Intracellular logistics are essential for delivery of newly synthesized material during polar growth of fungal hyphae. Proteins and lipids are actively transported throughout the cell by motor-dependent movement of small vesicles or larger units such as endosomes and the endoplasmic reticulum. A remarkably tight link is emerging between active membrane trafficking and mRNA transport, a process that determines the precise subcellular localization of translation products within the cell. Here, we report on recent insights into the mechanism and biological role of these intricate cotransport processes in fungal models such as , , and . In the latter, we focus on the new finding of endosomal mRNA transport and its implications for protein targeting, complex assembly, and septin biology.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abenza JF, Pantazopoulou A, Rodriguez JM, Galindo A, Penalva MA. 1.  2009. Long-distance movement of Aspergillus nidulans early endosomes on microtubule tracks. Traffic 10:57–75 [Google Scholar]
  2. Akopian D, Shen K, Zhang X, Shan SO. 2.  2013. Signal recognition particle: an essential protein-targeting machine. Annu. Rev. Biochem. 82:693–721 [Google Scholar]
  3. Alvarez-Tabares I, Perez-Martin J. 3.  2010. Septins from the phytopathogenic fungus Ustilago maydis are required for proper morphogenesis but dispensable for virulence. PLOS ONE 5:e12933 [Google Scholar]
  4. Aronov S, Gelin-Licht R, Zipor G, Haim L, Safran E, Gerst JE. 4.  2007. mRNAs encoding polarity and exocytosis factors are co-transported with cortical ER to the incipient bud in yeast. Mol. Cell. Biol. 27:3441–55 [Google Scholar]
  5. Barral Y. 5.  2010. Cell biology: septins at the nexus. Science 329:1289–90 [Google Scholar]
  6. Baumann S, König J, Koepke J, Feldbrügge M. 6.  2014. Endosomal transport of septin mRNA and protein indicates local translation on endosomes and is required for correct septin filamentation. EMBO Rep. 15:94–102 [Google Scholar]
  7. Baumann S, Pohlmann T, Jungbluth M, Brachmann A, Feldbrügge M. 7.  2012. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J. Cell Sci. 125:2740–52 [Google Scholar]
  8. Baumann S, Takeshita N, Grün N, Fischer R, Feldbrügge M. 8.  2015. Live cell imaging of endosomal trafficking in fungi. Membrane Trafficking BL Tang. New York: Springer. [Google Scholar]
  9. Becht P, König J, Feldbrügge M. 9.  2006. The RNA-binding protein Rrm4 is essential for polarity in Ustilago maydis and shuttles along microtubules. J. Cell Sci. 119:4964–73 [Google Scholar]
  10. Becht P, Vollmeister E, Feldbrügge M. 10.  2005. Role for RNA-binding proteins implicated in pathogenic development of Ustilago maydis. Eukaryot. Cell 4:121–33 [Google Scholar]
  11. Berepiki A, Lichius A, Read ND. 11.  2011. Actin organization and dynamics in filamentous fungi. Nat. Rev. Microbiol. 9:876–87 [Google Scholar]
  12. Bielska E, Higuchi Y, Schuster M, Steinberg N, Kilaru S. 12.  et al. 2014. Long-distance endosome trafficking drives fungal effector production during plant infection. Nat. Commun. 5:5097 [Google Scholar]
  13. Bielska E, Schuster M, Roger Y, Berepiki A, Soanes DM. 13.  et al. 2014. Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes. J. Cell Biol. 204:989–1007 [Google Scholar]
  14. Blobel G, Dobberstein B. 14.  1975. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 67:835–51 [Google Scholar]
  15. Böhl F, Kruse C, Frank A, Ferring D, Jansen RP. 15.  2000. She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J. 19:5514–24 [Google Scholar]
