1932

Abstract

Evolution-related multisubunit RNA polymerases (RNAPs) carry out RNA synthesis in all domains life. Although their catalytic cores and fundamental mechanisms of transcription elongation are conserved, the initiation stage of the transcription cycle differs substantially in bacteria, archaea, and eukaryotes in terms of the requirements for accessory factors and details of the molecular mechanisms. This review focuses on recent insights into the evolution of the transcription apparatus with regard to () the surprisingly pervasive double-Ψ β-barrel active-site configuration among different nucleic acid polymerase families, () the origin and phylogenetic distribution of TBP, TFB, and TFE transcription factors, and () the functional relationship between transcription and translation initiation mechanisms in terms of transcription start site selection and RNA structure.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091014-104145
2017-09-08
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/71/1/annurev-micro-091014-104145.html?itemId=/content/journals/10.1146/annurev-micro-091014-104145&mimeType=html&fmt=ahah

Literature Cited

  1. Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM. 1.  2005. The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol. Rev. 29:231–62 [Google Scholar]
  2. Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M. 2.  et al. 2010. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol. Rev. 34:883–923 [Google Scholar]
  3. Artsimovitch I, Vassylyeva MN, Svetlov D, Svetlov V, Perederina A. 3.  et al. 2005. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122:351–63 [Google Scholar]
  4. Babski J, Haas KA, Nather-Schindler D, Pfeiffer F, Forstner KU. 4.  et al. 2016. Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq). BMC Genomics 17:629 [Google Scholar]
  5. Bae B, Feklistov A, Lass-Napiorkowska A, Landick R, Darst SA. 5.  2015. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife 4:e08504 [Google Scholar]
  6. Basu RS, Warner BA, Molodtsov V, Pupov D, Esyunina D. 6.  et al. 2014. Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme. J. Biol. Chem. 289:24549–59 [Google Scholar]
  7. Bell SD, Jaxel C, Nadal M, Kosa PF, Jackson SP. 7.  1998. Temperature, template topology, and factor requirements of archaeal transcription. PNAS 95:15218–22 [Google Scholar]
  8. Benelli D, Londei P. 8.  2009. Begin at the beginning: evolution of translational initiation. Res. Microbiol. 160:493–501 [Google Scholar]
  9. Blombach F, Daviter T, Fielden D, Grohmann D, Smollett K, Werner F. 9.  2013. Archaeology of RNA polymerase: factor swapping during the transcription cycle. Biochem. Soc. Trans. 41:362–67 [Google Scholar]
  10. Blombach F, Makarova KS, Marrero J, Siebers B, Koonin EV, van der Oost J. 10.  2009. Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea. Biol. Direct. 4:39 [Google Scholar]
  11. Blombach F, Salvadori E, Fouqueau T, Yan J, Reimann J. 11.  et al. 2015. Archaeal TFEα/β is a hybrid of TFIIE and the RNA polymerase III subcomplex hRPC62/39. eLife 4:e08378 [Google Scholar]
  12. Blombach F, Smollett KL, Grohmann D, Werner F. 12.  2016. Molecular mechanisms of transcription initiation-structure, function, and evolution of TFE/TFIIE-like factors and open complex formation. J. Mol. Biol. 428:2592–606 [Google Scholar]
  13. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K. 13.  et al. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–53 [Google Scholar]
  14. Brindefalk B, Dessailly BH, Yeats C, Orengo C, Werner F, Poole AM. 14.  2013. Evolutionary history of the TBP-domain superfamily. Nucleic Acids Res 41:2832–45 [Google Scholar]
  15. Brochier-Armanet C, Gribaldo S, Forterre P. 15.  2008. A DNA topoisomerase IB in Thaumarchaeota testifies for the presence of this enzyme in the last common ancestor of Archaea and Eucarya. Biol. Direct 3:54 [Google Scholar]
