Bacteria lack subcellular compartments and harbor a single RNA polymerase that synthesizes both structural and protein-coding RNAs, which are cotranscriptionally processed by distinct pathways. Nascent rRNAs fold into elaborate secondary structures and associate with ribosomal proteins, whereas nascent mRNAs are translated by ribosomes. During elongation, nucleic acid signals and regulatory proteins modulate concurrent RNA-processing events, instruct RNA polymerase where to pause and terminate transcription, or act as roadblocks to the moving enzyme. Communications among complexes that carry out transcription, translation, repair, and other cellular processes ensure timely execution of the gene expression program and survival under conditions of stress. This network is maintained by auxiliary proteins that act as bridges between RNA polymerase, ribosome, and repair enzymes, blurring boundaries between separate information-processing steps and making assignments of unique regulatory functions meaningless. Understanding the regulation of transcript elongation thus requires genome-wide approaches, which confirm known and reveal new regulatory connections.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ali SS, Xia B, Liu J, Navarre WW. 1.  2012. Silencing of foreign DNA in bacteria. Curr. Opin. Microbiol. 15:175–81 [Google Scholar]
  2. Andrecka J, Treutlein B, Arcusa MA, Muschielok A, Lewis R. 2.  et al. 2009. Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Res. 37:5803–9 [Google Scholar]
  3. Arimbasseri AG, Kassavetis GA, Maraia RJ. 3.  2014. Comment on “Mechanism of eukaryotic RNA polymerase III transcription termination”. Science 345:524 [Google Scholar]
  4. Artsimovitch I, Landick R. 4.  2000. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. PNAS 97:7090–95 [Google Scholar]
  5. Artsimovitch I, Landick R. 5.  2002. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 109:193–203 [Google Scholar]
  6. Artsimovitch I, Svetlov V, Anthony L, Burgess RR, Landick R. 6.  2000. RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. J. Bacteriol. 182:6027–35 [Google Scholar]
  7. Bae W, Xia B, Inouye M, Severinov K. 7.  2000. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. PNAS 97:7784–89 [Google Scholar]
  8. Bakshi S, Siryaporn A, Goulian M, Weisshaar JC. 8.  2012. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85:21–38 [Google Scholar]
  9. Belogurov GA, Mooney RA, Svetlov V, Landick R, Artsimovitch I. 9.  2009. Functional specialization of transcription elongation factors. EMBO J. 28:112–22 [Google Scholar]
  10. Belogurov GA, Vassylyeva MN, Svetlov V, Klyuyev S, Grishin NV. 10.  et al. 2007. Structural basis for converting a general transcription factor into an operon-specific virulence regulator. Mol. Cell 26:117–29 [Google Scholar]
  11. Bochkareva A, Yuzenkova Y, Tadigotla VR, Zenkin N. 11.  2012. Factor-independent transcription pausing caused by recognition of the RNA-DNA hybrid sequence. EMBO J. 31:630–39 [Google Scholar]
  12. Bubunenko M, Court DL, Al Refaii A, Saxena S, Korepanov A. 12.  et al. 2013. Nus transcription elongation factors and RNase III modulate small ribosome subunit biogenesis in Escherichia coli. Mol. Microbiol. 87:382–93 [Google Scholar]
  13. Burmann BM, Knauer SH, Sevostyanova A, Schweimer K, Mooney RA. 13.  et al. 2012. An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell 150:291–303 [Google Scholar]
  14. Burmann BM, Schweimer K, Luo X, Wahl MC, Stitt BL. 14.  et al. 2010. A NusE:NusG complex links transcription and translation. Science 328:501–4 [Google Scholar]