  16. Bridges AA, Gladfelter AS. 16.  2014. Fungal pathogens are platforms for discovering novel and conserved septin properties. Curr. Opin. Microbiol. 20:42–48 [Google Scholar]
  17. Bridges AA, Zhang H, Mehta SB, Occhipinti P, Tani T, Gladfelter AS. 17.  2014. Septin assemblies form by diffusion-driven annealing on membranes. PNAS 111:2146–51 [Google Scholar]
  18. Bullock SL. 18.  2011. Messengers, motors and mysteries: sorting of eukaryotic mRNAs by cytoskeletal transport. Biochem. Soc. Trans. 39:1161–65 [Google Scholar]
  19. Caballero-Lima D, Hautbergue GM, Wilson SA, Sudbery PE. 19.  2014. In Candida albicans hyphae, Sec2p is physically associated with SEC2 mRNA on secretory vesicles. Mol. Microbiol. 94:828–42 [Google Scholar]
  20. Caballero-Lima D, Kaneva IN, Watton SP, Sudbery PE, Craven CJ. 20.  2013. The spatial distribution of the exocyst and actin cortical patches is sufficient to organize hyphal tip growth. Eukaryot. Cell 12:998–1008 [Google Scholar]
  21. Charalambous DC, Pasciuto E, Mercaldo V, Pilo Boyl P, Munck S. 21.  et al. 2013. KIF1Bβ transports dendritically localized mRNPs in neurons and is recruited to synapses in an activity-dependent manner. Cell. Mol. Life Sci. 70:335–56 [Google Scholar]
  22. Cohen RS. 22.  2005. The role of membranes and membrane trafficking in RNA localization. Biol. Cell 97:5–18 [Google Scholar]
  23. Cui XA, Palazzo AF. 23.  2014. Localization of mRNAs to the endoplasmic reticulum. Wiley Interdiscip. Rev. RNA 5:481–92 [Google Scholar]
  24. Cui XA, Zhang H, Palazzo AF. 24.  2012. p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLOS Biol. 10:e1001336 [Google Scholar]
  25. Czaplinski K. 25.  2014. Understanding mRNA trafficking: Are we there yet?. Semin. Cell Dev. Biol. 32:63–70 [Google Scholar]
  26. Doyle M, Kiebler MA. 26.  2011. Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J. 30:3540–52 [Google Scholar]
  27. Egan MJ, McClintock MA, Reck-Peterson SL. 27.  2012. Microtubule-based transport in filamentous fungi. Curr. Opin. Microbiol. 15:637–45 [Google Scholar]
  28. Elson SL, Noble SM, Solis NV, Filler SG, Johnson AD. 28.  2009. An RNA transport system in Candida albicans regulates hyphal morphology and invasive growth. PLOS Genet. 5:e1000664 [Google Scholar]
  29. Estrada P, Kim J, Coleman J, Walker L, Dunn B. 29.  et al. 2003. Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J. Cell Biol. 163:1255–66 [Google Scholar]
  30. Feldbrügge M, Kellner R, Schipper K. 30.  2013. The biotechnological use and potential of plant pathogenic smut fungi. Appl. Microbiol. Biotechnol. 97:3253–65 [Google Scholar]
  31. Feldbrügge M, Zarnack K, Vollmeister E, Baumann S, Koepke J. 31.  et al. 2008. The posttranscriptional machinery of Ustilago maydis. Fungal Genet. Biol. 45:S40–46 [Google Scholar]
  32. Fischer R, Zekert N, Takeshita N. 32.  2008. Polarized growth in fungi—interplay between the cytoskeleton, positional markers and membrane domains. Mol. Microbiol. 68:813–26 [Google Scholar]
  33. Fuchs U, Hause G, Schuchardt I, Steinberg G. 33.  2006. Endocytosis is essential for pathogenic development in the corn smut fungus Ustilago maydis. Plant Cell 18:2066–81 [Google Scholar]
  34. Fuchs U, Manns I, Steinberg G. 34.  2005. Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol. Biol. Cell 16:2746–58 [Google Scholar]
  35. Fundakowski J, Hermesh O, Jansen RP. 35.  2012. Localization of a subset of yeast mRNAs depends on inheritance of endoplasmic reticulum. Traffic 13:1642–52 [Google Scholar]
