1932

Abstract

Quorum sensing (QS) is one of the most studied cell-cell communication mechanisms in fungi. Research in the last 20 years has explored various fungal QS systems that are involved in a wide range of biological processes, especially eukaryote- or fungus-specific behaviors, mirroring the significant contribution of QS regulation to fungal biology and evolution. Based on recent progress, we summarize in this review fungal QS regulation, with an emphasis on its functional role in behaviors unique to fungi or eukaryotes. We suggest that using fungi as genetically amenable eukaryotic model systems to address why and how QS regulation is integrated into eukaryotic reproductive strategies and molecular or cellular processes could be an important direction for QS research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-060321-045510
2021-10-08
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-060321-045510.html?itemId=/content/journals/10.1146/annurev-micro-060321-045510&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Affeldt KJ, Brodhagen M, Keller NP. 2012. Aspergillus oxylipin signaling and quorum sensing pathways depend on G protein-coupled receptors. Toxins 4:695–717
    [Google Scholar]
  2. 2. 
    Albuquerque P, Casadevall A. 2012. Quorum sensing in fungi—a review. Med. Mycol. 50:337–45
    [Google Scholar]
  3. 3. 
    Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR et al. 2013. Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. mBio 5:e00986-13
    [Google Scholar]
  4. 4. 
    Alem MA, Oteef MD, Flowers TH, Douglas LJ. 2006. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot. Cell 5:1770–79
    [Google Scholar]
  5. 5. 
    Almeida F, Wolf JM, Casadevall A. 2015. Virulence-associated enzymes of Cryptococcus neoformans. Eukaryot. Cell 14:1173–85
    [Google Scholar]
  6. 6. 
    Antunes LCM, Ferreira RBR, Buckner MMC, Finlay BB. 2010. Quorum sensing in bacterial virulence. Microbiology 156:2271–82
    [Google Scholar]
  7. 7. 
    Arends MJ, Morris RG, Wyllie AH. 1990. Apoptosis: the role of the endonuclease. Am. J. Pathol. 136:593–608
    [Google Scholar]
  8. 8. 
    Barriuso J, Hogan DA, Keshavarz T, Martínez MJ. 2018. Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis. FEMS Microbiol. Rev. 42:627–38
    [Google Scholar]
  9. 9. 
    Berrocal A, Navarrete J, Oviedo C, Nickerson KW. 2012. Quorum sensing activity in Ophiostoma ulmi: effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism. J. Appl. Microbiol. 113:126–34
    [Google Scholar]
  10. 10. 
    Berrocal A, Oviedo C, Nickerson KW, Navarrete J. 2014. Quorum sensing activity and control of yeast-mycelium dimorphism in Ophiostoma floccosum. Biotechnol. Lett. 36:1503–13
    [Google Scholar]
  11. 11. 
    Birdsell J, Wills C. 1996. Significant competitive advantage conferred by meiosis and syngamy in the yeast Saccharomyces cerevisiae. PNAS 93:908–12
    [Google Scholar]
  12. 12. 
    Bölker M, Kahmann R. 1993. Sexual pheromones and mating responses in fungi. Plant Cell 5:1461–69
    [Google Scholar]
  13. 13. 
    Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4:165rv13
    [Google Scholar]
  14. 14. 
    Brunke S, Mogavero S, Kasper L, Hube B. 2016. Virulence factors in fungal pathogens of man. Curr. Opin. Microbiol. 32:89–95
    [Google Scholar]
  15. 15. 
    Casadevall A, Rosas AL, Nosanchuk JD. 2000. Melanin and virulence in Cryptococcus neoformans. Curr. Opin. Microbiol. 3:354–58
    [Google Scholar]
  16. 16. 
    Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183:5385–94
    [Google Scholar]
  17. 17. 
    Chen H, Fink GR. 2006. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–61
    [Google Scholar]
  18. 18. 
