 2020. Dynamic imaging in patients with tuberculosis reveals heterogeneous drug exposures in pulmonary lesions. Nat. Med. 26:529–34
    [Google Scholar]
  63. 63. 
    Ordonez AA, Weinstein EA, Bambarger LE, Saini V, Chang YS et al. 2017. A systematic approach for developing bacteria-specific imaging tracers. J. Nucl. Med. 58:144–50
    [Google Scholar]
  64. 64. 
    Orphan VJ, House CH. 2009. Geobiological investigations using secondary ion mass spectrometry: microanalysis of extant and paleo-microbial processes. Geobiology 7:360–72
    [Google Scholar]
  65. 65. 
    Park ES, Lee JH, Hong JH, Park YK, Lee JW et al. 2014. Phosphatidylcholine alteration identified using MALDI imaging MS in HBV-infected mouse livers and virus-mediated regeneration defects. PLOS ONE 9:e103955
    [Google Scholar]
  66. 66. 
    Parker MFL, Luu JM, Schulte B, Huynh TL, Stewart MN et al. 2020. Sensing living bacteria in vivo using d-alanine-derived 11C radiotracers. ACS Cent. Sci. 6:155–65
    [Google Scholar]
  67. 67. 
    Parthasarathy R. 2018. Monitoring microbial communities using light sheet fluorescence microscopy. Curr. Opin. Microbiol. 43:31–37
    [Google Scholar]
  68. 68. 
    Patterson NH, Tuck M, Lewis A, Kaushansky A, Norris JL et al. 2018. Next generation histology-directed imaging mass spectrometry driven by autofluorescence microscopy. Anal. Chem. 90:12404–13
    [Google Scholar]
  69. 69. 
    Patzold R, Keuntje M, Anders-von Ahlften A. 2006. A new approach to non-destructive analysis of biofilms by confocal Raman microscopy. Anal. Bioanal. Chem. 386:286–92
    [Google Scholar]
  70. 70. 
    Perez OA, Yeung ST, Vera-Licona P, Romagnoli PA, Samji T et al. 2017. CD169+ macrophages orchestrate innate immune responses by regulating bacterial localization in the spleen. Sci. Immunol. 2:eaah5520
    [Google Scholar]
  71. 71. 
    Perry WJ, Spraggins JM, Sheldon JR, Grunenwald CM, Heinrichs DE et al. 2019. Staphylococcus aureus exhibits heterogeneous siderophore production within the vertebrate host. PNAS 116:21980–82
    [Google Scholar]
  72. 72. 
    Perry WJ, Weiss A, Van de Plas R, Spraggins JM, Caprioli RM, Skaar EP. 2020. Integrated molecular imaging technologies for investigation of metals in biological systems: a brief review. Curr. Opin. Chem. Biol. 55:127–35
    [Google Scholar]
  73. 73. 
    Petrik M, Franssen GM, Haas H, Laverman P, Hortnagl C et al. 2012. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur. J. Nucl. Med. Mol. Imaging 39:1175–83
    [Google Scholar]
  74. 74. 
    Pullambhatla M, Tessier J, Beck G, Jedynak B, Wurthner JU, Pomper MG. 2012. [125I]FIAU imaging in a preclinical model of lung infection: quantification of bacterial load. Am. J. Nucl. Med. Mol. Imaging 2:260–70
    [Google Scholar]
  75. 75. 
    Rossmann MG, Morais MC, Leiman PG, Zhang W. 2005. Combining X-ray crystallography and electron microscopy. Structure 13:355–62
    [Google Scholar]
  76. 76. 
    Rowe HM, Meliopoulos VA, Iverson A, Bomme P, Schultz-Cherry S, Rosch JW. 2019. Direct interactions with influenza promote bacterial adherence during respiratory infections. Nat. Microbiol. 4:1328–36
    [Google Scholar]
  77. 77. 
    Russell MR, Lerner TR, Burden JJ, Nkwe DO, Pelchen-Matthews A et al. 2017. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy. J. Cell Sci. 130:278–91
    [Google Scholar]
  78. 78. 
    Ryzhkova MN, Tarasova LA. 1975. [Pathogenesis and treatment of manganese induced Parkinsonism]. Gig. Tr. Prof. Zabol. 1975:31–34 In Russian )
    [Google Scholar]
  79. 79. 
    Sani M, Houben EN, Geurtsen J, Pierson J, de Punder K et al. 2010. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLOS Pathog 6:e1000794
    [Google Scholar]
  80. 80. 
    Sapermsap N, Li DD, Al-Hemedawi R, Li Y, Yu J et al. 2020. A rapid analysis platform for investigating the cellular locations of bacteria using two-photon fluorescence lifetime imaging microscopy. Methods Appl. Fluoresc. 8:034001
    [Google Scholar]
  81. 81. 
    Saraswathi P, Beuerman RW. 2015. Corneal biofilms: from planktonic to microcolony formation in an experimental keratitis infection with Pseudomonas aeruginosa. Ocul. Surf. 13:331–45
    [Google Scholar]
  82. 82. 
