Cyclic diguanylate (c-di-GMP) is a near universal signaling molecule produced by diguanylate cyclases that can direct a variety of bacterial behaviors. A major area of research over the last several years has been aimed at understanding how a cell with dozens of diguanylate cyclases can deploy a given subset of them to produce a desired phenotypic outcome without undesired cross talk between c-di-GMP-dependent systems. Several models have been put forward to address this question, including specificity of cyclase activation, tuned binding constants of effector proteins, and physical interaction between cyclases and effectors. Additionally, recent evidence has suggested that there may be a link between the catalytic state of a cyclase and its physical contact with an effector. This review highlights several key studies, examines the proposed global and local models of c-di-GMP signaling specificity in bacteria, and attempts to identify the most fruitful steps that can be taken to better understand how dynamic networks of sibling cyclases and effector proteins result in sensible outputs that govern cellular behavior.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agostoni M, Koestler BJ, Waters CM, Williams BL, Montgomery BL. 1.  2013. Occurrence of cyclic di-GMP-modulating output domains in cyanobacteria: an illuminating perspective. mBio 4:4e00451–13 [Google Scholar]
  2. Alm RA, Bodero AJ, Free PD, Mattick JS. 2.  1996. Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J. Bacteriol. 178:46–53 [Google Scholar]
  3. Amikam D, Galperin MY. 3.  2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6 [Google Scholar]
  4. Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA. 4.  et al. 2011. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol. Microbiol. 79:533–51 [Google Scholar]
  5. Boyd CD, Chatterjee D, Sondermann H, O'Toole GA. 5.  2012. LapG, required for modulating biofilm formation by Pseudomonas fluorescens Pf0–1, is a calcium-dependent protease. J. Bacteriol. 194:4406–14 [Google Scholar]
  6. Boyd CD, O'Toole GA. 6.  2012. Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems. Annu. Rev. Cell Dev. Biol. 28:439–62 [Google Scholar]
  7. Boyd CD, Smith TJ, El-Kirat-Chatel S, Newell PD, Dufrene YF, O'Toole GA. 7.  2014. Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization. J. Bacteriol. 196:2775–88 [Google Scholar]
  8. Chang AL, Tuckerman JR, Gonzalez G, Mayer R, Weinhouse H. 8.  et al. 2001. Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. Biochemistry 40:3420–26 [Google Scholar]
  9. Chatterjee D, Boyd CD, O'Toole GA, Sondermann H. 9.  2012. Structural characterization of a conserved, calcium-dependent periplasmic protease from Legionella pneumophila. J. Bacteriol. 194:4415–25 [Google Scholar]
  10. Chatterjee D, Cooley RB, Boyd CD, Mehl RA, O'Toole GA, Sondermann H. 10.  2014. Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP. eLife 3:e03650 [Google Scholar]
  11. Chen LH, Koseoglu VK, Guvener ZT, Myers-Morales T, Reed JM. 11.  et al. 2014. Cyclic di-GMP-dependent signaling pathways in the pathogenic Firmicute Listeria monocytogenes. PLOS Pathog. 10:e1004301 [Google Scholar]
  12. Chen ZH, Schaap P. 12.  2012. The prokaryote messenger c-di-GMP triggers stalk cell differentiation in Dictyostelium. Nature 488:680–83 [Google Scholar]
  13. Cheng RR, Morcos F, Levine H, Onuchic JN. 13.  2014. Toward rationally redesigning bacterial two-component signaling systems using coevolutionary information. PNAS 111:E563–71 [Google Scholar]
  14. Christen B, Christen M, Paul R, Schmid F, Folcher M. 14.  et al. 2006. Allosteric control of cyclic di-GMP signaling. J. Biol. Chem. 281:32015–24 [Google Scholar]
  15. Christen M, Christen B, Allan MG, Folcher M, Jeno P. 15.  et al. 2007. DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. PNAS 104:4112–17 [Google Scholar]
  16. Christen M, Christen B, Folcher M, Schauerte A, Jenal U. 16.  2005. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem. 280:30829–37 [Google Scholar]
  17. Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI. 17.  2010. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328:1295–97 [Google Scholar]
  18. Cruz DP, Huertas MG, Lozano M, Zarate L, Zambrano MM. 18.  2012. Comparative analysis of diguanylate cyclase and phosphodiesterase genes in Klebsiella pneumoniae. BMC Microbiol 12:139 [Google Scholar]
  19. Dahlstrom KM, Giglio KM, Collins AJ, Sondermann H, O'Toole GA. 19.  2015. Contribution of physical interactions to signaling specificity between a diguanylate cyclase and its effector. mBio 6:6e01978–15 [Google Scholar]
