1932

Abstract

In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of have been carried out in suspension cultures; however, the medical impact of (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by and closely related fungal species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091014-104330
2015-10-15
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/69/1/annurev-micro-091014-104330.html?itemId=/content/journals/10.1146/annurev-micro-091014-104330&mimeType=html&fmt=ahah

Literature Cited

  1. Achkar JM, Fries BC. 1.  2010. Candida infections of the genitourinary tract. Clin. Microbiol. Rev. 23:253–73 [Google Scholar]
  2. Al-Fattani MA, Douglas LJ. 2.  2006. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J. Med. Microbiol. 55:999–1008 [Google Scholar]
  3. Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA. 3.  2001. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–83 [Google Scholar]
  4. Anderson JB. 4.  2005. Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat. Rev. Microbiol. 3:547–56 [Google Scholar]
  5. Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A. 5.  2004. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect. Immun. 72:6023–31 [Google Scholar]
  6. Andes DR, Safdar N, Baddley JW, Playford G, Reboli AC. 6.  et al. 2012. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin. Infect. Dis. 54:1110–22 [Google Scholar]
  7. Angiolella L, Stringaro AR, De Bernardis F, Posteraro B, Bonito M. 7.  et al. 2008. Increase of virulence and its phenotypic traits in drug-resistant strains of Candida albicans. Antimicrob. Agents Chemother. 52:927–36 [Google Scholar]
  8. Askew C, Sellam A, Epp E, Mallick J, Hogues H. 8.  et al. 2011. The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of Candida albicans adhesion. Mol. Microbiol. 79:940–53 [Google Scholar]
  9. Bachmann SP, VandeWalle K, Ramage G, Patterson TF, Wickes BL. 9.  et al. 2002. In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob. Agents Chemother. 46:3591–96 [Google Scholar]
  10. Baillie GS, Douglas LJ. 10.  1999. Role of dimorphism in the development of Candida albicans biofilms. J. Med. Microbiol. 48:671–79 [Google Scholar]
  11. Baillie GS, Douglas LJ. 11.  2000. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J. Antimicrob. Chemother. 46:397–403 [Google Scholar]
  12. Bamford CV, d'Mello A, Nobbs AH, Dutton LC, Vickerman MM, Jenkinson HF. 12.  2009. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect. Immun. 77:3696–704 [Google Scholar]
  13. Bandara HM, Yau JY, Watt RM, Jin LJ, Samaranayake LP. 13.  2009. Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation. J. Med. Microbiol. 58:1623–31 [Google Scholar]
  14. Bernardo SM, Khalique Z, Kot J, Jones JK, Lee SA. 14.  2008. Candida albicans VPS1 contributes to protease secretion, filamentation, and biofilm formation. Fungal Genet. Biol. 45:861–77 [Google Scholar]
  15. Bernardo SM, Lee SA. 15.  2010. Candida albicans SUR7 contributes to secretion, biofilm formation, and macrophage killing. BMC Microbiol. 10:133 [Google Scholar]
  16. Birrenbach T, Bertschy S, Aebersold F, Mueller NJ, Achermann Y. 16.  et al. 2012. Emergence of Blastoschizomyces capitatus yeast infections, Central Europe. Emerg. Infect. Dis. 18:98–101 [Google Scholar]
  17. Bonhomme J, Chauvel M, Goyard S, Roux P, Rossignol T, d'Enfert C. 17.  2011. Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Mol. Microbiol. 80:995–1013 [Google Scholar]
  18. Bonhomme J, d'Enfert C. 18.  2013. Candida albicans biofilms: building a heterogeneous, drug-tolerant environment. Curr. Opin. Microbiol. 16:398–403 [Google Scholar]
  19. Borneman AR, Leigh-Bell JA, Yu H, Bertone P, Gerstein M, Snyder M. 19.  2006. Target hub proteins serve as master regulators of development in yeast. Genes Dev. 20:435–48 [Google Scholar]
