1932

Abstract

The fungal phylum Ascomycota comprises three subphyla: Saccharomycotina, Pezizomycotina, and Taphrinomycotina. In many Saccharomycotina species, cell identity is determined by genes at the (mating-type) locus; mating occurs between and α cells. Some species can switch between and α mating types. Switching in the Saccharomycotina originated in the common ancestor of the Saccharomycetaceae, Pichiaceae, and Metschnikowiaceae families, as a flip/flop mechanism that inverted a section of chromosome. Switching was subsequently lost in the Metschnikowiaceae, including , but became more complex in the Saccharomycetaceae when the mechanism changed from inversion to copy-and-paste between and . Based on their phylogenetic closeness and the similarity of their (mating-type like) loci, some species may provide useful models for the sexual cycles of species. Conservation of synteny demonstrates that, despite changes in its gene content, a single orthologous locus () has controlled cell type throughout ascomycete evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090816-093403
2017-09-08
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/71/1/annurev-micro-090816-093403.html?itemId=/content/journals/10.1146/annurev-micro-090816-093403&mimeType=html&fmt=ahah

Literature Cited

  1. Abdu U, Gonzalez-Reyes A, Ghabrial A, Schupbach T. 1.  2003. The Drosophila spn-D gene encodes a RAD51C-like protein that is required exclusively during meiosis. Genetics 165:197–204 [Google Scholar]
  2. Alby K, Schaefer D, Bennett RJ. 2.  2009. Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature 460:890–93 [Google Scholar]
  3. Almeida JM, Cisse OH, Fonseca A, Pagni M, Hauser PM. 3.  2015. Comparative genomics suggests primary homothallism of Pneumocystis species. mBio 6:e02251–14 [Google Scholar]
  4. Baker CR, Booth LN, Sorrells TR, Johnson AD. 4.  2012. Protein modularity, cooperative binding, and hybrid regulatory states underlie transcriptional network diversification. Cell 151:80–95 [Google Scholar]
  5. Barsoum E, Martinez P, Astrom SU. 5.  2010. α3, a transposable element that promotes host sexual reproduction. Genes Dev 24:33–44 [Google Scholar]
  6. Baudat F, Imai Y, de Massy B. 6.  2013. Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14:794–806 [Google Scholar]
  7. Bennett RJ, Johnson AD. 7.  2005. Mating in Candida albicans and the search for a sexual cycle. Annu. Rev. Microbiol. 59:233–55 [Google Scholar]
  8. Bennett RJ, Turgeon BG. 8.  2016. Fungal sex: the Ascomycota. Microbiol. Spectr. 4:FUNK–0005-2016 [Google Scholar]
  9. Bonjean B, Guillaume L-D. 9.  2003. Yeast in bread and baking products. Yeasts in Food: Beneficial and Detrimental Aspects T Boekhout, V Robert 289–307 Hamburg, Germ.: Behr's Verlag [Google Scholar]
  10. Butler G. 10.  2007. The evolution of MAT: the Ascomycetes. Sex in Fungi J Heitman, JW Kronstad, JW Taylor, LA Casselton 3–18 Washington, DC: ASM [Google Scholar]
  11. Butler G. 11.  2010. Fungal sex and pathogenesis. Clin. Microbiol. Rev. 23:140–59 [Google Scholar]
  12. Butler G, Kenny C, Fagan A, Kurischko C, Gaillardin C, Wolfe KH. 12.  2004. Evolution of the MAT locus and its Ho endonuclease in yeast species. PNAS 101:1632–37 [Google Scholar]
  13. Butler G, Lorenz M, Gow NAR. 13.  2012. Evolution and genomics of the pathogenic Candida species complex. Evolution of Virulence in Eukaryotic Microbes DL Sibley, BK Howlett, J Heitman 404–21 Hoboken, NJ: Wiley-Blackwell [Google Scholar]
  14. Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S. 14.  et al. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–62 [Google Scholar]
  15. Cadete RM, Santos RO, Melo MA, Mouro A, Goncalves DL. 15.  et al. 2009. Spathaspora arborariae sp. nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Res 9:1338–42 [Google Scholar]
  16. Carpenter ML, Assaf ZJ, Gourguechon S, Cande WZ. 16.  2012. Nuclear inheritance and genetic exchange without meiosis in the binucleate parasite Giardia intestinalis. J. Cell Sci. 125:2523–32 [Google Scholar]
