Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alam FM, Turner CE, Smith K, Wiles S, Sriskandan S. 1.  2013. Inactivation of the CovR/S virulence regulator impairs infection in an improved murine model of Streptococcus pyogenes naso-pharyngeal infection. PLOS ONE 8:4e61655 [Google Scholar]
  2. Albiger B, Sandgren A, Katsuragi H, Meyer-Hoffert U, Beiter K. 2.  et al. 2005. Myeloid differentiation factor 88-dependent signalling controls bacterial growth during colonization and systemic pneumococcal disease in mice. Cell. Microbiol. 7:111603–15 [Google Scholar]
  3. Albrich WC, Madhi SA, Adrian PV, van Niekerk N, Mareletsi T. 3.  et al. 2012. Use of a rapid test of pneumococcal colonization density to diagnose pneumococcal pneumonia. Clin. Infect. Dis. 54:5601–9 [Google Scholar]
  4. Archer NK, Harro JM, Shirtliff ME. 4.  2013. Clearance of Staphylococcus aureus nasal carriage is T cell dependent and mediated through interleukin-17A expression and neutrophil influx. Infect. Immun. 81:62070–75 [Google Scholar]
  5. Bakaletz LO. 5.  2010. Immunopathogenesis of polymicrobial otitis media. J. Leukoc. Biol. 87:2213–22 [Google Scholar]
  6. Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B. 6.  et al. 2006. A pneumococcal pilus influences virulence and host inflammatory responses. PNAS 103:82857–62 [Google Scholar]
  7. Baur S, Rautenberg M, Faulstich M, Grau T, Severin Y. 7.  et al. 2014. A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLOS Pathog. 10:5e1004089 [Google Scholar]
  8. Beisswenger C, Lysenko ES, Weiser JN. 8.  2009. Early bacterial colonization induces Toll-like receptor-dependent transforming growth factor β signaling in the epithelium. Infect. Immun. 77:52212–20 [Google Scholar]
  9. Bogaert D, De Groot R, Hermans PWM. 9.  2004. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 4:3144–54Reviews the importance of pneumococcal colonization in promoting invasive infection. [Google Scholar]
  10. Bogaert D, Weinberger D, Thompson C, Lipsitch M, Malley R. 10.  2009. Impaired innate and adaptive immunity to Streptococcus pneumoniae and its effect on colonization in an infant mouse model. Infect. Immun. 77:41613–22 [Google Scholar]
  11. Brockmeier SL, Lager KM. 11.  2002. Experimental airborne transmission of porcine reproductive and respiratory syndrome virus and Bordetella bronchiseptica. Vet. Microbiol. 89:4267–75 [Google Scholar]
  12. Brown SP, Le Chat L, Taddei F. 12.  2008. Evolution of virulence: Triggering host inflammation allows invading pathogens to exclude competitors. Ecol. Lett. 11:144–51Uses ecological theory to explain how host inflammation can mediate within-host bacterial competition. [Google Scholar]
  13. Buckwalter CM, King SJ. 13.  2012. Pneumococcal carbohydrate transport: food for thought. Trends Microbiol. 20:11517–22 [Google Scholar]
  14. Burian M, Rautenberg M, Kohler T, Fritz M, Krismer B. 14.  et al. 2010. Temporal expression of adhesion factors and activity of global regulators during establishment of Staphylococcus aureus nasal colonization. J. Infect. Dis. 201:91414–21 [Google Scholar]
  15. Burian M, Wolz C, Goerke C. 15.  2010. Regulatory adaptation of Staphylococcus aureus during nasal colonization of humans. PLOS ONE 5:4e10040 [Google Scholar]
  16. Bustamante J, Zhang S-Y, von Bernuth H, Abel L, Casanova J-L. 16.  2008. From infectious diseases to primary immunodeficiencies. Immunol. Allergy Clin. North. Am. 28:2235–58 [Google Scholar]