  20. Dahlstrom KM, Giglio KM, Sondermann H, O'Toole GA. 20.  2016. The inhibitory site of a diguanylate cyclase is a necessary element for interaction and signaling with an effector protein. J. Bacteriol. 198:1595–603 [Google Scholar]
  21. Duvel J, Bertinetti D, Moller S, Schwede F, Morr M. 21.  et al. 2012. A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. J. Microbiol. Methods 88:229–36 [Google Scholar]
  22. Fazli M, O'Connell A, Nilsson M, Niehaus K, Dow JM. 22.  et al. 2011. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol. Microbiol. 82:327–41 [Google Scholar]
  23. Galperin MY, Nikolskaya AN, Koonin EV. 23.  2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol. Lett. 203:11–21 [Google Scholar]
  24. Guvener ZT, Harwood CS. 24.  2007. Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. Mol. Microbiol. 66:1459–73 [Google Scholar]
  25. Ha DG, Richman ME, O'Toole GA. 25.  2014. Deletion mutant library for investigation of functional outputs of cyclic diguanylate metabolism in Pseudomonas aeruginosa PA14. Appl. Environ. Microbiol. 80:3384–93 [Google Scholar]
  26. Habazettl J, Allan MG, Jenal U, Grzesiek S. 26.  2011. Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies charge clustering as molecular readout. J. Biol. Chem. 286:14304–14 [Google Scholar]
  27. He M, Ouyang ZM, Troxell B, Xu HJ, Moh A. 27.  et al. 2011. Cyclic di-GMP is essential for the survival of the Lyme disease spirochete in ticks. PLOS Pathog 7:e1002133 [Google Scholar]
  28. Hengge R. 28.  2009. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7:263–73 [Google Scholar]
  29. Hickman JW, Harwood CS. 29.  2008. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69:376–89 [Google Scholar]
  30. Hinsa SM, Espinosa-Urgel M, Ramos JL, O'Toole GA. 30.  2003. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol. Microbiol. 49:905–18 [Google Scholar]
  31. Hunter JL, Severin GB, Koestler BJ, Waters CM. 31.  2014. The Vibrio cholerae diguanylate cyclase VCA0965 has an AGDEF active site and synthesizes cyclic di-GMP. BMC Microbiol 14:22 [Google Scholar]
  32. Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV. 32.  et al. 2010. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327:866–68 [Google Scholar]
  33. Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O'Toole GA. 33.  2007. BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol. 189:8165–78 [Google Scholar]
  34. Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J. 34.  et al. 2006. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. PNAS 103:2839–44 [Google Scholar]
  35. Kumagai Y, Matsuo J, Hayakawa Y, Rikihisa Y. 35.  2010. Cyclic di-GMP signaling regulates invasion by Ehrlichia chaffeensis of human monocytes. J. Bacteriol. 192:4122–33 [Google Scholar]
  36. Lee ER, Baker JL, Weinberg Z, Sudarsan N, Breaker RR. 36.  2010. An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329:845–48 [Google Scholar]
  37. Li Z, Chen JH, Hao Y, Nair SK. 37.  2012. Structures of the PelD cyclic diguanylate effector involved in pellicle formation in Pseudomonas aeruginosa PAO1. J. Biol. Chem. 287:30191–204 [Google Scholar]
  38. Lindenberg S, Klauck G, Pesavento C, Klauck E, Hengge R. 38.  2013. The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control. EMBO J 32:2001–14 [Google Scholar]
  39. Martinez-Gil M, Ramos-Gonzalez MI, Espinosa-Urgel M. 39.  2014. Roles of cyclic di-GMP and the Gac system in transcriptional control of the genes coding for the Pseudomonas putida adhesins LapA and LapF. J. Bacteriol. 196:1484–95 [Google Scholar]
  40. Martinez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, Gonzalez de Heredia E. 40.  et al. 2014. Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. PLOS ONE 9:e87608 [Google Scholar]
  41. Matsuyama BY, Krasteva PV, Baraquet C, Harwood CS, Sondermann H, Navarro MV. 41.  2016. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. PNAS 113:E209–18 [Google Scholar]
  42. Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S. 42.  2007. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol. 65:876–95 [Google Scholar]
  43. Merritt JH, Ha DG, Cowles KN, Lu W, Morales DK. 43.  et al. 2010. Specific control of Pseudomonas aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. mBio 1:4e00183–10 [Google Scholar]
  44. Monds RD, Newell PD, Gross RH, O'Toole GA. 44.  2007. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0–1 biofilm formation by controlling secretion of the adhesin LapA. Mol. Microbiol. 63:656–79 [Google Scholar]
  45. Navarro MV, Newell PD, Krasteva PV, Chatterjee D, Madden DR. 45.  et al. 2011. Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLOS Biol 9:e1000588 [Google Scholar]