  20. Bowyer P, Moore CB, Rautemaa R, Denning DW, Richardson MD. 20.  2011. Azole antifungal resistance today: focus on Aspergillus. Curr. Infect. Dis. Rep. 13:485–91 [Google Scholar]
  21. Calderone RA, Fonzi WA. 21.  2001. Virulence factors of Candida albicans. Trends Microbiol. 9:327–35 [Google Scholar]
  22. Cauda R. 22.  2009. Candidaemia in patients with an inserted medical device. Drugs 69:Suppl. 133–38 [Google Scholar]
  23. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. 23.  2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183:5385–94 [Google Scholar]
  24. Chang DC, Grant GB, O'Donnell K, Wannemuehler KA, Noble-Wang J. 24.  et al. 2006. Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA 296:953–63 [Google Scholar]
  25. Chavez-Dozal AA, Jahng M, Rane HS, Asare K, Kulkarny VV. 25.  et al. 2014. In vitro analysis of flufenamic acid activity against Candida albicans biofilms. Int. J. Antimicrob. Agents 43:86–91 [Google Scholar]
  26. Chitasombat MN, Kofteridis DP, Jiang Y, Tarrand J, Lewis RE, Kontoyiannis DP. 26.  2012. Rare opportunistic (non-Candida, non-Cryptococcus) yeast bloodstream infections in patients with cancer. J. Infect. 64:68–75 [Google Scholar]
  27. Chitnis AS, Magill SS, Edwards JR, Chiller TM, Fridkin SK, Lessa FC. 27.  2012. Trends in Candida central line-associated bloodstream infections among NICUs, 1999–2009. Pediatrics 130:e46–52 [Google Scholar]
  28. Cole MF, Bowen WH, Zhao XJ, Cihlar RL. 28.  1995. Avirulence of Candida albicans auxotrophic mutants in a rat model of oropharyngeal candidiasis. FEMS Microbiol. Lett. 126:177–80 [Google Scholar]
  29. Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ. 29.  et al. 2012. ESCMID guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin. Microbiol. Infect. 18:Suppl. 719–37 [Google Scholar]
  30. Cortez KJ, Roilides E, Quiroz-Telles F, Meletiadis J, Antachopoulos C. 30.  et al. 2008. Infections caused by Scedosporium spp. Clin. Microbiol. Rev. 21:157–97 [Google Scholar]
  31. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC. 31.  et al. 1987. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41:435–64 [Google Scholar]
  32. Costerton JW, Stewart PS, Greenberg EP. 32.  1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318–22 [Google Scholar]
  33. Cowen LE. 33.  2008. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 6:187–98 [Google Scholar]
  34. Cruz MR, Graham CE, Gagliano BC, Lorenz MC, Garsin DA. 34.  2013. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect. Immun. 81:189–200 [Google Scholar]
  35. Cushion MT, Collins MS. 35.  2011. Susceptibility of Pneumocystis to echinocandins in suspension and biofilm cultures. Antimicrob. Agents Chemother. 55:4513–18 [Google Scholar]
  36. Cushion MT, Collins MS, Linke MJ. 36.  2009. Biofilm formation by Pneumocystis spp. Eukaryot. Cell 8:197–206 [Google Scholar]
  37. Daher JY, Koussa J, Younes S, Khalaf RA. 37.  2011. The Candida albicans Dse1 protein is essential and plays a role in cell wall rigidity, biofilm formation, and virulence. Interdiscip. Perspect. Infect. Dis. 2011:504280 [Google Scholar]
  38. D'Antonio D, Mazzoni A, Iacone A, Violante B, Capuani MA. 38.  et al. 1996. Emergence of fluconazole-resistant strains of Blastoschizomyces capitatus causing nosocomial infections in cancer patients. J. Clin. Microbiol. 34:753–55 [Google Scholar]
  39. D'Antonio D, Parruti G, Pontieri E, Di Bonaventura G, Manzoli L. 39.  et al. 2004. Slime production by clinical isolates of Blastoschizomyces capitatus from patients with hematological malignancies and catheter-related fungemia. Eur. J. Clin. Microbiol. Infect. 23:787–89 [Google Scholar]
  40. Davis LE, Cook G, Costerton JW. 40.  2002. Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg. Infect. Dis. 8:376–79 [Google Scholar]