  17. Clark SE, Snow J, Li J, Zola TA, Weiser JN. 17.  2012. Phosphorylcholine allows for evasion of bactericidal antibody by Haemophilus influenzae. PLOS Pathog. 8:3e1002521 [Google Scholar]
  18. Clarke TB, Francella N, Huegel A, Weiser JN. 18.  2011. Invasive bacterial pathogens exploit TLR-mediated downregulation of tight junction components to facilitate translocation across the epithelium. Cell Host Microbe 9:5404–14 [Google Scholar]
  19. Costalonga M, Cleary PP, Fischer LA, Zhao Z. 19.  2009. Intranasal bacteria induce Th1 but not Treg or Th2. Mucosal Immunol. 2:185–95 [Google Scholar]
  20. Cotter PA, Yuk MH, Mattoo S, Akerley BJ, Boschwitz J. 20.  et al. 1998. Filamentous hemagglutinin of Bordetella bronchiseptica is required for efficient establishment of tracheal colonization. Infect. Immun. 66:125921–29 [Google Scholar]
  21. Cywes C, Stamenkovic I, Wessels MR. 21.  2000. CD44 as a receptor for colonization of the pharynx by group A Streptococcus. J. Clin. Investig. 106:8995–1002 [Google Scholar]
  22. Das R, LaRose MI, Hergott CB, Leng L, Bucala R, Weiser JN. 22.  2014. Macrophage migration inhibitory factor promotes clearance of pneumococcal colonization. J. Immunol. 193:2764–72 [Google Scholar]
  23. Davis KM, Akinbi HT, Standish AJ, Weiser JN. 23.  2008. Resistance to mucosal lysozyme compensates for the fitness deficit of peptidoglycan modifications by Streptococcus pneumoniae. PLOS Pathog. 4:12e1000241 [Google Scholar]
  24. Davis KM, Nakamura S, Weiser JN. 24.  2011. Nod2 sensing of lysozyme-digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice. J. Clin. Investig. 121:93666–76 [Google Scholar]
  25. Dawid S, Roche AM, Weiser JN. 25.  2007. The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo. Infect. Immun. 75:1443–51 [Google Scholar]
  26. Diavatopoulos DA, Short KR, Price JT, Wilksch JJ, Brown LE. 26.  et al. 2010. Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. FASEB J. 24:61789–98Reports an infant mouse model of pneumococcal transmission during influenza coinfection that can be manipulated. [Google Scholar]
  27. Dorrington MG, Roche AM, Chauvin SE, Tu Z, Mossman KL. 27.  et al. 2013. MARCO is required for TLR2- and Nod2-mediated responses to Streptococcus pneumoniae and clearance of pneumococcal colonization in the murine nasopharynx. J. Immunol. 190:1250–58 [Google Scholar]
  28. Exley RM, Goodwin L, Mowe E, Shaw J, Smith H. 28.  et al. 2005. Neisseria meningitidis lactate permease is required for nasopharyngeal colonization. Infect. Immun. 73:95762–66 [Google Scholar]
  29. Fahy JV, Dickey BF. 29.  2010. Airway mucus function and dysfunction. N. Engl. J. Med. 363:232233–47 [Google Scholar]
  30. González-Zorn B, Senna JPM, Fiette L, Shorte S, Testard A. 30.  et al. 2005. Bacterial and host factors implicated in nasal carriage of methicillin-resistant Staphylococcus aureus in mice. Infect. Immun. 73:31847–51 [Google Scholar]
  31. Gray BM, Converse GM, Dillon HC. 31.  1980. Epidemiologic studies of Streptococcus pneumoniae in infants: acquisition, carriage, and infection during the first 24 months of life. J. Infect. Dis. 142:6923–33 [Google Scholar]
  32. Halsey NA, Korock C, Johansen TL, Glode MP. 32.  1980. Intralitter transmission of Haemophilus influenzae type B in infant rats and rifampin eradication of nasopharyngeal colonization. J. Infect. Dis. 142:5739–43 [Google Scholar]