  16. Brown DR, Barton G, Pan Z, Buck M, Wigneshweraraj S. 16.  2014. Nitrogen stress response and stringent response are coupled in Escherichia coli. Nat. Commun. 5:4115 [Google Scholar]
  17. Brun I, Sentenac A, Werner M. 17.  1997. Dual role of the C34 subunit of RNA polymerase III in transcription initiation. EMBO J 16:5730–41 [Google Scholar]
  18. Burton SP, Burton ZF. 18.  2014. The σ enigma: bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs. Transcription 5:e967599 [Google Scholar]
  19. Cavanagh AT, Wassarman KM. 19.  2014. 6S RNA, a global regulator of transcription in Escherichia coli, Bacillus subtilis, and beyond. Annu. Rev. Microbiol 68:45–60 [Google Scholar]
  20. Cortes T, Schubert OT, Rose G, Arnvig KB, Comas I. 20.  et al. 2013. Genome-wide mapping of transcriptional start sites defines an extensive leaderless transcriptome in mycobacterium tuberculosis. Cell Rep 5:1121–31 [Google Scholar]
  21. Cramer P. 21.  2002. Common structural features of nucleic acid polymerases. BioEssays 24:724–29 [Google Scholar]
  22. Cramer P, Bushnell DA, Kornberg RD. 22.  2001. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292:1863–76 [Google Scholar]
  23. Forget D, Langelier MF, Therien C, Trinh V, Coulombe B. 23.  2004. Photo-cross-linking of a purified preinitiation complex reveals central roles for the RNA polymerase II mobile clamp and TFIIE in initiation mechanisms. Mol. Cell. Biol. 24:1122–31 [Google Scholar]
  24. Fouqueau T, Zeller ME, Cheung AC, Cramer P, Thomm M. 24.  2013. The RNA polymerase trigger loop functions in all three phases of the transcription cycle. Nucleic Acids Res 41:7048–59 [Google Scholar]
  25. Gleghorn ML, Davydova EK, Basu R, Rothman-Denes LB, Murakami KS. 25.  2011. X-ray crystal structures elucidate the nucleotidyl transfer reaction of transcript initiation using two nucleotides. PNAS 108:3566–71 [Google Scholar]
  26. Grill S, Gualerzi CO, Londei P, Blasi U. 26.  2000. Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation. EMBO J 19:4101–10 [Google Scholar]
  27. Grohmann D, Nagy J, Chakraborty A, Klose D, Fielden D. 27.  et al. 2011. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation. Mol. Cell 43:263–74 [Google Scholar]
  28. Guarino LA, Xu B, Jin J, Dong W. 28.  1998. A virus-encoded RNA polymerase purified from baculovirus-infected cells. J. Virol. 72:7985–91 [Google Scholar]
  29. Hausner W, Wettach J, Hethke C, Thomm M. 29.  1996. Two transcription factors related with the eucaryal transcription factors TATA-binding protein and transcription factor IIB direct promoter recognition by an archaeal RNA polymerase. J. Biol. Chem. 271:30144–48 [Google Scholar]
  30. He Y, Yan C, Fang J, Inouye C, Tjian R. 30.  et al. 2016. Near-atomic resolution visualization of human transcription promoter opening. Nature 533:359–65 [Google Scholar]
  31. Heyduk T, Heyduk E, Severinov K, Tang H, Ebright RH. 31.  1996. Determinants of RNA polymerase α subunit for interaction with β, β′, and σ subunits: hydroxyl-radical protein footprinting. PNAS 93:10162–66 [Google Scholar]
  32. Hirata A, Klein BJ, Murakami KS. 32.  2008. The X-ray crystal structure of RNA polymerase from Archaea. Nature 451:851–54 [Google Scholar]
  33. Holstege FC, Tantin D, Carey M, van der Vliet PC, Timmers HT. 33.  1995. The requirement for the basal transcription factor IIE is determined by the helical stability of promoter DNA. EMBO J 14:810–19 [Google Scholar]
  34. Iyer LM, Aravind L. 34.  2012. Insights from the architecture of the bacterial transcription apparatus. J. Struct. Biol. 179:299–319 [Google Scholar]
  35. Iyer LM, Balaji S, Koonin EV, Aravind L. 35.  2006. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117:156–84 [Google Scholar]
  36. Iyer LM, Koonin EV, Aravind L. 36.  2003. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct. Biol. 3:1 [Google Scholar]