  41. Desai JV, Bruno VM, Ganguly S, Stamper RJ, Mitchell KF. 41.  et al. 2013. Regulatory role of glycerol in Candida albicans biofilm formation. mBio 4:e00637–12 [Google Scholar]
  42. Desai JV, Mitchell AP, Andes DR. 42.  2014. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb. Perspect. Med. 4:a019729 [Google Scholar]
  43. Dominic RM, Shenoy S, Baliga S. 43.  2007. Candida biofilms in medical devices: evolving trends. Kathmandu Univ. Med. J. 5:431–36 [Google Scholar]
  44. Dongari-Bagtzoglou A, Kashleva H, Dwivedi P, Diaz P, Vasilakos J. 44.  2009. Characterization of mucosal Candida albicans biofilms. PLOS ONE 4:e7967 [Google Scholar]
  45. Donlan RM, Costerton JW. 45.  2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15:167–93 [Google Scholar]
  46. Douglas LJ. 46.  2002. Medical importance of biofilms in Candida infections. Rev. Iberoamericana Micol. 19:139–43 [Google Scholar]
  47. Douglas LJ. 47.  2003. Candida biofilms and their role in infection. Trends Microbiol. 11:30–36 [Google Scholar]
  48. Doyle TC, Nawotka KA, Kawahara CB, Francis KP, Contag PR. 48.  2006. Visualizing fungal infections in living mice using bioluminescent pathogenic Candida albicans strains transformed with the firefly luciferase gene. Microb. Pathog. 40:82–90 [Google Scholar]
  49. Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S. 49.  et al. 2011. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLOS ONE 6:e16218 [Google Scholar]
  50. Enache-Angoulvant A, Hennequin C. 50.  2005. Invasive Saccharomyces infection: a comprehensive review. Clin. Infect. Dis. 41:1559–68 [Google Scholar]
  51. Ene IV, Bennett RJ. 51.  2009. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Eukaryot. Cell 8:1909–13 [Google Scholar]
  52. Enjalbert B, Rachini A, Vediyappan G, Pietrella D, Spaccapelo R. 52.  et al. 2009. A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect. Immun. 77:4847–58 [Google Scholar]
  53. Fader RC, Nunez D, Unbehagen J, Linares HA. 53.  1985. Experimental candidiasis after thermal injury. Infect. Immun. 49:780–84 [Google Scholar]
  54. Falagas ME, Betsi GI, Athanasiou S. 54.  2006. Probiotics for prevention of recurrent vulvovaginal candidiasis: a review. J. Antimicrob. Chemother. 58:266–72 [Google Scholar]
  55. Fanning S, Xu W, Beaurepaire C, Suhan JP, Nantel A, Mitchell AP. 55.  2012. Functional control of the Candida albicans cell wall by catalytic protein kinase A subunit Tpk1. Mol. Microbiol. 86:284–302 [Google Scholar]
  56. Ferreira C, Silva S, Faria-Oliveira F, Pinho E, Henriques M, Lucas C. 56.  2010. Candida albicans virulence and drug-resistance requires the O-acyltransferase Gup1p. BMC Microbiol. 10:238 [Google Scholar]
  57. Finkel JS, Xu W, Huang D, Hill EM, Desai JV. 57.  et al. 2012. Portrait of Candida albicans adherence regulators. PLOS Pathog. 8:e1002525 [Google Scholar]
  58. Fiori A, Kucharikova S, Govaert G, Cammue BP, Thevissen K, Van Dijck P. 58.  2012. The heat-induced molecular disaggregase Hsp104 of Candida albicans plays a role in biofilm formation and pathogenicity in a worm infection model. Eukaryot. Cell 11:1012–20 [Google Scholar]
  59. Fox EP, Bui CK, Nett JE, Hartooni N, Mui MM. 59.  et al. 2015. An expanded regulatory network temporally controls Candida albicans biofilm formation. Mol. Microbiol. 961226–39 [Google Scholar]
  60. Fox EP, Cowley ES, Nobile CJ, Hartooni N, Newman DK, Johnson AD. 60.  2014. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures. Curr. Biol. 24:2411–16 [Google Scholar]
  61. Fox EP, Nobile CJ. 61.  2012. A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription 3:315–22 [Google Scholar]
  62. Fridkin SK, Jarvis WR. 62.  1996. Epidemiology of nosocomial fungal infections. Clin. Microbiol. Rev. 9:499–511 [Google Scholar]