    Chen H, Fujita M, Feng Q, Clardy J, Fink GR. 2004. Tyrosol is a quorum-sensing molecule in Candida albicans. PNAS 101:5048–52
    [Google Scholar]
  19. 19. 
    Cho T, Nagao J-I, Imayoshi R, Kaminishi H, Aoyama T, Nakayama H. 2010. Quorum sensing and morphological regulation in the pathogenic fungus Candida albicans. J. Oral Biosci. 52:233–39
    [Google Scholar]
  20. 20. 
    Coelho MA, Bakkeren G, Sun S, Hood ME, Giraud T. 2017. Fungal sex: the basidiomycota. Microbiol. Spectr. 5:3
    [Google Scholar]
  21. 21. 
    Colabardini AC, De Castro PA, De Gouvêa PF, Savoldi M, Malavazi I et al. 2010. Involvement of the Aspergillus nidulans protein kinase C with farnesol tolerance is related to the unfolded protein response. Mol. Microbiol. 78:1259–79
    [Google Scholar]
  22. 22. 
    Cottier F, Sherrington S, Cockerill S, Del Olmo Toledo V, Kissane S et al. 2019. Remasking of Candida albicans β-glucan in response to environmental pH is regulated by quorum sensing. mBio 10:5e02347-19
    [Google Scholar]
  23. 23. 
    Cugini C, Calfee MW, Farrow JM 3rd, Morales DK, Pesci EC, Hogan DA. 2007. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol. Microbiol. 65:896–906
    [Google Scholar]
  24. 24. 
    Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA. 2008. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol. Microbiol. 67:47–62
    [Google Scholar]
  25. 25. 
    De Loof A, Schoofs L. 2019. Intraluminal farnesol and farnesal in the mealworm's alimentary canal: an unusual storage site uncovering hidden eukaryote Ca2+-homeostasis-dependent “golgicrine” activities. Front. Endocrinol. 10:885
    [Google Scholar]
  26. 26. 
    de Salas F, Martínez MJ, Barriuso J. 2015. Quorum-sensing mechanisms mediated by farnesol in Ophiostoma piceae: effect on secretion of sterol esterase. Appl. Environ. Microbiol. 81:4351–57
    [Google Scholar]
  27. 27. 
    Derengowski LS, De-Souza-Silva C, Braz SV, Mello-De-Sousa TM, Báo SN et al. 2009. Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis. Ann. Clin. Microbiol. Antimicrob. 8:13
    [Google Scholar]
  28. 28. 
    Dinamarco TM, de Castro Figueiredo Pimentel B, Savoldi M, Malavazi I, Soriani FM et al. 2010. The roles played by Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase (AifA) and NADH-ubiquinone oxidoreductases (NdeA-B and NdiA) in farnesol resistance. Fungal Genet. Biol. 47:1055–69
    [Google Scholar]
  29. 29. 
    Dumitru R, Navarathna DH, Semighini CP, Elowsky CG, Dumitru RV et al. 2007. In vivo and in vitro anaerobic mating in Candida albicans. Eukaryot. Cell 6:465–72
    [Google Scholar]
  30. 30. 
    Dunny GM, Leonard BA. 1997. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol. 51:527–64
    [Google Scholar]
  31. 31. 
    Ene IV, Bennett RJ. 2014. The cryptic sexual strategies of human fungal pathogens. Nat. Rev. Microbiol. 12:239–51
    [Google Scholar]
  32. 32. 
    Fairn GD, MacDonald K, McMaster CR. 2007. A chemogenomic screen in Saccharomyces cerevisiae uncovers a primary role for the mitochondria in farnesol toxicity and its regulation by the Pkc1 pathway. J. Biol. Chem. 282:4868–74
    [Google Scholar]
  33. 33. 
    Findley K, Sun S, Fraser JA, Hsueh YP, Averette AF et al. 2012. Discovery of a modified tetrapolar sexual cycle in Cryptococcus amylolentus and the evolution of MAT in the Cryptococcus species complex. PLOS Genet 8:e1002528
    [Google Scholar]
  34. 34. 