  15. Cagliero C, Zhou YN, Jin DJ. 15.  2014. Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells. Nucleic Acids Res. 42:13696–705 [Google Scholar]
  16. Cardinale CJ, Washburn RS, Tadigotla VR, Brown LM, Gottesman ME, Nudler E. 16.  2008. Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 320:935–38 [Google Scholar]
  17. Castro-Roa D, Zenkin N. 17.  2012. In vitro experimental system for analysis of transcription-translation coupling. Nucleic Acids Res. 40e45 [Google Scholar]
  18. Chan CL, Wang D, Landick R. 18.  1997. Multiple interactions stabilize a single paused transcription intermediate in which hairpin to 3′ end spacing distinguishes pause and termination pathways. J. Mol. Biol. 268:54–68 [Google Scholar]
  19. Chandraprakash D, Seshasayee AS. 19.  2014. Inhibition of factor-dependent transcription termination in Escherichia coli might relieve xenogene silencing by abrogating H-NS-DNA interactions in vivo. J. Biosci. 39:53–61 [Google Scholar]
  20. Cohen SE, Godoy VG, Walker GC. 20.  2009. Transcriptional modulator NusA interacts with translesion DNA polymerases in Escherichia coli. J. Bacteriol. 191:665–72 [Google Scholar]
  21. Cohen SE, Lewis CA, Mooney RA, Kohanski MA, Collins JJ. 21.  et al. 2010. Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. PNAS 107:15517–22 [Google Scholar]
  22. Cohen SE, Walker GC. 22.  2010. The transcription elongation factor NusA is required for stress-induced mutagenesis in Escherichia coli. Curr. Biol. 20:80–85 [Google Scholar]
  23. Czyz A, Mooney RA, Iaconi A, Landick R. 23.  2014. Mycobacterial RNA polymerase requires a U-tract at intrinsic terminators and is aided by NusG at suboptimal terminators. mBio 5:e00931 [Google Scholar]
  24. Dangkulwanich M, Ishibashi T, Liu S, Kireeva ML, Lubkowska L. 24.  et al. 2013. Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. eLife 2:e00971 [Google Scholar]
  25. Deaconescu AM, Artsimovitch I, Grigorieff N. 25.  2012. Interplay of DNA repair with transcription: from structures to mechanisms. Trends Biochem. Sci. 37:543–52 [Google Scholar]
  26. Deaconescu AM, Chambers AL, Smith AJ, Nickels BE, Hochschild A. 26.  et al. 2006. Structural basis for bacterial transcription-coupled DNA repair. Cell 124:507–20 [Google Scholar]
  27. Deaconescu AM, Sevostyanova A, Artsimovitch I, Grigorieff N. 27.  2012. Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface. PNAS 109:3353–58 [Google Scholar]
  28. D'Heygere F, Rabhi M, Boudvillain M. 28.  2013. Phyletic distribution and conservation of the bacterial transcription termination factor Rho. Microbiology 159:1423–36 [Google Scholar]
  29. Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E. 29.  2011. Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146:533–43 [Google Scholar]
  30. Elias-Arnanz M, Salas M. 30.  1999. Resolution of head-on collisions between the transcription machinery and bacteriophage phi29 DNA polymerase is dependent on RNA polymerase translocation. EMBO J. 18:5675–82 [Google Scholar]
  31. Endesfelder U, Finan K, Holden SJ, Cook PR, Kapanidis AN, Heilemann M. 31.  2013. Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophys. J. 105:172–81 [Google Scholar]
  32. Epshtein V, Dutta D, Wade J, Nudler E. 32.  2010. An allosteric mechanism of Rho-dependent transcription termination. Nature 463:245–49 [Google Scholar]
  33. Epshtein V, Kamarthapu V, McGary K, Svetlov V, Ueberheide B. 33.  et al. 2014. UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 505:372–77 [Google Scholar]