  63. Ganguly S, Bishop AC, Xu W, Ghosh S, Nickerson KW. 63.  et al. 2011. Zap1 control of cell-cell signaling in Candida albicans biofilms. Eukaryot. Cell 10:1448–54 [Google Scholar]
  64. Ganguly S, Mitchell AP. 64.  2011. Mucosal biofilms of Candida albicans. Curr. Opin. Microbiol. 14:380–85 [Google Scholar]
  65. Garcia MC, Lee JT, Ramsook CB, Alsteens D, Dufrene YF, Lipke PN. 65.  2011. A role for amyloid in cell aggregation and biofilm formation. PLOS ONE 6:e17632 [Google Scholar]
  66. Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d'Enfert C. 66.  2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot. Cell 3:536–45 [Google Scholar]
  67. Giacometti R, Kronberg F, Biondi RM, Passeron S. 67.  2011. Candida albicans Tpk1p and Tpk2p isoforms differentially regulate pseudohyphal development, biofilm structure, cell aggregation and adhesins expression. Yeast 28:293–308 [Google Scholar]
  68. Goyard S, Knechtle P, Chauvel M, Mallet A, Prevost MC. 68.  et al. 2008. The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. Mol. Biol. Cell 19:2251–66 [Google Scholar]
  69. Granger BL. 69.  2012. Insight into the antiadhesive effect of yeast wall protein 1 of Candida albicans. Eukaryot. Cell 11:795–805 [Google Scholar]
  70. Granger BL, Flenniken ML, Davis DA, Mitchell AP, Cutler JE. 70.  2005. Yeast wall protein 1 of Candida albicans. Microbiology 151:1631–44 [Google Scholar]
  71. Gutierrez-Escribano P, Zeidler U, Suarez MB, Bachellier-Bassi S, Clemente-Blanco A. 71.  et al. 2012. The NDR/LATS kinase Cbk1 controls the activity of the transcriptional regulator Bcr1 during biofilm formation in Candida albicans. PLOS Pathog. 8:e1002683 [Google Scholar]
  72. Harriott MM, Lilly EA, Rodriguez TE, Fidel PL Jr, Noverr MC. 72.  2010. Candida albicans forms biofilms on the vaginal mucosa. Microbiology 156:3635–44 [Google Scholar]
  73. Hasan F, Xess I, Wang X, Jain N, Fries BC. 73.  2009. Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect. 11:753–61 [Google Scholar]
  74. Hashash R, Younes S, Bahnan W, El Koussa J, Maalouf K. 74.  et al. 2011. Characterisation of Pga1, a putative Candida albicans cell wall protein necessary for proper adhesion and biofilm formation. Mycoses 54:491–500 [Google Scholar]
  75. Hawser SP, Douglas LJ. 75.  1994. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect. Immun. 62:915–21 [Google Scholar]
  76. Hernday AD, Lohse MB, Fordyce PM, Nobile CJ, Derisi JL, Johnson AD. 76.  2013. Structure of the transcriptional network controlling white-opaque switching in Candida albicans. Mol. Microbiol. 90:22–35 [Google Scholar]
  77. Hnisz D, Bardet AF, Nobile CJ, Petryshyn A, Glaser W. 77.  et al. 2012. A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLOS Genet. 8:e1003118 [Google Scholar]
  78. Hogan DA, Vik A, Kolter R. 78.  2004. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 54:1212–23 [Google Scholar]
  79. Jabra-Rizk MA, Falkler WA, Meiller TF. 79.  2004. Fungal biofilms and drug resistance. Emerg. Infect. Dis. 10:14–19 [Google Scholar]
  80. Jabra-Rizk MA, Falkler WA Jr, Merz WG, Baqui AA, Kelley JI, Meiller TF. 80.  2000. Retrospective identification and characterization of Candida dubliniensis isolates among Candida albicans clinical laboratory isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected individuals. J. Clin. Microbiol. 38:2423–26 [Google Scholar]
  81. Jack AA, Daniels DE, Jepson MA, Vickerman MM, Lamont RJ. 81.  et al. 2014. The Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans. Microbiology 161:411–21 [Google Scholar]
  82. Jarosz LM, Deng DM, van der Mei HC, Crielaard W, Krom BP. 82.  2009. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryot. Cell 8:1658–64 [Google Scholar]