  36. Garzia A, Etxebeste O, Herrero-Garcia E, Ugalde U, Espeso EA. 36.  2010. The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces brlA expression and asexual development in Aspergillus nidulans. Mol. Microbiol. 75:1314–24 [Google Scholar]
  37. Genz C, Fundakowski J, Hermesh O, Schmid M, Jansen RP. 37.  2013. Association of the yeast RNA-binding protein She2p with the tubular endoplasmic reticulum depends on membrane curvature. J. Biol. Chem. 288:32384–93 [Google Scholar]
  38. Ghoujal B, Milev MP, Ajamian L, Abel K, Mouland AJ. 38.  2012. ESCRT-II's involvement in HIV-1 genomic RNA trafficking and assembly. Biol. Cell 104:706–21 [Google Scholar]
  39. Göhre V, Haag C, Feldbrügge M. 39.  2013. RNA biology in fungal phytopathogens. PLOS Pathog. 9:e1003617 [Google Scholar]
  40. Göhre V, Vollmeister E, Bölker M, Feldbrügge M. 40.  2012. Microtubule-dependent membrane dynamics of Ustilago maydis: trafficking and function of Rab5a-positive endosomes. Commun. Integr. Biol. 5:482–87 [Google Scholar]
  41. Harris SD. 41.  2006. Cell polarity in filamentous fungi: shaping the mold. Int. Rev. Cytol. 251:41–77 [Google Scholar]
  42. Harris SD. 42.  2011. Cdc42/Rho GTPases in fungi: variations on a common theme. Mol. Microbiol. 79:1123–27 [Google Scholar]
  43. Heimel K, Freitag J, Hampel M, Ast J, Bölker M, Kämper J. 43.  2013. Crosstalk between the unfolded protein response and pathways that regulate pathogenic development in Ustilago maydis. Plant Cell 25:4262–77 [Google Scholar]
  44. Hermesh O, Genz C, Yofe I, Sinzel M, Rapaport D. 44.  et al. 2014. Yeast phospholipid biosynthesis is linked to mRNA localization. J. Cell Sci. 127:3373–81 [Google Scholar]
  45. Hermesh O, Jansen RP. 45.  2013. Take the (RN)A-train: localization of mRNA to the endoplasmic reticulum. Biochim. Biophys. Acta 1833:2519–25 [Google Scholar]
  46. Heym RG, Niessing D. 46.  2012. Principles of mRNA transport in yeast. Cell. Mol. Life Sci. 69:1843–53 [Google Scholar]
  47. Heym RG, Zimmermann D, Edelmann FT, Israel L, Okten Z. 47.  et al. 2013. In vitro reconstitution of an mRNA-transport complex reveals mechanisms of assembly and motor activation. J. Cell Biol. 203:971–84 [Google Scholar]
  48. Higuchi Y, Ashwin P, Roger Y, Steinberg G. 48.  2014. Early endosome motility spatially organizes polysome distribution. J. Cell Biol. 204:343–57 [Google Scholar]
  49. Houston DW. 49.  2012. Cortical rotation and messenger RNA localization in Xenopus axis formation. Wiley Interdiscip. Rev. Dev. Biol. 1:371–88 [Google Scholar]
  50. Huotari J, Helenius A. 50.  2011. Endosome maturation. EMBO J. 30:3481–500 [Google Scholar]
  51. Hüttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M. 51.  et al. 2005. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438:512–15 [Google Scholar]
  52. Irion U, St Johnston D. 52.  2007. bicoid RNA localization requires specific binding of an endosomal sorting complex. Nature 445:554–58 [Google Scholar]
  53. Jansen RP, Niessing D, Baumann S, Feldbrügge M. 53.  2014. mRNA transport meets membrane traffic. Trends Genet. 30:408–17 [Google Scholar]
  54. Jung H, Gkogkas CG, Sonenberg N, Holt CE. 54.  2014. Remote control of gene function by local translation. Cell 157:26–40 [Google Scholar]
  55. Jüschke C, Ferring D, Jansen RP, Seedorf M. 55.  2004. A novel transport pathway for a yeast plasma membrane protein encoded by a localized mRNA. Curr. Biol. 14:406–11 [Google Scholar]
  56. Kellner N, Heimel K, Obhof T, Finkernagel F, Kämper J. 56.  2014. The SPF27 homologue Num1 connects splicing and kinesin 1-dependent cytoplasmic trafficking in Ustilago maydis. PLOS Genet. 10:e1004046 [Google Scholar]