  34. Epshtein V, Nudler E. 34.  2003. Cooperation between RNA polymerase molecules in transcription elongation. Science 300:801–5 [Google Scholar]
  35. Farnham PJ, Greenblatt J, Platt T. 35.  1982. Effects of NusA protein on transcription termination in the tryptophan operon of Escherichia coli. Cell 29:945–51 [Google Scholar]
  36. Feig M, Burton ZF. 36.  2010. RNA polymerase II with open and closed trigger loops: active site dynamics and nucleic acid translocation. Biophys. J. 99:2577–86 [Google Scholar]
  37. French S. 37.  1992. Consequences of replication fork movement through transcription units in vivo. Science 258:1362–65 [Google Scholar]
  38. Fuchs RP, Fujii S. 38.  2013. Translesion DNA synthesis and mutagenesis in prokaryotes. Cold Spring Harb. Perspect. Biol. 5a012682 [Google Scholar]
  39. Furman R, Sevostyanova A, Artsimovitch I. 39.  2012. Transcription initiation factor DksA has diverse effects on RNA chain elongation. Nucleic Acids Res. 40:3392–402 [Google Scholar]
  40. Furman R, Tsodikov OV, Wolf YI, Artsimovitch I. 40.  2013. An insertion in the catalytic trigger loop gates the secondary channel of RNA polymerase. J. Mol. Biol. 425:82–93 [Google Scholar]
  41. Ganesan A, Spivak G, Hanawalt PC. 41.  2012. Transcription-coupled DNA repair in prokaryotes. Prog. Mol. Biol. Transl. Sci. 110:25–40 [Google Scholar]
  42. Gill SC, Weitzel SE, von Hippel PH. 42.  1991. Escherichia coli σ70 and NusA proteins. I. Binding interactions with core RNA polymerase in solution and within the transcription complex. J. Mol. Biol. 220:307–24 [Google Scholar]
  43. Gopal B, Haire LF, Gamblin SJ, Dodson EJ, Lane AN. 43.  et al. 2001. Crystal structure of the transcription elongation/anti-termination factor NusA from Mycobacterium tuberculosis at 1.7 Å resolution. J. Mol. Biol. 314:1087–95 [Google Scholar]
  44. Greive SJ, Lins AF, von Hippel PH. 44.  2005. Assembly of an RNA-protein complex. Binding of NusB and NusE (S10) proteins to boxA RNA nucleates the formation of the antitermination complex involved in controlling rRNA transcription in Escherichia coli. J. Biol. Chem. 280:36397–408 [Google Scholar]
  45. Guerin M, Leng M, Rahmouni AR. 45.  1996. High resolution mapping of E. coli transcription elongation complex in situ reveals protein interactions with the non-transcribed strand. EMBO J. 15:5397–407 [Google Scholar]
  46. Gupta MK, Guy CP, Yeeles JT, Atkinson J, Bell H. 46.  et al. 2013. Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli. PNAS 110:7252–57 [Google Scholar]
  47. Gusarov I, Nudler E. 47.  2001. Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107:437–49 [Google Scholar]
  48. Gwynn EJ, Smith AJ, Guy CP, Savery NJ, McGlynn P, Dillingham MS. 48.  2013. The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase. PLOS ONE 8:e78141 [Google Scholar]
  49. Ha KS, Toulokhonov I, Vassylyev DG, Landick R. 49.  2010. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J. Mol. Biol. 401:708–25 [Google Scholar]
  50. Haines NM, Kim YI, Smith AJ, Savery NJ. 50.  2014. Stalled transcription complexes promote DNA repair at a distance. PNAS 111:4037–42 [Google Scholar]
  51. Hein PP, Kolb KE, Windgassen T, Bellecourt MJ, Darst SA. 51.  et al. 2014. RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement. Nat. Struct. Mol. Biol. 21:794–802 [Google Scholar]
  52. Hein PP, Landick R. 52.  2010. The bridge helix coordinates movements of modules in RNA polymerase. BMC Biol. 8:141 [Google Scholar]
  53. Hein PP, Palangat M, Landick R. 53.  2011. RNA transcript 3′-proximal sequence affects translocation bias of RNA polymerase. Biochemistry 50:7002–14 [Google Scholar]