  17. Charlesworth D. 17.  2015. Plant contributions to our understanding of sex chromosome evolution. N. Phytol. 208:52–65 [Google Scholar]
  18. Chi J, Mahe F, Loidl J, Logsdon J, Dunthorn M. 18.  2014. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol. Biol. Evol. 31:660–72 [Google Scholar]
  19. Daniel HM, Lachance MA, Kurtzman CP. 19.  2014. On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie Van Leeuwenhoek 106:67–84 [Google Scholar]
  20. Fabre E, Muller H, Therizols P, Lafontaine I, Dujon B, Fairhead C. 20.  2005. Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing, and subtelomeres. Mol. Biol. Evol. 22:856–73 [Google Scholar]
  21. Fitzpatrick DA, Logue ME, Stajich JE, Butler G. 21.  2006. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol. Biol. 6:99 [Google Scholar]
  22. Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ. 22.  2008. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLOS Biol 6:e110 [Google Scholar]
  23. Ganter PF. 23.  2006. Yeast and invertebrate associations. The Yeast Handbook: Biodiversity and Ectophysiology of Yeasts CA Rosa, G Peter 303–70 Heidelberg, Germ.: Springer [Google Scholar]
  24. Gardner MJ, Hall N, Fung E, White O, Berriman M. 24.  et al. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511 [Google Scholar]
  25. Gempe T, Beye M. 25.  2011. Function and evolution of sex determination mechanisms, genes and pathways in insects. Bioessays 33:52–60 [Google Scholar]
  26. Globus ST, Keeney S. 26.  2012. The joy of six: how to control your crossovers. Cell 149:11–12 [Google Scholar]
  27. Gordon JL, Armisen D, Proux-Wera E, Oheigeartaigh SS, Byrne KP, Wolfe KH. 27.  2011. Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents. PNAS 108:20024–29 [Google Scholar]
  28. Gouliamova DE, Dimitrov RA, Smith MT, Groenewald M, Stoilova-Disheva MM. 28.  et al. 2016. DNA barcoding revealed Nematodospora valgi gen. nov., sp. nov. and Candida cetoniae sp. nov. in the Lodderomyces clade. Fungal Biol 120:179–90 [Google Scholar]
  29. Graves JA. 29.  2013. How to evolve new vertebrate sex determining genes. Dev. Dyn. 242:354–59 [Google Scholar]
  30. Groenewald M, Smith MT. 30.  2010. Re-examination of strains formerly assigned to Hyphopichia burtonii, the phylogeny of the genus Hyphopichia, and the description of Hyphopichia pseudoburtonii sp. nov. Int. J. Syst. Evol. Microbiol 60:2675–80 [Google Scholar]
  31. Haber JE. 31.  2012. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191:33–64 [Google Scholar]
  32. Hanson SJ, Byrne KP, Wolfe KH. 32.  2014. Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system. PNAS 111:E4851–58 [Google Scholar]
  33. Hanson SJ, Wolfe KH. 33.  2017. An evolutionary perspective on yeast mating-type switching. Genetics 206:9–32 [Google Scholar]
  34. Hicks J, Strathern JN. 34.  1977. Interconversion of mating type in S.cerevisiae and the cassette model for gene transfer. Brookhaven Symp. Biol. 29:233–42 [Google Scholar]
  35. Hittinger CT, Rokas A, Bai FY, Boekhout T, Goncalves P. 35.  et al. 2015. Genomics and the making of yeast biodiversity. Curr. Opin. Genet. Dev. 35:100–9 [Google Scholar]
  36. Hull CM, Johnson AD. 36.  1999. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285:1271–75 [Google Scholar]
  37. Inderbitzin P, Turgeon BG. 37.  2015. Pondering mating: Pneumocystis jirovecii, the human lung pathogen, selfs without mating type switching, in contrast to its close relative Schizosaccharomyces pombe. mBio 6:e00583–15 [Google Scholar]
  38. James AP, Zahab DH. 38.  1982. A genetic system for Pachysolen tannophilus, a pentose-fermenting yeast. J. Gen. Appl. Microbiol. 128:2297–301 [Google Scholar]
  39. Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A. 39.  et al. 2007. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol. 25:319–26 [Google Scholar]
  40. Johnson AD. 40.  1995. Molecular mechanisms of cell-type determination in budding yeast. Curr. Opin. Genet. Dev. 5:552–58 [Google Scholar]