  46. Newell PD, Monds RD, O'Toole GA. 46.  2009. LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0–1. PNAS 106:3461–66 [Google Scholar]
  47. Newell PD, Yoshioka S, Hvorecny KL, Monds RD, O'Toole GA. 47.  2011. Systematic analysis of diguanylate cyclases that promote biofilm formation by Pseudomonas fluorescens Pf0–1. J. Bacteriol. 193:4685–98 [Google Scholar]
  48. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. 48.  2010. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol. Cell 38:128–39 [Google Scholar]
  49. Pratt JT, Tamayo R, Tischler AD, Camilli A. 49.  2007. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J. Biol. Chem. 282:12860–70 [Google Scholar]
  50. Pultz IS, Christen M, Kulasekara HD, Kennard A, Kulasekara B, Miller SI. 50.  2012. The response threshold of Salmonella PilZ domain proteins is determined by their binding affinities for c-di-GMP. Mol. Microbiol. 86:1424–40 [Google Scholar]
  51. Ramelot TA, Yee A, Cort JR, Semesi A, Arrowsmith CH, Kennedy MA. 51.  2007. NMR structure and binding studies confirm that PA4608 from Pseudomonas aeruginosa is a PilZ domain and a c-di-GMP binding protein. Proteins 66:266–71 [Google Scholar]
  52. Romling U, Galperin MY, Gomelsky M. 52.  2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77:1–52 [Google Scholar]
  53. Ross P, Mayer R, Weinhouse H, Amikam D, Huggirat Y. 53.  et al. 1990. The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum: chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. J. Biol. Chem. 265:18933–43 [Google Scholar]
  54. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P. 54.  et al. 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–81 [Google Scholar]
  55. Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S. 55.  et al. 2006. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. PNAS 103:6712–17 [Google Scholar]
  56. Ryjenkov DA, Simm R, Romling U, Gomelsky M. 56.  2006. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem. 281:30310–14 [Google Scholar]
  57. Schirmer T, Jenal U. 57.  2009. Structural and mechanistic determinants of c-di-GMP signalling. Nat. Rev. Microbiol. 7:724–35 [Google Scholar]
  58. Shin JS, Ryu KS, Ko J, Lee A, Choi BS. 58.  2011. Structural characterization reveals that a PilZ domain protein undergoes substantial conformational change upon binding to cyclic dimeric guanosine monophosphate. Protein Sci 20:270–77 [Google Scholar]
  59. Skerker JM, Perchuk BS, Siryaporn A, Lubin EA, Ashenberg O. 59.  et al. 2008. Rewiring the specificity of two-component signal transduction systems. Cell 133:1043–54 [Google Scholar]
  60. Smith KD, Shanahan CA, Moore EL, Simon AC, Strobel SA. 60.  2011. Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches. PNAS 108:7757–62 [Google Scholar]
  61. Srivastava D, Hsieh ML, Khataokar A, Neiditch MB, Waters CM. 61.  2013. Cyclic di-GMP inhibits Vibrio cholerae motility by repressing induction of transcription and inducing extracellular polysaccharide production. Mol. Microbiol. 90:1262–76 [Google Scholar]
  62. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN. 62.  et al. 2008. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–13 [Google Scholar]
  63. Sultan SZ, Pitzer JE, Boquoi T, Hobbs G, Miller MR, Motaleb MA. 63.  2011. Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. Infect. Immun. 79:3273–83 [Google Scholar]
  64. Townsley L, Yildiz FH. 64.  2015. Temperature affects c-di-GMP signalling and biofilm formation in Vibrio cholerae. Environ. Microbiol. 17:4290–305 [Google Scholar]
  65. Tuckerman JR, Gonzalez G, Sousa EHS, Wan XH, Saito JA. 65.  et al. 2009. An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry 48:9764–74 [Google Scholar]
  66. Wei C, Jiang WD, Zhao MR, Ling JJ, Zeng X. 66.  et al. 2016. A systematic analysis of the role of GGDEF-EAL domain proteins in virulence and motility in Xanthomonas oryzae pv. oryzicola. Sci. Rep. 6:23769 [Google Scholar]
  67. Weinhouse H, Sapir S, Amikam D, Shilo Y, Volman G. 67.  et al. 1997. c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBS Lett. 416:207–11 [Google Scholar]
  68. Yang CY, Chin KH, Chuah ML, Liang ZX, Wang AH, Chou SH. 68.  2011. The structure and inhibition of a GGDEF diguanylate cyclase complexed with (c-di-GMP)2 at the active site. Acta Crystallogr. D Biol. Crystallogr. 67:997–1008 [Google Scholar]
  69. Zahringer F, Lacanna E, Jenal U, Schirmer T, Boehm A. 69.  2013. Structure and signaling mechanism of a zinc-sensory diguanylate cyclase. Structure 21:1149–57 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error