  54. Henkin TM, Yanofsky C. 54.  2002. Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. Bioessays 24:700–7 [Google Scholar]
  55. Herbert KM, Zhou J, Mooney RA, Porta AL, Landick R, Block SM. 55.  2010. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. J. Mol. Biol. 399:17–30 [Google Scholar]
  56. Howan K, Smith AJ, Westblade LF, Joly N, Grange W. 56.  et al. 2012. Initiation of transcription-coupled repair characterized at single-molecule resolution. Nature 490:431–34 [Google Scholar]
  57. Ingham CJ, Dennis J, Furneaux PA. 57.  1999. Autogenous regulation of transcription termination factor Rho and the requirement for Nus factors in Bacillus subtilis. Mol. Microbiol 31:651–63 [Google Scholar]
  58. Ishikawa S, Oshima T, Kurokawa K, Kusuya Y, Ogasawara N. 58.  2010. RNA polymerase trafficking in Bacillus subtilis cells. J. Bacteriol. 192:5778–87 [Google Scholar]
  59. Jiang W, Hou Y, Inouye M. 59.  1997. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272:196–202 [Google Scholar]
  60. Jinks-Robertson S, Bhagwat AS. 60.  2014. Transcription-associated mutagenesis. Annu. Rev. Genet. 48:341–59 [Google Scholar]
  61. Kaplan CD, Larsson K-M, Kornberg RD. 61.  2008. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by α-amanitin. Mol. Cell 30:547–56 [Google Scholar]
  62. Kireeva M, Kashlev M, Burton ZF. 62.  2010. Translocation by multi-subunit RNA polymerases. Biochim. Biophys. Acta 1799:389–401 [Google Scholar]
  63. Kireeva ML, Domecq C, Coulombe B, Burton ZF, Kashlev M. 63.  2011. Interaction of RNA polymerase II fork loop 2 with downstream non-template DNA regulates transcription elongation. J. Biol. Chem. 286:30898–910 [Google Scholar]
  64. Kireeva ML, Kashlev M. 64.  2009. Mechanism of sequence-specific pausing of bacterial RNA polymerase. PNAS 106:8900–5 [Google Scholar]
  65. Kireeva ML, Nedialkov YA, Cremona GH, Purtov YA, Lubkowska L. 65.  et al. 2008. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol. Cell 30:557–66 [Google Scholar]
  66. Komissarova N, Kashlev M. 66.  1997. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. PNAS 94:1755–60 [Google Scholar]
  67. Kusuya Y, Kurokawa K, Ishikawa S, Ogasawara N, Oshima T. 67.  2011. Transcription factor GreA contributes to resolving promoter-proximal pausing of RNA polymerase in Bacillus subtilis cells. J. Bacteriol. 193:3090–99 [Google Scholar]
  68. Landick R. 68.  2006. The regulatory roles and mechanism of transcriptional pausing. Biochem. Soc. Trans. 34:1062–66 [Google Scholar]
  69. Lane WJ, Darst SA. 69.  2010. Molecular evolution of multisubunit RNA polymerases: sequence analysis. J. Mol. Biol. 395:671–85 [Google Scholar]
  70. Laptenko O, Lee J, Lomakin I, Borukhov S. 70.  2003. Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. EMBO J. 22:6322–34 [Google Scholar]
  71. Larson MH, Mooney RA, Peters JM, Windgassen T, Nayak D. 71.  et al. 2014. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344:1042–47 [Google Scholar]
  72. Larson MH, Zhou J, Kaplan CD, Palangat M, Kornberg RD. 72.  et al. 2012. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. PNAS 109:6555–60 [Google Scholar]
  73. Leela JK, Syeda AH, Anupama K, Gowrishankar J. 73.  2013. Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli. PNAS 110:258–63 [Google Scholar]
  74. Li GW, Burkhardt D, Gross C, Weissman JS. 74.  2014. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157:624–35 [Google Scholar]
  75. Luo X, Hsiao HH, Bubunenko M, Weber G, Court DL. 75.  et al. 2008. Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex. Mol. Cell 32:791–802 [Google Scholar]