  41. Kohl KP, Jones CD, Sekelsky J. 41.  2012. Evolution of an MCM complex in flies that promotes meiotic crossovers by blocking BLM helicase. Science 338:1363–65 [Google Scholar]
  42. Kurtzman CP, Fell JW, Boekhout T. 42.  2011. The Yeasts: A Taxonomic Study Amsterdam: Elsevier
  43. Kurtzman CP, Robnett CJ. 43.  2013. Alloascoidea hylecoeti gen. nov., comb. nov., Alloascoidea africana comb. nov., Ascoidea tarda sp. nov., and Nadsonia starkeyi-henricii comb. nov., new members of the Saccharomycotina (Ascomycota). FEMS Yeast Res 13:423–32 [Google Scholar]
  44. Kurtzman CP, Robnett CJ, Blackwell M. 44.  2016. Description of Teunomyces gen. nov. for the Candida kruisii clade, Suhomyces gen. nov. for the Candida tanzawaensis clade and Suhomyces kilbournensis sp. nov. FEMS Yeast Res 16:fow041 [Google Scholar]
  45. Lachance M-A. 45.  2016. Metschnikowia: half tetrads, a regicide and the fountain of youth. Yeast 33:563–74 [Google Scholar]
  46. Lachance M-A, Boekhout T, Scorzetti G, Fell JW, Kurtzmann CP. 46.  2011. Candida Berkhout 1923. See Ref. 42 987–1278
  47. Lachance M-A, Hurtado E, Hsiang T. 47.  2016. A stable phylogeny of the large-spored Metschnikowia clade. Yeast 33:261–75 [Google Scholar]
  48. Lachance M-A, Miranda M, Miller MW, Phaff HJ. 48.  1976. Dehiscence and active spore release in pathogenic strains of the yeast Metschnikowia bicuspidata var. australis: possible predatory implication.. Can. J. Microbiol. 22:1756–61 [Google Scholar]
  49. Leh-Louis V, Despons L, Friedrich A, Martin T, Durrens P. 49.  et al. 2012. Pichia sorbitophila, an interspecies yeast hybrid, reveals early steps of genome resolution after polyploidization. G3 2:299–311 [Google Scholar]
  50. Liu X, Jensen PR, Workman M. 50.  2012. Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus. Bioresour. Technol. 104:579–86 [Google Scholar]
  51. Liu XJ, Yi ZH, Ren YC, Li Y, Hui FL. 51.  2016. Five novel species in the Lodderomyces clade associated with insects. Int. J. Syst. Evol. Microbiol. 66:4881–89 [Google Scholar]
  52. Lohse MB, Johnson AD. 52.  2009. White-opaque switching in Candida albicans. Curr. Opin. Microbiol. 12:650–54 [Google Scholar]
  53. Loidl J. 53.  2006. S. pombe linear elements: the modest cousins of synaptonemal complexes. Chromosoma 115:260–71 [Google Scholar]
  54. Lynn A, Soucek R, Borner GV. 54.  2007. ZMM proteins during meiosis: crossover artists at work. Chromosome Res 15:591–605 [Google Scholar]
  55. Maekawa H, Kaneko Y. 55.  2014. Inversion of the chromosomal region between two mating type loci switches the mating type in Hansenula polymorpha. PLOS Genet. 10:e1004796 [Google Scholar]
  56. Maguire SL, Oheigeartaigh SS, Byrne KP, Schroder MS, O'Gaora P. 56.  et al. 2013. Comparative genome analysis and gene finding in Candida species using CGOB. Mol. Biol. Evol. 30:1281–91 [Google Scholar]
  57. Malik S, Pightling A, Stefaniak L, Schurko A, Logsdon J. 57.  2008. An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLOS ONE 3:e2879 [Google Scholar]
  58. Mallet S, Weiss S, Jacques N, Leh-Louis V, Sacerdot C, Casaregola S. 58.  2012. Insights into the life cycle of yeasts from the CTG clade revealed by the analysis of the Millerozyma (Pichia) farinosa species complex. PLOS ONE 7:e35842 [Google Scholar]
  59. Mancera E, Porman AM, Cuomo CA, Bennett RJ, Johnson AD. 59.  2015. Finding a missing gene: EFG1 regulates morphogenesis in Candida tropicalis. G3 5:849–56 [Google Scholar]
  60. Marinoni G, Piskur J, Lachance M-A. 60.  2003. Ascospores of large-spored Metschnikowia species are genuine meiotic products of these yeasts. FEMS Yeast Res 3:85–90 [Google Scholar]
  61. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W. 61.  et al. 2012. International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code) Koenigstein, Germ.: Koelz Sci. Books [Google Scholar]
  62. Miller MG, Johnson AD. 62.  2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293–302 [Google Scholar]