  33. Harkema JR, Hotchkiss JA, Harmsen AG, Henderson RF. 33.  1988. In vivo effects of transient neutrophil influx on nasal respiratory epithelial mucosubstances: quantitative histochemistry. Am. J. Pathol. 130:3605–15 [Google Scholar]
  34. Harvill ET, Cotter PA, Yuk MH, Miller JF. 34.  1999. Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. Infect. Immun. 67:31493–500 [Google Scholar]
  35. Hendriksen WT, Bootsma HJ, Estevão S, Hoogenboezem T, de Jong A. 35.  et al. 2008. CodY of Streptococcus pneumoniae: link between nutritional gene regulation and colonization. J. Bacteriol. 190:2590–601 [Google Scholar]
  36. Higgins SC, Jarnicki AG, Lavelle EC, Mills KHG. 36.  2006. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J. Immunol. 177:117980–89 [Google Scholar]
  37. Hirano T, Kurono Y, Ichimiya I, Suzuki M, Mogi G. 37.  1999. Effects of influenza A virus on lectin-binding patterns in murine nasopharyngeal mucosa and on bacterial colonization. Otolaryngol. Head Neck Surg. 121:5616–21 [Google Scholar]
  38. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H. 38.  et al. 2010. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:7296346–49 [Google Scholar]
  39. Iyer R, Camilli A. 39.  2007. Sucrose metabolism contributes to in vivo fitness of Streptococcus pneumoniae. Mol. Microbiol. 66:11–13 [Google Scholar]
  40. Janoff EN, Rubins JB, Fasching C, Charboneau D, Rahkola JT. 40.  et al. 2014. Pneumococcal IgA1 protease subverts specific protection by human IgA1. Mucosal Immunol. 7:2249–56 [Google Scholar]
  41. Jensch I, Gámez G, Rothe M, Ebert S, Fulde M. 41.  et al. 2010. PavB is a surface-exposed adhesin of Streptococcus pneumoniae contributing to nasopharyngeal colonization and airways infections. Mol. Microbiol. 77:122–43 [Google Scholar]
  42. Jurcisek JA, Bookwalter JE, Baker BD, Fernandez S, Novotny LA. 42.  et al. 2007. The PilA protein of non-typeable Haemophilus influenzae plays a role in biofilm formation, adherence to epithelial cells and colonization of the mammalian upper respiratory tract. Mol. Microbiol. 65:51288–99 [Google Scholar]
  43. Kadioglu A, Brewin H, Härtel T, Brittan JL, Klein M. 43.  et al. 2010. Pneumococcal protein PavA is important for nasopharyngeal carriage and development of sepsis. Mol. Oral Microbiol. 25:150–60 [Google Scholar]
  44. Kadioglu A, Taylor S, Iannelli F, Pozzi G, Mitchell TJ, Andrew PW. 44.  2002. Upper and lower respiratory tract infection by Streptococcus pneumoniae is affected by pneumolysin deficiency and differences in capsule type. Infect. Immun. 70:62886–90 [Google Scholar]
  45. Kadioglu A, Weiser JN, Paton JC, Andrew PW. 45.  2008. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat. Rev. Microbiol. 6:4288–301 [Google Scholar]
  46. Kehl-Fie TE, Skaar EP. 46.  2010. Nutritional immunity beyond iron: a role for manganese and zinc. Curr. Opin. Chem. Biol. 14:2218–24 [Google Scholar]
  47. Kilian M, Poulsen K, Blomqvist T, Håvarstein LS, Bek-Thomsen M. 47.  et al. 2008. Evolution of Streptococcus pneumoniae and its close commensal relatives. PLOS ONE 3:7e2683 [Google Scholar]
  48. Kim JO, Weiser JN. 48.  1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177:2368–77 [Google Scholar]
  49. King SJ, Hippe KR, Gould JM, Bae D, Peterson S. 49.  et al. 2004. Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol. Microbiol. 54:1159–71 [Google Scholar]