  76. Mah TF, Kuznedelov K, Mushegian A, Severinov K, Greenblatt J. 76.  2000. The α subunit of E. coli RNA polymerase activates RNA binding by NusA. Genes Dev. 14:2664–75 [Google Scholar]
  77. Mahdi AA, Briggs GS, Lloyd RG. 77.  2012. Modulation of DNA damage tolerance in Escherichia coli recG and ruv strains by mutations affecting PriB, the ribosome and RNA polymerase. Mol. Microbiol. 86:675–91 [Google Scholar]
  78. Malinen AM, Turtola M, Parthiban M, Vainonen L, Johnson MS, Belogurov GA. 78.  2012. Active site opening and closure control translocation of multisubunit RNA polymerase. Nucleic Acids Res. 40:7442–51 [Google Scholar]
  79. Manelyte L, Kim YI, Smith AJ, Smith RM, Savery NJ. 79.  2010. Regulation and rate enhancement during transcription-coupled DNA repair. Mol. Cell 40:714–24 [Google Scholar]
  80. Mirkin EV, Mirkin SM. 80.  2005. Mechanisms of transcription-replication collisions in bacteria. Mol. Cell. Biol. 25:888–95 [Google Scholar]
  81. Mirkin EV, Mirkin SM. 81.  2007. Replication fork stalling at natural impediments. Microbiol. Mol. Biol. Rev. 71:13–35 [Google Scholar]
  82. Miropolskaya N, Esyunina D, Klimasauskas S, Nikiforov V, Artsimovitch I, Kulbachinskiy A. 82.  2014. Interplay between the trigger loop and the F loop during RNA polymerase catalysis. Nucleic Acids Res. 42:544–52 [Google Scholar]
  83. Mooney RA, Davis SE, Peters JM, Rowland JL, Ansari AZ, Landick R. 83.  2009. Regulator trafficking on bacterial transcription units in vivo. Mol. Cell 33:97–108 [Google Scholar]
  84. Mooney RA, Schweimer K, Rosch P, Gottesman M, Landick R. 84.  2009. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J. Mol. Biol. 391:341–58 [Google Scholar]
  85. Murphy MN, Gong P, Ralto K, Manelyte L, Savery NJ, Theis K. 85.  2009. An N-terminal clamp restrains the motor domains of the bacterial transcription-repair coupling factor Mfd. Nucleic Acids Res. 37:6042–53 [Google Scholar]
  86. Nedialkov YA, Nudler E, Burton ZF. 86.  2012. RNA polymerase stalls in a post-translocated register and can hyper-translocate. Transcription 3:260–69 [Google Scholar]
  87. Neuman KC, Abbondanzieri EA, Landick R, Gelles J, Block SM. 87.  2003. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115:437–47 [Google Scholar]
  88. Nudler E. 88.  2012. RNA polymerase backtracking in gene regulation and genome instability. Cell 149:1438–45 [Google Scholar]
  89. Ona KR, Courcelle CT, Courcelle J. 89.  2009. Nucleotide excision repair is a predominant mechanism for processing nitrofurazone-induced DNA damage in Escherichia coli. J. Bacteriol. 191:4959–65 [Google Scholar]
  90. Opalka N, Chlenov M, Chacon P, Rice WJ, Wriggers W, Darst SA. 90.  2003. Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell 114:335–45 [Google Scholar]
  91. Pan T, Artsimovitch I, Fang XW, Landick R, Sosnick TR. 91.  1999. Folding of a large ribozyme during transcription and the effect of the elongation factor NusA. PNAS 96:9545–50 [Google Scholar]
  92. Park JS, Marr MT, Roberts JW. 92.  2002. E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109:757–67 [Google Scholar]
  93. Park JS, Roberts JW. 93.  2006. Role of DNA bubble rewinding in enzymatic transcription termination. PNAS 103:4870–75 [Google Scholar]
  94. Paul BJ, Ross W, Gaal T, Gourse RL. 94.  2004. rRNA transcription in Escherichia coli. Annu. Rev. Genet. 38:749–70 [Google Scholar]
  95. Paul S, Million-Weaver S, Chattopadhyay S, Sokurenko E, Merrikh H. 95.  2013. Accelerated gene evolution through replication-transcription conflicts. Nature 495:512–15 [Google Scholar]