    Fraser JA, Giles SS, Wenink EC, Geunes-Boyer SG, Wright JR et al. 2005. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437:1360–64
    [Google Scholar]
  35. 35. 
    Fu C, Sun S, Billmyre RB, Roach KC, Heitman J. 2015. Unisexual versus bisexual mating in Cryptococcus neoformans: consequences and biological impacts. Fungal Genet. Biol. 78:65–75
    [Google Scholar]
  36. 36. 
    Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176:269–75
    [Google Scholar]
  37. 37. 
    Geoghegan I, Steinberg G, Gurr S. 2017. The role of the fungal cell wall in the infection of plants. Trends Microbiol 25:957–67
    [Google Scholar]
  38. 38. 
    Gerstein AC, Fu MS, Mukaremera L, Li Z, Ormerod KL et al. 2015. Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation. mBio 6:e01340-15
    [Google Scholar]
  39. 39. 
    Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR. 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–90
    [Google Scholar]
  40. 40. 
    Goddard MR, Godfray HC, Burt A. 2005. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636–40
    [Google Scholar]
  41. 41. 
    Gómez-Gil E, Franco A, Madrid M, Vázquez-Marín B, Gacto M et al. 2019. Quorum sensing and stress-activated MAPK signaling repress yeast to hypha transition in the fission yeast Schizosaccharomyces japonicus. PLOS Genet 15:e1008192
    [Google Scholar]
  42. 42. 
    Hall RA, Turner KJ, Chaloupka J, Cottier F, De Sordi L et al. 2011. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. Eukaryot. Cell 10:1034–42
    [Google Scholar]
  43. 43. 
    Hamann A, Brust D, Osiewacz HD. 2008. Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 16:276–83
    [Google Scholar]
  44. 44. 
    Hargarten JC, Moore TC, Petro TM, Nickerson KW, Atkin AL. 2015. Candida albicans quorum sensing molecules stimulate mouse macrophage migration. Infect. Immun. 83:3857–64
    [Google Scholar]
  45. 45. 
    Hawver LA, Jung SA, Ng WL. 2016. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol. Rev. 40:738–52
    [Google Scholar]
  46. 46. 
    Heitman J. 2006. Sexual reproduction and the evolution of microbial pathogens. Curr. Biol. 16:R711–25
    [Google Scholar]
  47. 47. 
    Hogan DA. 2006. Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot. Cell 5:613–19
    [Google Scholar]
  48. 48. 
    Hogan DA, Muhlschlegel FA. 2011. Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals. Curr. Opin. Microbiol. 14:682–86
    [Google Scholar]
  49. 49. 
    Homer CM, Summers DK, Goranov AI, Clarke SC, Wiesner DL et al. 2016. Intracellular action of a secreted peptide required for fungal virulence. Cell Host Microbe 19:849–64
    [Google Scholar]
  50. 50. 
    Hommel B, Mukaremera L, Cordero RJB, Coelho C, Desjardins CA et al. 2018. Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLOS Pathog 14:e1006982
    [Google Scholar]
  51. 51. 
    Hommel B, Sturny-Leclère A, Volant S, Veluppillai N, Duchateau M et al. 2019. Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. PLOS Pathog 15:e1008070 Erratum 2019. PLOS Pathog 15:e1008070
    [Google Scholar]
  52. 52. 
    Hornby JM, Jacobitz-Kizzier SM, McNeel DJ, Jensen EC, Treves DS, Nickerson KW. 2004. Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Appl. Environ. Microbiol. 70:1356–59
    [Google Scholar]
  53. 53. 
    Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B et al. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67:2982–92
    [Google Scholar]
  54. 54. 
    Hornby JM, Kebaara BW, Nickerson KW. 2003. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob. Agents Chemother. 47:2366–69
    [Google Scholar]
  55. 55. 
    Horowitz Brown S, Zarnowski R, Sharpee WC, Keller NP. 2008. Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl. Environ. Microbiol. 74:5674–85
    [Google Scholar]
  56. 56. 