  50. Kirimanjeswara GS, Mann PB, Harvill ET. 50.  2003. Role of antibodies in immunity to Bordetella infections. Infect. Immun. 71:41719–24 [Google Scholar]
  51. Kiser KB, Cantey-Kiser JM, Lee JC. 51.  1999. Development and characterization of a Staphylococcus aureus nasal colonization model in mice. Infect. Immun. 67:105001–6 [Google Scholar]
  52. Kramer A, Schwebke I, Kampf G. 52.  2006. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 6:130 [Google Scholar]
  53. Krone CL, Trzciński K, Zborowski T, Sanders EAM, Bogaert D. 53.  2013. Impaired innate mucosal immunity in aged mice permits prolonged Streptococcus pneumoniae colonization. Infect. Immun. 81:124615–25 [Google Scholar]
  54. Lijek RS, Luque SL, Liu Q, Parker D, Bae T, Weiser JN. 54.  2012. Protection from the acquisition of Staphylococcus aureus nasal carriage by cross-reactive antibody to a pneumococcal dehydrogenase. PNAS 109:3413823–28 [Google Scholar]
  55. Lu Y-J, Gross J, Bogaert D, Finn A, Bagrade L. 55.  et al. 2008. Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLOS Pathog. 4:9e1000159 [Google Scholar]
  56. Luke NR, Jurcisek JA, Bakaletz LO, Campagnari AA. 56.  2007. Contribution of Moraxella catarrhalis type IV pili to nasopharyngeal colonization and biofilm formation. Infect. Immun. 75:125559–64 [Google Scholar]
  57. Lysenko ES, Clarke TB, Shchepetov M, Ratner AJ, Roper DI. 57.  et al. 2007. Nod1 signaling overcomes resistance of S. pneumoniae to opsonophagocytic killing. PLOS Pathog. 3:8e118 [Google Scholar]
  58. Lysenko ES, Ratner AJ, Nelson AL, Weiser JN. 58.  2005. The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLOS Pathog. 1:1e1Shows how host inflammation can control immune-mediated competition between bacteria. [Google Scholar]
  59. Magee AD, Yother J. 59.  2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect. Immun. 69:63755–61 [Google Scholar]
  60. Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M. 60.  et al. 2003. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. PNAS 100:41966–71 [Google Scholar]
  61. Malley R, Stack AM, Ferretti ML, Thompson CM, Saladino RA. 61.  1998. Anticapsular polysaccharide antibodies and nasopharyngeal colonization with Streptococcus pneumoniae in infant rats. J. Infect. Dis. 178:3878–82 [Google Scholar]
  62. Manso AS, Chai MH, Atack JM, Furi L, De Ste Croix M. 62.  et al. 2014. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat. Commun. 5:5055 [Google Scholar]
  63. Margolis E, Levin BR. 63.  2007. Within-host evolution for the invasiveness of commensal bacteria: an experimental study of bacteremias resulting from Haemophilus influenzae nasal carriage. J. Infect. Dis. 196:71068–75 [Google Scholar]
  64. Marion C, Aten AE, Woodiga SA, King SJ. 64.  2011. Identification of an ATPase, MsmK, which energizes multiple carbohydrate ABC transporters in Streptococcus pneumoniae. Infect. Immun. 79:104193–200 [Google Scholar]
  65. Marion C, Burnaugh AM, Woodiga SA, King SJ. 65.  2011. Sialic acid transport contributes to pneumococcal colonization. Infect. Immun. 79:31262–69 [Google Scholar]
  66. Marion C, Stewart JM, Tazi MF, Burnaugh AM, Linke CM. 66.  et al. 2012. Streptococcus pneumoniae can utilize multiple sources of hyaluronic acid for growth. Infect. Immun. 80:41390–98 [Google Scholar]