  37. Iyer LM, Koonin EV, Aravind L. 37.  2004. Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer. Gene 335:73–88 [Google Scholar]
  38. Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP. 38.  2001. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292:1319–25 [Google Scholar]
  39. Kadonaga JT. 39.  2012. Perspectives on the RNA polymerase II core promoter. Wiley Interdiscip. Rev. Dev. Biol. 1:40–51 [Google Scholar]
  40. Kaplan CD, Larsson KM, Kornberg RD. 40.  2008. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by α-amanitin. Mol. Cell 30:547–56 [Google Scholar]
  41. Kazantsev AV, Pace NR. 41.  2006. Bacterial RNase P: a new view of an ancient enzyme. Nat. Rev. Microbiol. 4:729–40 [Google Scholar]
  42. Kim D, Hong JSJ, Qiu Y, Nagarajan H, Seo JH. 42.  et al. 2012. Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling. PLOS Genet 8:e1002867 [Google Scholar]
  43. Kim KS, Lee Y. 43.  2004. Regulation of 6S RNA biogenesis by switching utilization of both sigma factors and endoribonucleases. Nucleic Acids Res 32:6057–68 [Google Scholar]
  44. Kireeva ML, Nedialkov YA, Cremona GH, Purtov YA, Lubkowska L. 44.  et al. 2008. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol. Cell 30:557–66 [Google Scholar]
  45. Knutson BA, Broyles SS. 45.  2008. Expansion of poxvirus RNA polymerase subunits sharing homology with corresponding subunits of RNA polymerase II. Virus Genes 36:307–11 [Google Scholar]
  46. Ko JH, Han K, Kim Y, Sim S, Kim KS. 46.  et al. 2008. Dual function of RNase E for control of M1 RNA biosynthesis in Escherichia coli. Biochemistry 47:762–70 [Google Scholar]
  47. Komine Y, Kitabatake M, Yokogawa T, Nishikawa K, Inokuchi H. 47.  1994. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. PNAS 91:9223–27 [Google Scholar]
  48. Kostrewa D, Zeller ME, Armache KJ, Seizl M, Leike K. 48.  et al. 2009. RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 462:323–30 [Google Scholar]
  49. Kuznar J, Salas ML, Vinuela E. 49.  1980. DNA-dependent RNA polymerase in African swine fever virus. Virology 101:169–75 [Google Scholar]
  50. Lane WJ, Darst SA. 50.  2010. Molecular evolution of multisubunit RNA polymerases: sequence analysis. J. Mol. Biol. 395:671–85 [Google Scholar]
  51. Lane WJ, Darst SA. 51.  2010. Molecular evolution of multisubunit RNA polymerases: structural analysis. J. Mol. Biol. 395:686–704 [Google Scholar]
  52. Larson MH, Mooney RA, Peters JM, Windgassen T, Nayak D. 52.  et al. 2014. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344:1042–47 [Google Scholar]
  53. Lehmann E, Brueckner F, Cramer P. 53.  2007. Molecular basis of RNA-dependent RNA polymerase II activity. Nature 450:445–49 [Google Scholar]
  54. Liu B, Steitz TA. 54.  2016. Structural insights into NusG regulating transcription elongation. Nucleic Acids Res 45:968–74 [Google Scholar]
  55. Minakhin L, Bhagat S, Brunning A, Campbell EA, Darst SA. 55.  et al. 2001. Bacterial RNA polymerase subunit ω and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. PNAS 98:892–97 [Google Scholar]
  56. Moss B, Ahn BY, Amegadzie B, Gershon PD, Keck JG. 56.  1991. Cytoplasmic transcription system encoded by vaccinia virus. J. Biol. Chem. 266:1355–58 [Google Scholar]
  57. Nagy J, Grohmann D, Cheung AC, Schulz S, Smollett K. 57.  et al. 2015. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS. Nat. Commun. 6:6161 [Google Scholar]
  58. Naji S, Grünberg S, Thomm M. 58.  2007. The RPB7 orthologue E′ is required for transcriptional activity of a reconstituted archaeal core enzyme at low temperatures and stimulates open complex formation. J. Biol. Chem. 282:11047–57 [Google Scholar]
  59. Nakagawa S, Niimura Y, Miura K, Gojobori T. 59.  2010. Dynamic evolution of translation initiation mechanisms in prokaryotes. PNAS 107:6382–87 [Google Scholar]