  83. Johnson C, Kweon HK, Sheidy D, Shively CA, Mellacheruvu D. 83.  et al. 2014. The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response. PLOS Genet. 10:e1004183 [Google Scholar]
  84. Johnson CC, Yu A, Lee H, Fidel PL Jr, Noverr MC. 84.  2012. Development of a contemporary animal model of Candida albicans-associated denture stomatitis using a novel intraoral denture system. Infect. Immun. 80:1736–43 [Google Scholar]
  85. Kauffman CA. 85.  2007. Histoplasmosis: a clinical and laboratory update. Clin. Microbiol. Rev. 20:115–32 [Google Scholar]
  86. Kelly MT, MacCallum DM, Clancy SD, Odds FC, Brown AJ, Butler G. 86.  2004. The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol. Microbiol. 53:969–83 [Google Scholar]
  87. Kennedy MJ, Volz PA. 87.  1985. Ecology of Candida albicans gut colonization: inhibition of Candida adhesion, colonization, and dissemination from the gastrointestinal tract by bacterial antagonism. Infect. Immun. 49:654–63 [Google Scholar]
  88. Khot PD, Suci PA, Miller RL, Nelson RD, Tyler BJ. 88.  2006. A small subpopulation of blastospores in Candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and beta-1,6-glucan pathway genes. Antimicrob. Agents Chemother. 50:3708–16 [Google Scholar]
  89. Kim J, Sudbery P. 89.  2011. Candida albicans, a major human fungal pathogen. J. Microbiol. 49:171–77 [Google Scholar]
  90. Kojic EM, Darouiche RO. 90.  2004. Candida infections of medical devices. Clin. Microbiol. Rev. 17:255–67 [Google Scholar]
  91. Kolter R. 91.  2010. Biofilms in lab and nature: a molecular geneticist's voyage to microbial ecology. Int. Microbiol. 13:1–7 [Google Scholar]
  92. Kolter R, Greenberg EP. 92.  2006. Microbial sciences: the superficial life of microbes. Nature 441:300–2 [Google Scholar]
  93. Krueger KE, Ghosh AK, Krom BP, Cihlar RL. 93.  2004. Deletion of the NOT4 gene impairs hyphal development and pathogenicity in Candida albicans. Microbiology 150:229–40 [Google Scholar]
  94. Kruppa M, Krom BP, Chauhan N, Bambach AV, Cihlar RL, Calderone RA. 94.  2004. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot. Cell 3:1062–65 [Google Scholar]
  95. Kucharikova S, Tournu H, Lagrou K, Van Dijck P, Bujdakova H. 95.  2011. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. J. Med. Microbiol. 60:1261–69 [Google Scholar]
  96. Kullberg BJ, Oude Lashof AM. 96.  2002. Epidemiology of opportunistic invasive mycoses. Eur. J. Med. Res. 7:183–91 [Google Scholar]
  97. Kumamoto CA. 97.  2002. Candida biofilms. Curr. Opin. Microbiol. 5:608–11 [Google Scholar]
  98. Kumamoto CA. 98.  2005. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. PNAS 102:5576–81 [Google Scholar]
  99. Kumamoto CA. 99.  2011. Inflammation and gastrointestinal Candida colonization. Curr. Opin. Microbiol. 14:386–91 [Google Scholar]
  100. LaFleur MD, Kumamoto CA, Lewis K. 100.  2006. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. 50:3839–46 [Google Scholar]
  101. LaFleur MD, Lucumi E, Napper AD, Diamond SL, Lewis K. 101.  2011. Novel high-throughput screen against Candida albicans identifies antifungal potentiators and agents effective against biofilms. J. Antimicrob. Chemother. 66:820–26 [Google Scholar]
  102. Laforet L, Moreno I, Sanchez-Fresneda R, Martinez-Esparza M, Martinez JP. 102.  et al. 2011. Pga26 mediates filamentation and biofilm formation and is required for virulence in Candida albicans. FEMS Yeast Res. 11:389–97 [Google Scholar]
  103. Lattif AA, Mukherjee PK, Chandra J, Roth MR, Welti R. 103.  et al. 2011. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology 157:3232–42 [Google Scholar]
  104. Lepak A, Andes D. 104.  2011. Fungal sepsis: optimizing antifungal therapy in the critical care setting. Crit. Care Clin. 27:123–47 [Google Scholar]