  67. Marks LR, Reddinger RM, Hakansson AP. 67.  2012. High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. mBio 3:5e00200–12 [Google Scholar]
  68. Matthias KA, Roche AM, Standish AJ, Shchepetov M, Weiser JN. 68.  2008. Neutrophil-toxin interactions promote antigen delivery and mucosal clearance of Streptococcus pneumoniae. J. Immunol. 180:96246–54 [Google Scholar]
  69. McCullers JA. 69.  2014. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat. Rev. Microbiol. 12:4252–62A comprehensive review of the synergy between influenza and respiratory pathogens. [Google Scholar]
  70. McCullers JA, McAuley JL, Browall S, Iverson AR, Boyd KL, Henriques-Normark B. 70.  2010. Influenza enhances susceptibility to natural acquisition of and disease due to Streptococcus pneumoniae in ferrets. J. Infect. Dis. 202:81287–95 [Google Scholar]
  71. McDevitt CA, Ogunniyi AD, Valkov E, Lawrence MC, Kobe B. 71.  et al. 2011. A molecular mechanism for bacterial susceptibility to zinc. PLOS Pathog. 7:11e1002357 [Google Scholar]
  72. Melvin JA, Scheller EV, Miller JF, Cotter PA. 72.  2014. Bordetella pertussis pathogenesis: current and future challenges. Nat. Rev. Microbiol. 12:4274–88 [Google Scholar]
  73. Metzger DW, Sun K. 73.  2013. Immune dysfunction and bacterial coinfections following influenza. J. Immunol. 191:52047–52 [Google Scholar]
  74. Mina MJ, McCullers JA, Klugman KP. 74.  2014. Live attenuated influenza vaccine enhances colonization of Streptococcus pneumoniae and Staphylococcus aureus in mice. mBio 5:1e01040–13 [Google Scholar]
  75. Mizgerd JP, Skerrett SJ. 75.  2008. Animal models of human pneumonia. Am. J. Physiol. Lung Cell. Mol. Physiol. 294:3L387–98 [Google Scholar]
  76. Mulcahy ME, Geoghegan JA, Monk IR, O'Keeffe KM, Walsh EJ. 76.  et al. 2012. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLOS Pathog. 8:12e1003092 [Google Scholar]
  77. Musher DM. 77.  2003. How contagious are common respiratory tract infections?. N. Engl. J. Med. 348:131256–66 [Google Scholar]
  78. Nakamura S, Davis KM, Weiser JN. 78.  2011. Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice. J. Clin. Investig. 121:93657–65 [Google Scholar]
  79. Nelson AL, Barasch JM, Bunte RM, Weiser JN. 79.  2005. Bacterial colonization of nasal mucosa induces expression of siderocalin, an iron-sequestering component of innate immunity. Cell. Microbiol. 7:101404–17 [Google Scholar]
  80. Nelson AL, Ries J, Bagnoli F, Dahlberg S, Fälker S. 80.  et al. 2007. RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol. Microbiol. 66:2329–40 [Google Scholar]
  81. Nelson AL, Roche AM, Gould JM, Chim K, Ratner AJ, Weiser JN. 81.  2007. Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect. Immun. 75:183–90Showed that the importance of pneumococcal capsule during colonization is to evade mucus, not opsonophagocytosis. [Google Scholar]
  82. Nicholson TL, Brockmeier SL, Loving CL, Register KB, Kehrli ME. 82.  et al. 2012. Phenotypic modulation of the virulent Bvg phase is not required for pathogenesis and transmission of Bordetella bronchiseptica in swine. Infect. Immun. 80:31025–36 [Google Scholar]
  83. Nicholson TL, Brockmeier SL, Loving CL, Register KB, Kehrli ME, Shore SM. 83.  2014. The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect. Immun. 82:31092–103 [Google Scholar]
  84. O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M. 84.  et al. 2009. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374:9693893–902 [Google Scholar]