  60. Nedialkov YA, Opron K, Assaf F, Artsimovitch I, Kireeva ML. 60.  et al. 2013. The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation. Biochim. Biophys. Acta 1829:187–98 [Google Scholar]
  61. Parvin JD, Sharp PA. 61.  1993. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73:533–40 [Google Scholar]
  62. Peck-Miller KA, Altman S. 62.  1991. Kinetics of the processing of the precursor to 4.5 S RNA, a naturally occurring substrate for RNase P from Escherichia coli. J. Mol. Biol. 221:1–5 [Google Scholar]
  63. Plaschka C, Hantsche M, Dienemann C, Burzinski C, Plitzko J, Cramer P. 63.  2016. Transcription initiation complex structures elucidate DNA opening. Nature 533:353–58 [Google Scholar]
  64. Puhler G, Leffers H, Gropp F, Palm P, Klenk HP. 64.  et al. 1989. Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. PNAS 86:4569–73 [Google Scholar]
  65. Qiu C, Erinne OC, Dave JM, Cui P, Jin H. 65.  et al. 2016. High-resolution phenotypic landscape of the RNA polymerase II trigger loop. PLOS Genet 12:e1006321 [Google Scholar]
  66. Qureshi SA, Bell SD, Jackson SP. 66.  1997. Factor requirements for transcription in the Archaeon Sulfolobus shibatae. EMBO J. 16:2927–36 [Google Scholar]
  67. Rackwitz HR, Rohde W, Sanger HL. 67.  1981. DNA-dependent RNA polymerase II of plant origin transcribes viroid RNA into full-length copies. Nature 291:297–301 [Google Scholar]
  68. Randau L, Schröder I, Söll D. 68.  2008. Life without RNase P. Nature 453:120–23 [Google Scholar]
  69. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ. 69.  et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–37 [Google Scholar]
  70. Rodriguez JM, Salas ML. 70.  2013. African swine fever virus transcription. Virus Res 173:15–28 [Google Scholar]
  71. Ruprich-Robert G, Thuriaux P. 71.  2010. Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases. Nucleic Acids Res 38:4559–69 [Google Scholar]
  72. Sainsbury S, Niesser J, Cramer P. 72.  2013. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Nature 493:437–40 [Google Scholar]
  73. Salgado PS, Koivunen MR, Makeyev EV, Bamford DH, Stuart DI, Grimes JM. 73.  2006. The structure of an RNAi polymerase links RNA silencing and transcription. PLOS Biol 4:e434 [Google Scholar]
  74. Sasse-Dwight S, Gralla JD. 74.  1989. KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J. Biol. Chem. 264:8074–81 [Google Scholar]
  75. Sauguet L, Raia P, Henneke G, Delarue M. 75.  2016. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography. Nat. Commun. 7:12227 [Google Scholar]
  76. Severinov K, Mooney R, Darst SA, Landick R. 76.  1997. Tethering of the large subunits of Escherichia coli RNA polymerase. J. Biol. Chem. 272:24137–40 [Google Scholar]
  77. Severinov K, Mustaev A, Kukarin A, Muzzin O, Bass I. 77.  et al. 1996. Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the β and β′ subunits of Escherichia coli RNA polymerase. J. Biol. Chem. 271:27969–74 [Google Scholar]
  78. Sevostyanova A, Svetlov V, Vassylyev DG, Artsimovitch I. 78.  2008. The elongation factor RfaH and the initiation factor σ bind to the same site on the transcription elongation complex. PNAS 105:865–70 [Google Scholar]
  79. Sharma V, Colson P, Giorgi R, Pontarotti P, Raoult D. 79.  2014. DNA-dependent RNA polymerase detects hidden giant viruses in published databanks. Genome Biol. Evol. 6:1603–10 [Google Scholar]
  80. Shen Y, Musti K, Hiramoto M, Kikuchi H, Kawarabayashi Y, Matsui I. 80.  2001. Invariant Asp-1122 and Asp-1124 are essential residues for polymerization catalysis of family D DNA polymerase from Pyrococcus horikoshii. J. Biol. Chem. 276:27376–83 [Google Scholar]
  81. Sosunov V, Zorov S, Sosunova E, Nikolaev A, Zakeyeva I. 81.  et al. 2005. The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymerase. Nucleic Acids Res 33:4202–11 [Google Scholar]