    Sartori A, Gatz R, Beck F, Rigort A, Baumeister W, Plitzko JM. 2007. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160:135–45
    [Google Scholar]
  83. 83. 
    Scott AJ, Post JM, Lerner R, Ellis SR, Lieberman J et al. 2017. Host-based lipid inflammation drives pathogenesis in Francisella infection. PNAS 114:12596–601
    [Google Scholar]
  84. 84. 
    Sellmyer MA, Lee I, Hou C, Weng CC, Li S et al. 2017. Bacterial infection imaging with [18F]fluoropropyl-trimethoprim. PNAS 114:8372–77
    [Google Scholar]
  85. 85. 
    Sharaf R, Mempel TR, Murooka TT. 2016. Visualizing the behavior of HIV-infected T cells in vivo using multiphoton intravital microscopy. Methods Mol. Biol. 1354:189–201
    [Google Scholar]
  86. 86. 
    Sheedlo MJ, Chung JM, Sawhney N, Durie CL, Cover TL et al. 2020. Cryo-EM reveals species-specific components within the Helicobacter pylori Cag type IV secretion system core complex. eLife 9:e59495
    [Google Scholar]
  87. 87. 
    Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB et al. 2011. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLOS Biol 9:e1001041
    [Google Scholar]
  88. 88. 
    Sinha TK, Khatib-Shahidi S, Yankeelov TE, Mapara K, Ehtesham M et al. 2008. Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging. Nat. Methods 5:57–59
    [Google Scholar]
  89. 89. 
    Sood A, Sui Y, McDonough E, Santamaria-Pang A, Al-Kofahi Y et al. 2020. Comparison of multiplexed immunofluorescence imaging to chromogenic immunohistochemistry of skin biomarkers in response to monkeypox virus infection. Viruses 12:787
    [Google Scholar]
  90. 90. 
    Spraggins JM, Rizzo DG, Moore JL, Noto MJ, Skaar EP, Caprioli RM. 2016. Next-generation technologies for spatial proteomics: integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics 16:1678–89
    [Google Scholar]
  91. 91. 
    Su CC, Morgan CE, Kambakam S, Rajavel M, Scott H et al. 2019. Cryo-electron microscopy structure of an Acinetobacter baumannii multidrug efflux pump. mBio 10:e01295-19
    [Google Scholar]
  92. 92. 
    Surewaard BGJ, Thanabalasuriar A, Zeng Z, Tkaczyk C, Cohen TS et al. 2018. α-Toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis. Cell Host Microbe 24:271–84.e3
    [Google Scholar]
  93. 93. 
    Tarafder AK, von Kugelgen A, Mellul AJ, Schulze U, Aarts D, Bharat TAM 2020. Phage liquid crystalline droplets form occlusive sheaths that encapsulate and protect infectious rod-shaped bacteria. PNAS 117:4724–31
    [Google Scholar]
  94. 94. 
    Torraca V, Masud S, Spaink HP, Meijer AH. 2014. Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis. Model. Mech. 7:785–97
    [Google Scholar]
  95. 95. 
    Venien-Bryan C, Li Z, Vuillard L, Boutin JA. 2017. Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery. Acta Crystallogr. F 73:174–83
    [Google Scholar]
  96. 96. 
    Vilche M, Reyes AL, Vasilskis E, Oliver P, Balter H, Engler H. 2016. 68Ga-NOTA-UBI-29–41 as a PET tracer for detection of bacterial infection. J. Nucl. Med. 57:622–27
    [Google Scholar]
  97. 97. 
    Wakeman CA, Moore JL, Noto MJ, Zhang Y, Singleton MD et al. 2016. The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction. Nat. Commun. 7:11951
    [Google Scholar]
  98. 98. 
    Wan W, Kolesnikova L, Clarke M, Koehler A, Noda T et al. 2017. Structure and assembly of the Ebola virus nucleocapsid. Nature 551:394–97
    [Google Scholar]
  99. 99. 
    Wang GJ, Porta C, Chen ZG, Baker TS, Johnson JE. 1992. Identification of a Fab interaction footprint site on an icosahedral virus by cryoelectron microscopy and X-ray crystallography. Nature 355:275–78
    [Google Scholar]
  100. 100. 
    Wiehr S, Warnke P, Rolle AM, Schutz M, Oberhettinger P et al. 2016. New pathogen-specific immunoPET/MR tracer for molecular imaging of a systemic bacterial infection. Oncotarget 7:10990–1001
    [Google Scholar]
  101. 101. 
    Zhang P. 2013. Correlative cryo-electron tomography and optical microscopy of cells. Curr. Opin. Struct. Biol. 23:763–70
    [Google Scholar]
  102. 102. 
    Zhang Z, Ordonez AA, Wang H, Li Y, Gogarty KR et al. 2018. Positron emission tomography imaging with 2-[18F]F-p-aminobenzoic acid detects Staphylococcus aureus infections and monitors drug response. ACS Infect. Dis. 4:1635–44
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041521-121457
Loading
/content/journals/10.1146/annurev-micro-041521-121457
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error