  85. Ogunniyi AD, LeMessurier KS, Graham RMA, Watt JM, Briles DE. 85.  et al. 2007. Contributions of pneumolysin, pneumococcal surface protein A (PspA), and PspC to pathogenicity of Streptococcus pneumoniae D39 in a mouse model. Infect. Immun. 75:41843–51 [Google Scholar]
  86. Pancotto L, De Angelis G, Bizzarri E, Barocchi MA, Del Giudice G. 86.  et al. 2013. Expression of the Streptococcus pneumoniae pilus-1 undergoes on and off switching during colonization in mice. Sci. Rep. 3:2040 [Google Scholar]
  87. Park H-S, Francis KP, Yu J, Cleary PP. 87.  2003. Membranous cells in nasal-associated lymphoid tissue: a portal of entry for the respiratory mucosal pathogen group A streptococcus. J. Immunol. 171:52532–37 [Google Scholar]
  88. Parker D, Martin FJ, Soong G, Harfenist BS, Aguilar JL. 88.  et al. 2011. Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract. mBio 2:3e00016–11 [Google Scholar]
  89. Pezzulo AA, Gutiérrez J, Duschner KS, McConnell KS, Taft PJ. 89.  et al. 2011. Glucose depletion in the airway surface liquid is essential for sterility of the airways. PLOS ONE 6:1e16166 [Google Scholar]
  90. Philips BJ, Meguer J-X, Redman J, Baker EH. 90.  2003. Factors determining the appearance of glucose in upper and lower respiratory tract secretions. Intensive Care Med. 29:122204–10 [Google Scholar]
  91. Picard C, Puel A, Bustamante J, Ku C-L, Casanova J-L. 91.  2003. Primary immunodeficiencies associated with pneumococcal disease. Curr. Opin. Allergy Clin. Immunol. 3:6451–59 [Google Scholar]
  92. Pilione MR, Pishko EJ, Preston A, Maskell DJ, Harvill ET. 92.  2004. PagP is required for resistance to antibody-mediated complement lysis during Bordetella bronchiseptica respiratory infection. Infect. Immun. 72:52837–42 [Google Scholar]
  93. Plaut AG. 93.  1983. The IgA1 proteases of pathogenic bacteria. Annu. Rev. Microbiol. 37:603–22 [Google Scholar]
  94. Plotkowski MC, Puchelle E, Beck G, Jacquot J, Hannoun C. 94.  1986. Adherence of type I Streptococcus pneumoniae to tracheal epithelium of mice infected with influenza A/PR8 virus. Am. Rev. Respir. Dis. 134:51040–44 [Google Scholar]
  95. Poole J, Foster E, Chaloner K, Hunt J, Jennings MP. 95.  et al. 2013. Analysis of nontypeable Haemophilus influenzae phase-variable genes during experimental human nasopharyngeal colonization. J. Infect. Dis. 208:5720–27 [Google Scholar]
  96. Pynnonen M, Stephenson RE, Schwartz K, Hernandez M, Boles BR. 96.  2011. Hemoglobin promotes Staphylococcus aureus nasal colonization. PLOS Pathog. 7:7e1002104 [Google Scholar]
  97. Ratner AJ, Lysenko ES, Paul MN, Weiser JN. 97.  2005. Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. PNAS 102:93429–34 [Google Scholar]
  98. Regev-Yochay G, Dagan R, Raz M, Carmeli Y, Shainberg B. 98.  et al. 2004. Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. JAMA 292:6716–20 [Google Scholar]
  99. Richard AL, Siegel SJ, Erikson J, Weiser JN. 99.  2014. TLR2 signaling decreases transmission of Streptococcus pneumoniae by limiting bacterial shedding in an infant mouse influenza A co-infection model. PLOS Pathog. 10:8e1004339 [Google Scholar]
  100. Rolin O, Smallridge W, Henry M, Goodfield L, Place D, Harvill ET. 100.  2014. Toll-like receptor 4 limits transmission of Bordetella bronchiseptica. PLOS ONE 9:1e85229 [Google Scholar]