  82. Storz G, Vogel J, Wassarman KM. 82.  2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43:880–91 [Google Scholar]
  83. Tan L, Wiesler S, Trzaska D, Carney HC, Weinzierl RO. 83.  2008. Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J. Biol. 7:40 [Google Scholar]
  84. Tous C, Vega-Palas MA, Vioque A. 84.  2001. Conditional expression of RNase P in the cyanobacterium Synechocystis sp. PCC6803 allows detection of precursor RNAs: insight in the in vivo maturation pathway of transfer and other stable RNAs. J. Biol. Chem. 276:29059–66 [Google Scholar]
  85. Udagawa T, Shimizu Y, Ueda T. 85.  2004. Evidence for the translation initiation of leaderless mRNAs by the intact 70 S ribosome without its dissociation into subunits in eubacteria. J. Biol. Chem. 279:8539–46 [Google Scholar]
  86. Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN. 86.  et al. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417:712–19 [Google Scholar]
  87. Vvedenskaya IO, Zhang Y, Goldman SR, Valenti A, Visone V. 87.  et al. 2015. Massively systematic transcript end readout, “MASTER”: transcription start site selection, transcriptional slippage, and transcript yields. Mol. Cell 60:953–65 [Google Scholar]
  88. Wagner SD, Yakovchuk P, Gilman B, Ponicsan SL, Drullinger LF. 88.  et al. 2013. RNA polymerase II acts as an RNA-dependent RNA polymerase to extend and destabilize a non-coding RNA. EMBO J 32:781–90 [Google Scholar]
  89. Werner F. 89.  2007. Structure and function of archaeal RNA polymerases. Mol. Microbiol. 65:1395–404 [Google Scholar]
  90. Werner F. 90.  2012. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J. Mol. Biol. 417:13–27 [Google Scholar]
  91. Werner F, Grohmann D. 91.  2011. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 9:85–98 [Google Scholar]
  92. Werner F, Weinzierl RO. 92.  2005. Direct modulation of RNA polymerase core functions by basal transcription factors. Mol. Cell. Biol. 25:8344–55 [Google Scholar]
  93. Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R. 93.  2010. A single-base resolution map of an archaeal transcriptome. Genome Res 20:133–41 [Google Scholar]
  94. Xie WQ, Jager K, Potts M. 94.  1989. Cyanobacterial RNA polymerase genes rpoC1 and rpoC2 correspond to rpoC of Escherichia coli. J. Bacteriol 171:1967–73 [Google Scholar]
  95. Yakunina M, Artamonova T, Borukhov S, Makarova KS, Severinov K, Minakhin L. 95.  2015. A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage. Nucleic Acids Res 43:10411–20 [Google Scholar]
  96. Yang Y, Darbari VC, Zhang N, Lu D, Glyde R. 96.  et al. 2015. Structures of the RNA polymerase-σ54 reveal new and conserved regulatory strategies. Science 349:882–85 [Google Scholar]
  97. Yutin N, Colson P, Raoult D, Koonin EV. 97.  2013. Mimiviridae: clusters of orthologous genes, reconstruction of gene repertoire evolution and proposed expansion of the giant virus family. Virol J 10:106 [Google Scholar]
  98. Yutin N, Wolf YI, Koonin EV. 98.  2014. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology 466–67:38–52 [Google Scholar]
  99. Yuzenkova Y, Bochkareva A, Tadigotla VR, Roghanian M, Zorov S. 99.  et al. 2010. Stepwise mechanism for transcription fidelity. BMC Biol 8:54 [Google Scholar]
  100. Zhang J, Palangat M, Landick R. 100.  2010. Role of the RNA polymerase trigger loop in catalysis and pausing. Nat. Struct. Mol. Biol. 17:99–104 [Google Scholar]
  101. Zheng X, Hu GQ, She ZS, Zhu H. 101.  2011. Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes. BMC Genomics 12:361 [Google Scholar]
  102. Zuo Y, Steitz TA. 102.  2015. Crystal structures of the E. coli transcription initiation complexes with a complete bubble. Mol. Cell 58:534–40 [Google Scholar]
/content/journals/10.1146/annurev-micro-091014-104145
Loading
/content/journals/10.1146/annurev-micro-091014-104145
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error