    Huang G, Huang Q, Wei Y, Wang Y, Du H. 2019. Multiple roles and diverse regulation of the Ras/cAMP/protein kinase A pathway in Candida albicans. Mol. Microbiol. 111:6–16
    [Google Scholar]
  57. 57. 
    Jiménez-Martínez M, Franco-Vázquez S, Angulo-Hernández O, Reta-Villalobos A. 1968. Blood cysts of the pulmonary valve producing pulmonic stenosis: a successful surgical treatment. J. Thorac. Cardiovasc. Surg. 56:165–69
    [Google Scholar]
  58. 58. 
    Jones SK Jr., Bennett RJ. 2011. Fungal mating pheromones: choreographing the dating game. Fungal Genet. Biol. 48:668–76
    [Google Scholar]
  59. 59. 
    Joo JH, Jetten AM. 2008. NF-κB-dependent transcriptional activation in lung carcinoma cells by farnesol involves p65/RelA(Ser276) phosphorylation via the MEK-MSK1 signaling pathway. J. Biol. Chem. 283:16391–99
    [Google Scholar]
  60. 60. 
    Joo JH, Jetten AM. 2010. Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett 287:123–35
    [Google Scholar]
  61. 61. 
    Joo JH, Liao G, Collins JB, Grissom SF, Jetten AM. 2007. Farnesol-induced apoptosis in human lung carcinoma cells is coupled to the endoplasmic reticulum stress response. Cancer Res 67:7929–36
    [Google Scholar]
  62. 62. 
    Kadioglu A, Weiser JN, Paton JC, Andrew PW. 2008. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat. Rev. Microbiol. 6:288–301
    [Google Scholar]
  63. 63. 
    Kebaara BW, Langford ML, Navarathna DH, Dumitru R, Nickerson KW, Atkin AL. 2008. Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. Eukaryot. Cell 7:980–87
    [Google Scholar]
  64. 64. 
    Kempner ES, Hanson FE. 1968. Aspects of light production by Photobacterium fischeri. J. Bacteriol. 95:975–79
    [Google Scholar]
  65. 65. 
    Klein BS, Tebbets B. 2007. Dimorphism and virulence in fungi. Curr. Opin. Microbiol. 10:314–19
    [Google Scholar]
  66. 66. 
    Kruppa M, Krom BP, Chauhan N, Bambach AV, Cihlar RL, Calderone RA. 2004. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot. Cell 3:1062–65
    [Google Scholar]
  67. 67. 
    Kügler S, Schurtz Sebghati T, Groppe Eissenberg L, Goldman WE 2000. Phenotypic variation and intracellular parasitism by Histoplasma capsulatum. PNAS 97:8794–98
    [Google Scholar]
  68. 68. 
    Kwon-Chung KJ. 1976. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68:821–33
    [Google Scholar]
  69. 69. 
    Kwon-Chung KJ, Polacheck I, Popkin TJ. 1982. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J. Bacteriol. 150:1414–21
    [Google Scholar]
  70. 70. 
    Latgé JP, Beauvais A. 2014. Functional duality of the cell wall. Curr. Opin. Microbiol. 20:111–17
    [Google Scholar]
  71. 71. 
    Latgé JP, Beauvais A, Chamilos G. 2017. The cell wall of the human fungal pathogen Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu. Rev. Microbiol. 71:99–116
    [Google Scholar]
  72. 72. 
    Lee H, Chang YC, Nardone G, Kwon-Chung KJ. 2007. TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Mol. Microbiol. 64:591–601
    [Google Scholar]
  73. 73. 
    Lenhart BA, Meeks B, Murphy HA. 2019. Variation in filamentous growth and response to quorum-sensing compounds in environmental isolates of Saccharomyces cerevisiae. G3 9:1533–44
    [Google Scholar]
  74. 74. 
    Leonhardt I, Spielberg S, Weber M, Albrecht-Eckardt D, Bläss M et al. 2015. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. mBio 6:e00143
    [Google Scholar]
  75. 75. 