  96. Perederina A, Svetlov V, Vassylyeva MN, Tahirov TH, Yokoyama S. 96.  et al. 2004. Regulation through the secondary channel–structural framework for ppGpp-DksA synergism during transcription. Cell 118:297–309 [Google Scholar]
  97. Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R. 97.  2012. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev. 26:2621–33 [Google Scholar]
  98. Peters JM, Mooney RA, Kuan PF, Rowland JL, Keles S, Landick R. 98.  2009. Rho directs widespread termination of intragenic and stable RNA transcription. PNAS 106:15406–11 [Google Scholar]
  99. Peters JM, Vangeloff AD, Landick R. 99.  2011. Bacterial transcription terminators: the RNA 3′-end chronicles. J. Mol. Biol. 412:793–813 [Google Scholar]
  100. Pomerantz RT, O'Donnell M. 100.  2008. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456:762–66 [Google Scholar]
  101. Prasch S, Jurk M, Washburn RS, Gottesman ME, Wohrl BM, Rosch P. 101.  2009. RNA-binding specificity of E. coli NusA. Nucleic Acids Res. 37:4736–42 [Google Scholar]
  102. Proshkin S, Rahmouni AR, Mironov A, Nudler E. 102.  2010. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328:504–8 [Google Scholar]
  103. Rabhi M, Espéli O, Schwartz A, Cayrol B, Rahmouni AR. 103.  et al. 2011. The Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators. EMBO J. 30:2805–16 [Google Scholar]
  104. Richardson JP. 104.  2002. Rho-dependent termination and ATPases in transcript termination. Biochim. Biophys. Acta 1577:251–60 [Google Scholar]
  105. Ring BZ, Yarnell WS, Roberts JW. 105.  1996. Function of E. coli RNA polymerase σ factor-σ70 in promoter-proximal pausing. Cell 86:485–93 [Google Scholar]
  106. Rocha EP. 106.  2008. The organization of the bacterial genome. Annu. Rev. Genet. 42:211–33 [Google Scholar]
  107. Ross W, Schneider DA, Paul BJ, Mertens A, Gourse RL. 107.  2003. An intersubunit contact stimulating transcription initiation by E. coli RNA polymerase: interaction of the α C-terminal domain and σ region 4. Genes Dev. 17:1293–307 [Google Scholar]
  108. Sanamrad A, Persson F, Lundius EG, Fange D, Gynna AH, Elf J. 108.  2014. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid. PNAS 111:11413–18 [Google Scholar]
  109. Santangelo TJ, Cubonova L, Skinner KM, Reeve JN. 109.  2009. Archaeal intrinsic transcription termination in vivo. J. Bacteriol. 191:7102–8 [Google Scholar]
  110. Savery N. 110.  2011. Prioritizing the repair of DNA damage that is encountered by RNA polymerase. Transcription 2:168–72 [Google Scholar]
  111. Selby CP, Sancar A. 111.  1993. Molecular mechanism of transcription-repair coupling. Science 260:53–58 [Google Scholar]
  112. Selby CP, Sancar A. 112.  1995. Structure and function of transcription-repair coupling factor. II. Catalytic properties. J. Biol. Chem. 270:4890–95 [Google Scholar]
  113. Sevostyanova A, Artsimovitch I. 113.  2010. Functional analysis of Thermus thermophilus transcription factor NusG. Nucleic Acids Res. 38:7432–45 [Google Scholar]
  114. Sevostyanova A, Belogurov GA, Mooney RA, Landick R, Artsimovitch I. 114.  2011. The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol. Cell 43:253–62 [Google Scholar]
  115. Shankar S, Hatoum A, Roberts JW. 115.  2007. A transcription antiterminator constructs a NusA-dependent shield to the emerging transcript. Mol. Cell 27:914–27 [Google Scholar]
  116. Shibata R, Bessho Y, Shinkai A, Nishimoto M, Fusatomi E. 116.  et al. 2007. Crystal structure and RNA-binding analysis of the archaeal transcription factor NusA. Biochem. Biophys. Res. Commun. 355:122–28 [Google Scholar]