  101. Sanford BA, Thomas VL, Ramsay MA. 101.  1989. Binding of staphylococci to mucus in vivo and in vitro. Infect. Immun. 57:123735–42 [Google Scholar]
  102. Shelburne SA, Okorafor N, Sitkiewicz I, Sumby P, Keith D. 102.  et al. 2007. Regulation of polysaccharide utilization contributes to the persistence of group A streptococcus in the oropharynx. Infect. Immun. 75:62981–90 [Google Scholar]
  103. Shelburne SA, Sumby P, Sitkiewicz I, Okorafor N, Granville C. 103.  et al. 2006. Maltodextrin utilization plays a key role in the ability of group A Streptococcus to colonize the oropharynx. Infect. Immun. 74:84605–14 [Google Scholar]
  104. Short KR, Reading PC, Brown LE, Pedersen J, Gilbertson B. 104.  et al. 2013. Influenza-induced inflammation drives pneumococcal otitis media. Infect. Immun. 81:3645–52 [Google Scholar]
  105. Short KR, Reading PC, Wang N, Diavatopoulos DA, Wijburg OL. 105.  2012. Increased nasopharyngeal bacterial titers and local inflammation facilitate transmission of Streptococcus pneumoniae. mBio 3:5e00255–12 [Google Scholar]
  106. Siegel SJ, Tamashiro E, Weiser JN. 106.  2015. Clearance of pneumococcal colonization in infants is delayed through altered macrophage trafficking. PLoS Pathog. 11:6e1005004 [Google Scholar]
  107. Siegel SJ, Roche AM, Weiser JN. 107.  2014. Influenza promotes pneumococcal growth during coinfection by providing host sialylated substrates as a nutrient source. Cell Host Microbe 16:155–67Revealed how bacteria can exploit host inflammation to promote replication by measuring growth directly. [Google Scholar]
  108. Singh AK, Pluvinage B, Higgins MA, Dalia AB, Woodiga SA. 108.  et al. 2014. Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae β-galactosidase, BgaA. PLOS Pathog. 10:9e1004364 [Google Scholar]
  109. St Geme JW. 109.  2002. Molecular and cellular determinants of non-typeable Haemophilus influenzae adherence and invasion. Cell. Microbiol. 4:4191–200 [Google Scholar]
  110. Tai SS, Lee CJ, Winter RE. 110.  1993. Hemin utilization is related to virulence of Streptococcus pneumoniae. Infect. Immun. 61:125401–5 [Google Scholar]
  111. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD. 111.  et al. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:5529498–506 [Google Scholar]
  112. Tong HH, Blue LE, James MA, Demaria TF. 112.  2000. Evaluation of the virulence of a Streptococcus pneumoniae neuraminidase-deficient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect. Immun. 68:2921–24 [Google Scholar]
  113. Tong HH, Liu X, Chen Y, James M, Demaria T. 113.  2002. Effect of neuraminidase on receptor-mediated adherence of Streptococcus pneumoniae to chinchilla tracheal epithelium. Acta Otolaryngol. 122:4413–19 [Google Scholar]
  114. Trappetti C, Kadioglu A, Carter M, Hayre J, Iannelli F. 114.  et al. 2009. Sialic acid: a preventable signal for pneumococcal biofilm formation, colonization, and invasion of the host. J. Infect. Dis. 199:101497–505 [Google Scholar]
  115. van Opijnen T, Camilli A. 115.  2012. A fine scale phenotype-genotype virulence map of a bacterial pathogen. Genome Res. 22:122541–51Tn-seq study to determine the genes necessary for colonization in different host niches. [Google Scholar]
  116. van Rossum AMC, Lysenko ES, Weiser JN. 116.  2005. Host and bacterial factors contributing to the clearance of colonization by Streptococcus pneumoniae in a murine model. Infect. Immun. 73:117718–26 [Google Scholar]