    Li Z, Nielsen K. 2017. Morphology changes in human fungal pathogens upon interaction with the host. J. Fungi. 3:466
    [Google Scholar]
  76. 76. 
    Lidstrom ME, Konopka MC. 2010. The role of physiological heterogeneity in microbial population behavior. Nat. Chem. Biol. 6:705–12
    [Google Scholar]
  77. 77. 
    Lin X, Hull CM, Heitman J. 2005. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434:1017–21
    [Google Scholar]
  78. 78. 
    Lingappa BT, Prasad M, Lingappa Y, Hunt DF, Biemann K. 1969. Phenethyl alcohol and tryptophol: autoantibiotics produced by the fungus Candida albicans. Science 163:192–94
    [Google Scholar]
  79. 79. 
    Lorenz MC, Cutler NS, Heitman J. 2000. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol. Biol. Cell 11:1183–99
    [Google Scholar]
  80. 80. 
    Lu Y, Su C, Unoje O, Liu H. 2014. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. PNAS 111:1975–80
    [Google Scholar]
  81. 81. 
    Machida K, Tanaka T, Fujita K, Taniguchi M. 1998. Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial electron transport chain in the yeast Saccharomyces cerevisiae. J. Bacteriol. 180:4460–65
    [Google Scholar]
  82. 82. 
    Mehmood A, Liu G, Wang X, Meng G, Wang C, Liu Y. 2019. Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: a review. Molecules 24:101950
    [Google Scholar]
  83. 83. 
    Metin B, Findley K, Heitman J. 2010. The mating type locus (MAT) and sexual reproduction of Cryptococcus heveanensis: insights into the evolution of sex and sex-determining chromosomal regions in fungi. PLOS Genet 6:e1000961
    [Google Scholar]
  84. 84. 
    Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–99
    [Google Scholar]
  85. 85. 
    Miller MG, Johnson AD. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293–302
    [Google Scholar]
  86. 86. 
    Moura-Alves P, Puyskens A, Stinn A, Klemm M, Guhlich-Bornhof U et al. 2019. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection. Science 366:6472
    [Google Scholar]
  87. 87. 
    Mukherjee S, Bassler BL. 2019. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17:371–82
    [Google Scholar]
  88. 88. 
    Muramatsu M, Obata S, Shimizu S. 2002. Method for production of geranylgeraniol and analogous compounds thereof by microorganisms. Eur. Patent Appl. EP 1 219 714 A2
    [Google Scholar]
  89. 89. 
    Nagata S. 2000. Apoptotic DNA fragmentation. Exp. Cell Res. 256:12–18
    [Google Scholar]
  90. 90. 
    Nassimi Z, Taheri P, Tarighi S. 2019. Farnesol altered morphogenesis and induced oxidative burst-related responses in Rhizoctonia solani AG1-IA. Mycologia 111:359–70
    [Google Scholar]
  91. 91. 
    Navarathna DH, Hornby JM, Hoerrmann N, Parkhurst AM, Duhamel GE, Nickerson KW. 2005. Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. J. Antimicrob. Chemother. 56:1156–59
    [Google Scholar]
  92. 92. 
    Navarathna DH, Hornby JM, Krishnan N, Parkhurst A, Duhamel GE, Nickerson KW. 2007. Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect. Immun. 75:1609–18
    [Google Scholar]
  93. 93. 
    Navarathna DH, Nickerson KW, Duhamel GE, Jerrels TR, Petro TM. 2007. Exogenous farnesol interferes with the normal progression of cytokine expression during candidiasis in a mouse model. Infect. Immun. 75:4006–11
    [Google Scholar]
  94. 94. 
    Nealson KH, Platt T, Hastings JW. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104:313–22
    [Google Scholar]
  95. 95. 
    Ni M, Feretzaki M, Li W, Floyd-Averette A, Mieczkowski P et al. 2013. Unisexual and heterosexual meiotic reproduction generate aneuploidy and phenotypic diversity de novo in the yeast Cryptococcus neoformans. PLOS Biol 11:e1001653
    [Google Scholar]
  96. 96. 