  117. Sigmund CD, Morgan EA. 117.  1988. Effects of Escherichia coli Nus A protein on transcription termination in vitro are not increased or decreased by DNA sequences sufficient for antitermination in vivo. Biochemistry 27:5628–35 [Google Scholar]
  118. Smith AJ, Pernstich C, Savery NJ. 118.  2012. Multipartite control of the DNA translocase, Mfd. Nucleic Acids Res. 40:10408–16 [Google Scholar]
  119. Squires CL, Greenblatt J, Li J, Condon C, Squires CL. 119.  1993. Ribosomal RNA antitermination in vitro: requirement for Nus factors and one or more unidentified cellular components. PNAS 90:970–74 [Google Scholar]
  120. Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. 120.  2010. Co-orientation of replication and transcription preserves genome integrity. PLOS Genet. 6:e1000810 [Google Scholar]
  121. Steitz TA. 121.  1998. A mechanism for all polymerases. Nature 391:231–32 [Google Scholar]
  122. Svetlov V, Vassylyev DG, Artsimovitch I. 122.  2004. Discrimination against deoxyribonucleotide substrates by bacterial RNA polymerase. J. Biol. Chem. 279:38087–90 [Google Scholar]
  123. Tehranchi AK, Blankschien MD, Zhang Y, Halliday JA, Srivatsan A. 123.  et al. 2010. The transcription factor DksA prevents conflicts between DNA replication and transcription machinery. Cell 141:595–605 [Google Scholar]
  124. Thomson E, Ferreira-Cerca S, Hurt E. 124.  2013. Eukaryotic ribosome biogenesis at a glance. J. Cell Sci. 126:4815–21 [Google Scholar]
  125. Tomar SK, Artsimovitch I. 125.  2013. NusG-Spt5 proteins—universal tools for transcription modification and communication. Chem. Rev. 113:8604–19 [Google Scholar]
  126. Tornaletti S, Hanawalt PC. 126.  1999. Effect of DNA lesions on transcription elongation. Biochimie 81:139–46 [Google Scholar]
  127. Torres M, Condon C, Balada JM, Squires C, Squires CL. 127.  2001. Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non-ribosomal and ribosomal RNA antitermination. EMBO J. 20:3811–20 [Google Scholar]
  128. Toulme F, Mosrin-Huaman C, Sparkowski J, Das A, Leng M, Rahmouni AR. 128.  2000. GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. EMBO J. 19:6853–59 [Google Scholar]
  129. Toulokhonov I, Artsimovitch I, Landick R. 129.  2001. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292:730–33 [Google Scholar]
  130. Toulokhonov I, Zhang J, Palangat M, Landick R. 130.  2007. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol. Cell 27:406–19 [Google Scholar]
  131. Tran L, van Baarsel JA, Washburn RS, Gottesman ME, Miller JH. 131.  2011. Single-gene deletion mutants of Escherichia coli with altered sensitivity to bicyclomycin, an inhibitor of transcription termination factor Rho. J. Bacteriol. 193:2229–35 [Google Scholar]
  132. Trautinger BW, Jaktaji RP, Rusakova E, Lloyd RG. 132.  2005. RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol. Cell 19:247–58 [Google Scholar]
  133. Trautinger BW, Lloyd RG. 133.  2002. Modulation of DNA repair by mutations flanking the DNA channel through RNA polymerase. EMBO J. 21:6944–53 [Google Scholar]
  134. Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I. 134.  2007. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448:157–62 [Google Scholar]
  135. Vassylyev DG, Vassylyeva MN, Zhang J, Palangat M, Artsimovitch I, Landick R. 135.  2007. Structural basis for substrate loading in bacterial RNA polymerase. Nature 448:163–68 [Google Scholar]
  136. Vijayan V, Jain IH, O'Shea EK. 136.  2011. A high resolution map of a cyanobacterial transcriptome. Genome Biol. 12:R47 [Google Scholar]