  117. Verschoor CP, Dorrington MG, Novakowski KE, Kaiser J, Radford K. 117.  et al. 2014. MicroRNA-155 is required for the clearance of Streptococcus pneumoniae from the nasopharynx. Infect. Immun. 82:4824–33 [Google Scholar]
  118. Vimr E, Lichtensteiger C, Steenbergen S. 118.  2000. Sialic acid metabolism's dual function in Haemophilus influenzae. Mol. Microbiol. 36:51113–23 [Google Scholar]
  119. Virtaneva K, Porcella SF, Graham MR, Ireland RM, Johnson CA. 119.  et al. 2005. Longitudinal analysis of the group A Streptococcus transcriptome in experimental pharyngitis in cynomolgus macaques. PNAS 102:259014–19 [Google Scholar]
  120. von Eiff C, Becker K, Machka K, Stammer H, Peters G. 120.  2001. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med. 344:111–16 [Google Scholar]
  121. Voss S, Gámez G, Hammerschmidt S. 121.  2012. Impact of pneumococcal microbial surface components recognizing adhesive matrix molecules on colonization. Mol. Oral Microbiol. 27:4246–56 [Google Scholar]
  122. Walsh RL, Camilli A. 122.  2011. Streptococcus pneumoniae is desiccation tolerant and infectious upon rehydration. mBio 2:3e00092–11 [Google Scholar]
  123. Warfel JM, Beren J, Merkel TJ. 123.  2012. Airborne transmission of Bordetella pertussis. J. Infect. Dis. 206:6902–6 [Google Scholar]
  124. Warfel JM, Merkel TJ. 124.  2013. Bordetella pertussis infection induces a mucosal IL-17 response and long-lived Th17 and Th1 immune memory cells in nonhuman primates. Mucosal Immunol. 6:4787–96 [Google Scholar]
  125. Warfel JM, Zimmerman LI, Merkel TJ. 125.  2014. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. PNAS 111:2787–92Using a novel baboon transmission model, explained the lack of efficacy for acellular pertussis vaccines. [Google Scholar]
  126. Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H. 126.  et al. 2004. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat. Med. 10:3243–45 [Google Scholar]
  127. Weinberg ED. 127.  2009. Iron availability and infection. Biochim. Biophys. Acta 1790:7600–5 [Google Scholar]
  128. Weiser JN. 128.  1993. Relationship between colony morphology and the life cycle of Haemophilus influenzae: the contribution of lipopolysaccharide phase variation to pathogenesis. J. Infect. Dis. 168:3672–80 [Google Scholar]
  129. Weiser JN. 129.  2009. The pneumococcus: why a commensal misbehaves. J. Mol. Med. 88:297–102 [Google Scholar]
  130. Wertheim HFL, Walsh E, Choudhurry R, Melles DC, Boelens HAM. 130.  et al. 2008. Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLOS Med. 5:1e17 [Google Scholar]
  131. Weyrich LS, Feaga HA, Park J, Muse SJ, Safi CY. 131.  et al. 2014. Resident microbiota affect Bordetella pertussis infectious dose and host specificity. J. Infect. Dis. 209:6913–21 [Google Scholar]
  132. Zhang Z, Clarke TB, Weiser JN. 132.  2009. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J. Clin. Investig. 119:71899–909Established that macrophages and the Th17 pathway are critical for clearing pneumococcal colonization in mice. [Google Scholar]
  133. Zola TA, Lysenko ES, Weiser JN. 133.  2008. Mucosal clearance of capsule-expressing bacteria requires both TLR and nucleotide-binding oligomerization domain 1 signaling. J. Immunol. 181:117909–16 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error