    Ni M, Feretzaki M, Sun S, Wang X, Heitman J 2011. Sex in fungi. Annu. Rev. Genet. 45:405–30
    [Google Scholar]
  97. 97. 
    Nickerson KW, Atkin AL, Hornby JM. 2006. Quorum sensing in dimorphic fungi: farnesol and beyond. Appl. Environ. Microbiol. 72:3805–13
    [Google Scholar]
  98. 98. 
    Nobile CJ, Johnson AD. 2015. Candida albicans biofilms and human disease. Annu. Rev. Microbiol. 69:71–92
    [Google Scholar]
  99. 99. 
    Okagaki LH, Nielsen K. 2012. Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections. Eukaryot. Cell 11:820–26
    [Google Scholar]
  100. 100. 
    O'Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. 2013. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. PNAS 110:17981–86
    [Google Scholar]
  101. 101. 
    Padder SA, Prasad R, Shah AH. 2018. Quorum sensing: a less known mode of communication among fungi. Microbiol. Res. 210:51–58
    [Google Scholar]
  102. 102. 
    Pino SC, O'Sullivan-Murphy B, Lidstone EA, Thornley TB, Jurczyk A et al. 2008. Protein kinase C signaling during T cell activation induces the endoplasmic reticulum stress response. Cell Stress Chaperones 13:421–34
    [Google Scholar]
  103. 103. 
    Polke M, Leonhardt I, Kurzai O, Jacobsen ID. 2018. Farnesol signalling in Candida albicans—more than just communication. Crit. Rev. Microbiol. 44:230–43
    [Google Scholar]
  104. 104. 
    Polke M, Sprenger M, Scherlach K, Albán-Proaño MC, Martin R et al. 2017. A functional link between hyphal maintenance and quorum sensing in Candida albicans. Mol. Microbiol. 103:595–617
    [Google Scholar]
  105. 105. 
    Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF. 2005. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J. Cell Biol. 168:257–69
    [Google Scholar]
  106. 106. 
    Raina S, Odell M, Keshavarz T. 2010. Quorum sensing as a method for improving sclerotiorin production in Penicillium sclerotiorum. J. Biotechnol. 148:91–98
    [Google Scholar]
  107. 107. 
    Ramage G, Saville SP, Wickes BL, López-Ribot JL. 2002. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl. Environ. Microbiol. 68:5459–63
    [Google Scholar]
  108. 108. 
    Ramage G, Vandewalle K, Wickes BL, López-Ribot JL. 2001. Characteristics of biofilm formation by Candida albicans. Rev. Iberoam. Micol. 18:163–70
    [Google Scholar]
  109. 109. 
    Rappleye CA, Eissenberg LG, Goldman WE. 2007. Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor. PNAS 104:1366–70
    [Google Scholar]
  110. 110. 
    Rodriguez-Carres M, Findley K, Sun S, Dietrich FS, Heitman J. 2010. Morphological and genomic characterization of Filobasidiella depauperata: a homothallic sibling species of the pathogenic Cryptococcus species complex. PLOS ONE 5:e9620
    [Google Scholar]
  111. 111. 
    Román E, Alonso-Monge R, Gong Q, Li D, Calderone R, Pla J. 2009. The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen Candida albicans. FEMS Yeast Res 9:942–55
    [Google Scholar]
  112. 112. 
    Sato T, Watanabe T, Mikami T, Matsumoto T. 2004. Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol. Pharm. Bull. 27:751–52
    [Google Scholar]
  113. 113. 
    Savoldi M, Malavazi I, Soriani FM, Capellaro JL, Kitamoto K et al. 2008. Farnesol induces the transcriptional accumulation of the Aspergillus nidulans Apoptosis-Inducing Factor (AIF)-like mitochondrial oxidoreductase. Mol. Microbiol. 70:44–59
    [Google Scholar]
  114. 114. 