  137. Vrentas CE, Gaal T, Ross W, Ebright RH, Gourse RL. 137.  2005. Response of RNA polymerase to ppGpp: requirement for the ω subunit and relief of this requirement by DksA. Genes Dev. 19:2378–87 [Google Scholar]
  138. Vvedenskaya IO, Vahedian-Movahed H, Bird JG, Knoblauch JG, Goldman SR. 138.  et al. 2014. Interactions between RNA polymerase and the “core recognition element” counteract pausing. Science 344:1285–89 [Google Scholar]
  139. Wang D, Bushnell DA, Huang X, Westover KD, Levitt M, Kornberg RD. 139.  2009. Structural basis of transcription: backtracked RNA polymerase II at 3.4 Å resolution. Science 324:1203–6 [Google Scholar]
  140. Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD. 140.  2006. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127:941–54 [Google Scholar]
  141. Wang W, Li GW, Chen C, Xie XS, Zhuang X. 141.  2011. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333:1445–49 [Google Scholar]
  142. Washburn RS, Gottesman ME. 142.  2011. Transcription termination maintains chromosome integrity. PNAS 108:792–97 [Google Scholar]
  143. Weixlbaumer A, Leon K, Landick R, Darst SA. 143.  2013. Structural basis of transcriptional pausing in bacteria. Cell 152:431–41 [Google Scholar]
  144. Westblade LF, Campbell EA, Pukhrambam C, Padovan JC, Nickels BE. 144.  et al. 2010. Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction. Nucleic Acids Res. 38:8357–69 [Google Scholar]
  145. Wimberly H, Shee C, Thornton PC, Sivaramakrishnan P, Rosenberg SM, Hastings PJ. 145.  2013. R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat. Commun. 4:2115 [Google Scholar]
  146. Worbs M, Bourenkov GP, Bartunik HD, Huber R, Wahl MC. 146.  2001. An extended RNA binding surface through arrayed S1 and KH domains in transcription factor NusA. Mol. Cell 7:1177–89 [Google Scholar]
  147. Yakhnin AV, Babitzke P. 147.  2010. Mechanism of NusG-stimulated pausing, hairpin-dependent pause site selection and intrinsic termination at overlapping pause and termination sites in the Bacillus subtilis trp leader. Mol. Microbiol. 76:690–705 [Google Scholar]
  148. Yang W. 148.  2010. Lessons learned from UvrD helicase: mechanism for directional movement. Annu. Rev. Biophys. 39:367–85 [Google Scholar]
  149. Yang X, Molimau S, Doherty GP, Johnston EB, Marles-Wright J. 149.  et al. 2009. The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Rep. 10:997–1002 [Google Scholar]
  150. Yip WS, Vincent NG, Baserga SJ. 150.  2013. Ribonucleoproteins in archaeal pre-rRNA processing and modification. Archaea 2013:614735 [Google Scholar]
  151. Yuzenkova Y, Zenkin N. 151.  2010. Central role of the RNA polymerase trigger loop in intrinsic RNA hydrolysis. PNAS 107:10878–83 [Google Scholar]
  152. Zellars M, Squires CL. 152.  1999. Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG. Mol. Microbiol. 32:1296–304 [Google Scholar]
  153. Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA. 153.  1999. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98:811–24 [Google Scholar]
  154. Zhang J, Palangat M, Landick R. 154.  2010. Role of the RNA polymerase trigger loop in catalysis and pausing.. Nat. Struct. Mol. Biol. 17:99–104 [Google Scholar]
  155. Zhang Y, Mooney RA, Grass JA, Sivaramakrishnan P, Herman C. 155.  et al. 2014. DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest. Mol. Cell 53:766–78 [Google Scholar]
  156. Zuo Y, Wang Y, Steitz TA. 156.  2013. The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Mol. Cell 50:430–36 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error