  63. Morales L, Noel B, Porcel B, Marcet-Houben M, Hullo MF. 63.  et al. 2013. Complete DNA sequence of Kuraishia capsulata illustrates novel genomic features among budding yeasts (Saccharomycotina). Genome Biol. Evol. 5:2524–39 [Google Scholar]
  64. Morschhauser J. 64.  2010. Regulation of white-opaque switching in Candida albicans. Med. Microbiol. Immunol 199:165–72 [Google Scholar]
  65. Muhlhausen S, Findeisen P, Plessmann U, Urlaub H, Kollmar M. 65.  2016. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes. Genome Res 26:945–55 [Google Scholar]
  66. Nguyen NH, Suh SO, Blackwell M. 66.  2007. Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects. Mycologia 99:842–58 [Google Scholar]
  67. Nielsen O. 67.  2004. Mating-type control and differentiation. The Molecular Biology of Schizosaccharomyces pombe R Egel 281–96 Berlin: Springer-Verlag [Google Scholar]
  68. Ohama T, Suzuki T, Mori M, Osawa S, Ueda T. 68.  et al. 1993. Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res 21:4039–45 [Google Scholar]
  69. Patil S, Moeys S, von Dassow P, Huysman MJ, Mapleson D. 69.  et al. 2015. Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta. BMC Genom 16:930 [Google Scholar]
  70. Perry J, Kleckner N, Borner GV. 70.  2005. Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling. PNAS 102:17594–99 [Google Scholar]
  71. Porman AM, Alby K, Hirakawa MP, Bennett RJ. 71.  2011. Discovery of a phenotypic switch regulating sexual mating in the opportunistic fungal pathogen Candida tropicalis. PNAS 108:21158–63 [Google Scholar]
  72. Pryszcz LP, Nemeth T, Gacser A, Gabaldon T. 72.  2014. Genome comparison of Candida orthopsilosis clinical strains reveals the existence of hybrids between two distinct subspecies. Genome Biol. Evol. 6:1069–78 [Google Scholar]
  73. Pryszcz LP, Nemeth T, Saus E, Ksiezopolska E, Hegedusova E. 73.  et al. 2015. The genomic aftermath of hybridization in the opportunistic pathogen Candida metapsilosis. PLOS Genet. 11:e1005626 [Google Scholar]
  74. Pujol C, Daniels KJ, Lockhart SR, Srikantha T, Radke JB. 74.  et al. 2004. The closely related species Candidaalbicans and Candida dubliniensis can mate. Eukaryot. Cell 3:1015–27 [Google Scholar]
  75. Rajaei N, Chiruvella KK, Lin F, Astrom SU. 75.  2014. Domesticated transposase Kat1 and its fossil imprints induce sexual differentiation in yeast. PNAS 111:15491–96 [Google Scholar]
  76. Ramesh MA, Malik SB, Logsdon JM Jr.. 76.  2005. A phylogenomic inventory of meiotic genes: evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15:185–91 [Google Scholar]
  77. Reedy JL, Floyd AM, Heitman J. 77.  2009. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr. Biol. 19:891–99 [Google Scholar]
  78. Ren YC, Liu XJ, Yi ZH, Hui FL. 78.  2016. Nematodospora anomalae sp. nov., a novel and d-xylose-fermenting yeast species in the Lodderomyces clade. Int. J. Syst. Evol. Microbiol 66:4046–50 [Google Scholar]
  79. Ren YC, Xu LL, Zhang L, Hui FL. 79.  2015. Candida baotianmanensis sp. nov. and Candida pseudoviswanathii sp. nov., two ascosporic yeast species isolated from the gut of beetles. Int. J. Syst. Evol. Microbiol 65:3580–85 [Google Scholar]
  80. Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ. 80.  et al. 2012. Comparative functional genomics of the fission yeasts. Science 332:930–36 [Google Scholar]
  81. Riley R, Haridas S, Wolfe KH, Lopes MR, Hittinger CT. 81.  et al. 2016. Comparative genomics of biotechnologically important yeasts. PNAS 113:9882–87 [Google Scholar]
  82. Rozpędowska E, Piškur J, Wolfe KH. 82.  2011. Genome sequences of Saccharomycotina: resources and applications in phylogenomics. See Ref. 42 145–58
  83. Rusche LN, Rine J. 83.  2010. Switching the mechanism of mating type switching: a domesticated transposase supplants a domesticated homing endonuclease. Genes Dev 24:10–14 [Google Scholar]
  84. Sai S, Holland L, McGee CF, Lynch DB, Butler G. 84.  2011. Evolution of mating within the Candida parapsilosis species group. Eukaryot. Cell 10:578–87 [Google Scholar]