    Scharf DH, Heinekamp T, Brakhage AA. 2014. Human and plant fungal pathogens: the role of secondary metabolites. PLOS Pathog 10:e1003859
    [Google Scholar]
  115. 115. 
    Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD. 2006. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol. Microbiol. 59:753–64
    [Google Scholar]
  116. 116. 
    Semighini CP, Murray N, Harris SD 2008. Inhibition of Fusarium graminearum growth and development by farnesol. FEMS Microbiol. Lett. 279:259–64
    [Google Scholar]
  117. 117. 
    Severin FF, Hyman AA. 2002. Pheromone induces programmed cell death in S. cerevisiae. Curr. Biol. 12:R233–35
    [Google Scholar]
  118. 118. 
    Sharma M, Prasad R. 2011. The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. Antimicrob. Agents Chemother. 55:4834–43
    [Google Scholar]
  119. 119. 
    Sharma R, Jangid K. 2016. Role of quorum sensing in fungal morphogenesis and pathogenesis. Fungal Metabolites J-M Mérillon, KG Ramawat 1–28 Cham, Switz: Springer Int.
    [Google Scholar]
  120. 120. 
    Sharon A, Finkelstein A, Shlezinger N, Hatam I. 2009. Fungal apoptosis: function, genes and gene function. FEMS Microbiol. Rev. 33:833–54
    [Google Scholar]
  121. 121. 
    Shchepin R, Hornby JM, Burger E, Niessen T, Dussault P, Nickerson KW. 2003. Quorum sensing in Candida albicans: probing farnesol's mode of action with 40 natural and synthetic farnesol analogs. Chem. Biol. 10:743–50
    [Google Scholar]
  122. 122. 
    Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J et al. 2009. Farnesol-induced apoptosis in Candida albicans. Antimicrob. Agents Chemother. 53:2392–401
    [Google Scholar]
  123. 123. 
    Simon HU, Haj-Yehia A, Levi-Schaffer F. 2000. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–18
    [Google Scholar]
  124. 124. 
    Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J. 2004. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol. Biol. Cell 15:4179–90
    [Google Scholar]
  125. 125. 
    Soll DR, Lockhart SR, Zhao R. 2003. Relationship between switching and mating in Candida albicans. Eukaryot. Cell 2:390–97
    [Google Scholar]
  126. 126. 
    Song D, Meng J, Cheng J, Fan Z, Chen P et al. 2019. Pseudomonas aeruginosa quorum-sensing metabolite induces host immune cell death through cell surface lipid domain dissolution. Nat. Microbiol. 4:97–111
    [Google Scholar]
  127. 127. 
    Sorrentino F, Roy I, Keshavarz T 2010. Impact of linoleic acid supplementation on lovastatin production in Aspergillus terreus cultures. Appl. Microbiol. Biotechnol. 88:65–73
    [Google Scholar]
  128. 128. 
    Sprague GF Jr., Winans SC. 2006. Eukaryotes learn how to count: quorum sensing by yeast. Genes Dev 20:1045–49
    [Google Scholar]
  129. 129. 
    Statzell-Tallman A, Belloch C, Fell JW. 2008. Kwoniella mangroviensis gen. nov., sp.nov. (Tremellales, Basidiomycota), a teleomorphic yeast from mangrove habitats in the Florida Everglades and Bahamas. FEMS Yeast Res 8:103–13
    [Google Scholar]
  130. 130. 
    Stebbins CE, Galán JE. 2003. Priming virulence factors for delivery into the host. Nat. Rev. Mol. Cell Biol. 4:738–43
    [Google Scholar]
  131. 131. 
    Summers DK, Perry DS, Rao B, Madhani HD. 2020. Coordinate genomic association of transcription factors controlled by an imported quorum sensing peptide in Cryptococcus neoformans. PLOS Genet 16:e1008744
    [Google Scholar]
  132. 132. 