  57. Koepke J, Kaffarnik F, Haag C, Zarnack K, Luscombe NM. 57.  et al. 2011. The RNA-binding protein Rrm4 is essential for efficient secretion of endochitinase Cts1. Mol. Cell. Proteomics 10:M111.011213 [Google Scholar]
  58. König J, Baumann S, Koepke J, Pohlmann T, Zarnack K, Feldbrügge M. 58.  2009. The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs. EMBO J. 28:1855–66 [Google Scholar]
  59. Kraut-Cohen J, Gerst JE. 59.  2010. Addressing mRNAs to the ER: cis sequences act up!. Trends Biochem. Sci. 35:459–69 [Google Scholar]
  60. Krementsova EB, Hodges AR, Bookwalter CS, Sladewski TE, Travaglia M. 60.  et al. 2011. Two single-headed myosin V motors bound to a tetrameric adapter protein form a processive complex. J. Cell Biol. 195:631–41 [Google Scholar]
  61. Lécuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T. 61.  et al. 2007. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–87 [Google Scholar]
  62. Lenz JH, Schuchardt I, Straube A, Steinberg G. 62.  2006. A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J. 25:2275–86 [Google Scholar]
  63. Long RM, Singer RH, Meng X, Gonzalez I, Nasmyth K, Jansen RP. 63.  1997. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277:383–87 [Google Scholar]
  64. Lyons DA, Naylor SG, Scholze A, Talbot WS. 64.  2009. Kif1b is essential for mRNA localization in oligodendrocytes and development of myelinated axons. Nat. Genet. 41:854–58 [Google Scholar]
  65. Manford AG, Stefan CJ, Yuan HL, Macgurn JA, Emr SD. 65.  2012. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev. Cell 23:1129–40 [Google Scholar]
  66. Martin KC, Ephrussi A. 66.  2009. mRNA localization: gene expression in the spatial dimension. Cell 136:719–30 [Google Scholar]
  67. Meignin C, Davis I. 67.  2010. Transmitting the message: intracellular mRNA localization. Curr. Opin. Cell Biol. 22:112–19 [Google Scholar]
  68. Molle D, Segura-Morales C, Camus G, Berlioz-Torrent C, Kjems J. 68.  et al. 2009. Endosomal trafficking of HIV-1 Gag and genomic RNAs regulates viral egress. J. Biol. Chem. 284:19727–43 [Google Scholar]
  69. Mostowy S, Cossart P. 69.  2012. Septins: the fourth component of the cytoskeleton. Nat. Rev. Mol. Cell Biol. 13:183–94 [Google Scholar]
  70. Müller M, Heym RG, Mayer A, Kramer K, Schmid M. 70.  et al. 2011. A cytoplasmic complex mediates specific mRNA recognition and localization in yeast. PLOS Biol. 9:e1000611 [Google Scholar]
  71. Palacios IM. 71.  2014. Hop-on hop-off: Polysomes take a tour of the cell on endosomes. J. Cell Biol. 204:287–89 [Google Scholar]
  72. Paquin N, Ménade M, Poirier G, Donato D, Drouet E, Chartrand P. 72.  2007. Local activation of yeast ASH1 mRNA translation through phosphorylation of Khd1p by the casein kinase Yck1p. Mol. Cell 26:795–809 [Google Scholar]
  73. Pohlmann T, Baumann S, Haag C, Albrecht M, Feldbrügge M. 73.  2015. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking. eLife 10.7554/eLife.06041
  74. Riquelme M. 74.  2013. Tip growth in filamentous fungi: a road trip to the apex. Annu. Rev. Microbiol. 67:587–609 [Google Scholar]
  75. Riquelme M, Sanchez-Leon E. 75.  2014. The Spitzenkörper: a choreographer of fungal growth and morphogenesis. Curr. Opin. Microbiol. 20:27–33 [Google Scholar]
  76. Sarkari P, Reindl M, Stock J, Müller O, Kahmann R. 76.  et al. 2014. Improved expression of single-chain antibodies in Ustilago maydis. J. Biotechnol. 191:165–75 [Google Scholar]