  85. Santos MA, Gomes AC, Santos MC, Carreto LC, Moura GR. 85.  2011. The genetic code of the fungal CTG clade. C. R. Biol. 334:607–11 [Google Scholar]
  86. Santos MA, Tuite MF. 86.  1995. The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res. 23:1481–86 [Google Scholar]
  87. Schroder MS, Martinez de San Vicente K, Prandini TH, Hammel S, Higgins DG. 87.  et al. 2016. Multiple origins of the pathogenic yeast Candida orthopsilosis by separate hybridizations between two parental species. PLOS Genet 12:e1006404 [Google Scholar]
  88. Schurko AM, Logsdon JM Jr., Eads BD. 88.  2009. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. BMC Evol. Biol. 9:78 [Google Scholar]
  89. Sellam A, Askew C, Epp E, Tebbji F, Mullick A. 89.  et al. 2010. Role of the transcription factor CaNdt80p in cell separation, hyphal growth and virulence in Candida albicans. Eukaryot. Cell 9:634–44 [Google Scholar]
  90. Shen XX, Zhou X, Kominek J, Kurtzman CP, Hittinger CT, Rokas A. 90.  2016. Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data. G3 6:3927–39 [Google Scholar]
  91. Sherwood RK, Scaduto CM, Torres SE, Bennett RJ. 91.  2014. Convergent evolution of a fused sexual cycle promotes the haploid lifestyle. Nature 506:387–90 [Google Scholar]
  92. Sorrells TR, Booth LN, Tuch BB, Johnson AD. 92.  2015. Intersecting transcription networks constrain gene regulatory evolution. Nature 523:361–65 [Google Scholar]
  93. Srikantha T, Daniels KJ, Pujol C, Sahni N, Yi S, Soll DR. 93.  2012. Nonsex genes in the mating type locus of Candida albicans play roles in a/α biofilm formation, including impermeability and fluconazole resistance. PLOS Pathog 8:e1002476 [Google Scholar]
  94. Stanton BC, Hull CM. 94.  2007. Mating-type locus control of cell identity. Sex in Fungi JW Kronstad, JW Taylor, LA Casselton 59–73 Washington, DC: ASM [Google Scholar]
  95. Sugita T, Nakase T. 95.  1999. Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida. Syst. Appl. Microbiol. 22:79–86 [Google Scholar]
  96. Suh SO, Nguyen NH, Blackwell M. 96.  2008. Yeasts isolated from plant-associated beetles and other insects: seven novel Candida species near Candida albicans. FEMS Yeast Res. 8:88–102 [Google Scholar]
  97. Takanami T, Mori A, Takahashi H, Horiuchi S, Higashitani A. 97.  2003. Caenorhabditis elegans Ce-rdh-1/rad-51 functions after double-strand break formation of meiotic recombination. Chromosome Res 11:125–35 [Google Scholar]
  98. Tsong AE, Tuch BB, Li H, Johnson AD. 98.  2006. Evolution of alternative transcriptional circuits with identical logic. Nature 443:415–20 [Google Scholar]
  99. Tsubouchi H, Roeder GS. 99.  2004. The budding yeast Mei5 and Sae3 proteins act together with Dmc1 during meiotic recombination. Genetics 168:1219–30 [Google Scholar]
  100. Tzung KW, Williams RM, Scherer S, Federspiel N, Jones T. 100.  et al. 2001. Genomic evidence for a complete sexual cycle in Candida albicans. PNAS 98:3249–53 [Google Scholar]
  101. van der Walt JP. 101.  1966. Lodderomyces, a new genus of the Saccharomycetaceae. Antonie Van Leeuwenhoek 32:1–5 [Google Scholar]
  102. van der Walt JP, Taylor MB, Liebenberg NV. 102.  1977. Ploidy, ascus formation and recombination in Torulaspora (Debaryomyces) hansenii. Antonie Van Leeuwenhoek 43:205–18 [Google Scholar]
  103. Villeneuve AM, Hillers KJ. 103.  2001. Whence meiosis?. Cell 106:647–50 [Google Scholar]
  104. Wendland J, Walther A. 104.  2011. Genome evolution in the Eremothecium clade of the Saccharomyces complex revealed by comparative genomics. G3 1:539–48 [Google Scholar]
  105. Zordan RE, Miller MG, Galgoczy DJ, Tuch BB, Johnson AD. 105.  2007. Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLOS Biol. 5:e256 [Google Scholar]
/content/journals/10.1146/annurev-micro-090816-093403
Loading
/content/journals/10.1146/annurev-micro-090816-093403
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error