    Sun S, Billmyre RB, Mieczkowski PA, Heitman J. 2014. Unisexual reproduction drives meiotic recombination and phenotypic and karyotypic plasticity in Cryptococcus neoformans. PLOS Genet 10:e1004849
    [Google Scholar]
  133. 133. 
    Tian X, He GJ, Hu P, Chen L, Tao C et al. 2018. Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide. Nat. Microbiol. 3:698–707
    [Google Scholar]
  134. 134. 
    Trevijano-Contador N, de Oliveira HC, García-Rodas R, Rossi SA, Llorente I et al. 2018. Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLOS Pathog 14:e1007007
    [Google Scholar]
  135. 135. 
    Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP. 2005. Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:1809–21
    [Google Scholar]
  136. 136. 
    Turrà D, El Ghalid M, Rossi F, Di Pietro A. 2015. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527:521–24
    [Google Scholar]
  137. 137. 
    Uroz S, Heinonsalo J. 2008. Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol. Ecol. 65:271–78
    [Google Scholar]
  138. 138. 
    Velagapudi R, Hsueh YP, Geunes-Boyer S, Wright JR, Heitman J. 2009. Spores as infectious propagules of Cryptococcus neoformans. Infect. Immun. 77:4345–55
    [Google Scholar]
  139. 139. 
    Vitale S, Di Pietro A, Turrà D. 2019. Autocrine pheromone signalling regulates community behaviour in the fungal pathogen Fusarium oxysporum. Nat. Microbiol. 4:1443–49
    [Google Scholar]
  140. 140. 
    Wang L, Lin X. 2011. Mechanisms of unisexual mating in Cryptococcus neoformans. Fungal Genet. Biol. 48:651–60
    [Google Scholar]
  141. 141. 
    Wang L, Lin X. 2012. Morphogenesis in fungal pathogenicity: shape, size, and surface. PLOS Pathog 8:e1003027
    [Google Scholar]
  142. 142. 
    Wang X, Wang Y, Zhou Y, Wei X. 2014. Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus. Mycologia 106:881–88
    [Google Scholar]
  143. 143. 
    Waters CM, Bassler BL. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319–46
    [Google Scholar]
  144. 144. 
    Wedge M, Naruzawa ES, Nigg M, Bernier L. 2016. Diversity in yeast-mycelium dimorphism response of the Dutch elm disease pathogens: the inoculum size effect. Can. J. Microbiol. 62:525–29
    [Google Scholar]
  145. 145. 
    Whiteway M, Bachewich C. 2007. Morphogenesis in Candida albicans. Annu. Rev. Microbiol. 61:529–53
    [Google Scholar]
  146. 146. 
    Williams HE, Steele JC, Clements MO, Keshavarz T. 2012. γ-Heptalactone is an endogenously produced quorum-sensing molecule regulating growth and secondary metabolite production by Aspergillus nidulans. Appl. Microbiol. Biotechnol. 96:773–81
    [Google Scholar]
  147. 147. 
    Wongsuk T, Pumeesat P, Luplertlop N. 2016. Fungal quorum sensing molecules: role in fungal morphogenesis and pathogenicity. J. Basic Microbiol. 56:440–47
    [Google Scholar]
  148. 148. 
    Wuster A, Babu MM. 2010. Transcriptional control of the quorum sensing response in yeast. Mol. Biosyst. 6:134–41
    [Google Scholar]
  149. 149. 
    Wyllie AH. 1980. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–56
    [Google Scholar]
  150. 150. 
    Zhao Y, Lin J, Fan Y, Lin X 2019. Life cycle of Cryptococcus neoformans. Annu. Rev. Microbiol. 73:17–42
    [Google Scholar]
  151. 151. 
    Zhao Y, Wang Y, Upadhyay S, Xue C, Lin X. 2020. Activation of meiotic genes mediates ploidy reduction during cryptococcal infection. Curr. Biol. 30:1387–96.e5
    [Google Scholar]
/content/journals/10.1146/annurev-micro-060321-045510
Loading
/content/journals/10.1146/annurev-micro-060321-045510
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error