  77. Scherrer T, Mittal N, Janga SC, Gerber AP. 77.  2010. A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. PLOS ONE 5:e15499 [Google Scholar]
  78. Schink KO, Bölker M. 78.  2009. Coordination of cytokinesis and cell separation by endosomal targeting of a Cdc42-specific guanine nucleotide exchange factor in Ustilago maydis. Mol. Biol. Cell 20:1081–88 [Google Scholar]
  79. Schmid M, Jaedicke A, Du TG, Jansen RP. 79.  2006. Coordination of endoplasmic reticulum and mRNA localization to the yeast bud. Curr. Biol. 16:1538–43 [Google Scholar]
  80. Schuster M, Sreedhar K, Fink G, Collemare J, Roger Y, Steinberg G. 80.  2011. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a non-uniform microtubule array. Mol. Biol. Cell 22:3645–57 [Google Scholar]
  81. Shepard KA, Gerber AP, Jambhekar A, Takizawa PA, Brown PO. 81.  et al. 2003. Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. PNAS 100:11429–34 [Google Scholar]
  82. Spiliotis ET, Gladfelter AS. 82.  2012. Spatial guidance of cell asymmetry: Septin GTPases show the way. Traffic 13:195–203 [Google Scholar]
  83. St Johnston D. 83.  2005. Moving messages: the intracellular localization of mRNAs. Nat. Rev. Mol. Cell Biol. 6:363–75 [Google Scholar]
  84. Steinberg G. 84.  2014. Endocytosis and early endosome motility in filamentous fungi. Curr. Opin. Microbiol. 20:10–18 [Google Scholar]
  85. Stock J, Sarkari P, Kreibich S, Brefort T, Feldbrügge M, Schipper K. 85.  2012. Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. J. Biotechnol. 161:80–91 [Google Scholar]
  86. Sudbery PE. 86.  2011. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9:737–48 [Google Scholar]
  87. Trautwein M, Dengjel J, Schirle M, Spang A. 87.  2004. Arf1p provides an unexpected link between COPI vesicles and mRNA in Saccharomyces cerevisiae. Mol. Biol. Cell 15:5021–37 [Google Scholar]
  88. Vollmeister E, Feldbrügge M. 88.  2010. Posttranscriptional control of growth and development in Ustilago maydis. Curr. Opin. Microbiol. 13:693–99 [Google Scholar]
  89. Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T. 89.  et al. 2012. Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol. Rev. 36:59–77 [Google Scholar]
  90. Vollmeister E, Schipper K, Feldbrügge M. 90.  2012. Microtubule-dependent mRNA transport in the model microorganism Ustilago maydis. RNA Biol. 9:1–8 [Google Scholar]
  91. Wedlich-Söldner R, Bölker M, Kahmann R, Steinberg G. 91.  2000. A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus Ustilago maydis. EMBO J. 19:1974–86 [Google Scholar]
  92. Wedlich-Söldner R, Straube A, Friedrich MW, Steinberg G. 92.  2002. A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J. 21:2946–57 [Google Scholar]
  93. Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z. 93.  et al. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–23 [Google Scholar]
  94. West M, Zurek N, Hoenger A, Voeltz GK. 94.  2011. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J. Cell Biol. 193:333–46 [Google Scholar]
  95. Xiang X, Fischer R. 95.  2004. Nuclear migration and positioning in filamentous fungi. Fungal Genet. Biol. 41:411–19 [Google Scholar]
  96. Zekert N, Fischer R. 96.  2009. The Aspergillus nidulans kinesin-3 UncA motor moves vesicles along a subpopulation of microtubules. Mol. Biol. Cell. 20:673–84 [Google Scholar]
  97. Zhang J, Qiu R, Arst HN Jr, Penalva MA, Xiang X. 97.  2014. HookA is a novel dynein-early endosome linker critical for cargo movement in vivo. J. Cell Biol. 204:1009–26 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error