  105. Levy B, Heiler D, Norton S. 105.  2006. Report on testing from an investigation of Fusarium keratitis in contact lens wearers. Eye Contact Lens 32:256–61 [Google Scholar]
  106. Li F, Svarovsky MJ, Karlsson AJ, Wagner JP, Marchillo K. 106.  et al. 2007. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot. Cell 6:931–39 [Google Scholar]
  107. Lin CH, Kabrawala S, Fox EP, Nobile CJ, Johnson AD, Bennett RJ. 107.  2013. Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans. PLOS Pathog. 9:e1003305 [Google Scholar]
  108. Lindsay AK, Morales DK, Liu Z, Grahl N, Zhang A. 108.  et al. 2014. Analysis of Candida albicans mutants defective in the Cdk8 module of Mediator reveal links between metabolism and biofilm formation. PLOS Genet. 10:e1004567 [Google Scholar]
  109. Liu G, Vellucci VF, Kyc S, Hostetter MK. 109.  2009. Simvastatin inhibits Candida albicans biofilm in vitro. Pediatr. Res. 66:600–4 [Google Scholar]
  110. Locke JC, Southern MM, Kozma-Bognar L, Hibberd V, Brown PE. 110.  et al. 2005. Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol. Syst. Biol. 1:2005.0013 [Google Scholar]
  111. Lopez D, Vlamakis H, Kolter R. 111.  2010. Biofilms. Cold Spring Harb. Perspect. Biol. 2:a000398 [Google Scholar]
  112. Lortholary O, Petrikkos G, Akova M, Arendrup MC, Arikan-Akdagli S. 112.  et al. 2012. ESCMID guideline for the diagnosis and management of Candida diseases 2012: patients with HIV infection or AIDS. Clin. Microbiol. Infect. 18:Suppl. 768–77 [Google Scholar]
  113. Marques SA. 113.  2012. Paracoccidioidomycosis. Clin. Dermatol. 30:610–15 [Google Scholar]
  114. Marrie TJ, Costerton JW. 114.  1984. Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J. Clin. Microbiol. 19:687–93 [Google Scholar]
  115. Martinez-Gomariz M, Perumal P, Mekala S, Nombela C, Chaffin WL, Gil C. 115.  2009. Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of Candida albicans. Proteomics 9:2230–52 [Google Scholar]
  116. Martins M, Henriques M, Lopez-Ribot JL, Oliveira R. 116.  2012. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55:80–85 [Google Scholar]
  117. Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M. 117.  et al. 2010. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia 169:323–31 [Google Scholar]
  118. Masala L, Luzzati R, Maccacaro L, Antozzi L, Concia E, Fontana R. 118.  2003. Nosocomial cluster of Candida guillermondii fungemia in surgical patients. Eur. J. Clin. Microbiol. Infect. Dis. 22:686–88 [Google Scholar]
  119. Mateus C, Crow SA Jr, Ahearn DG. 119.  2004. Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob. Agents Chemother. 48:3358–66 [Google Scholar]
  120. Melo AS, Padovan AC, Serafim RC, Puzer L, Carmona AK. 120.  et al. 2006. The Candida albicans AAA ATPase homologue of Saccharomyces cerevisiae Rix7p (YLL034c) is essential for proper morphology, biofilm formation and activity of secreted aspartyl proteinases. Genet. Mol. Res. 5:664–87 [Google Scholar]
  121. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P. 121.  et al. 2009. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 49:1–45 [Google Scholar]
  122. Mitchell KF, Taff HT, Cuevas MA, Reinicke EL, Sanchez H, Andes DR. 122.  2013. Role of matrix β-1,3 glucan in antifungal resistance of non-albicans Candida biofilms. Antimicrob. Agents Chemother. 57:1918–20 [Google Scholar]
  123. Monniot C, Boisrame A, Da Costa G, Chauvel M, Sautour M. 123.  et al. 2013. Rbt1 protein domains analysis in Candida albicans brings insights into hyphal surface modifications and Rbt1 potential role during adhesion and biofilm formation. PLOS ONE 8:e82395 [Google Scholar]
  124. Mosci P, Pericolini E, Gabrielli E, Kenno S, Perito S. 124.  et al. 2013. A novel bioluminescence mouse model for monitoring oropharyngeal candidiasis in mice. Virulence 4:250–54 [Google Scholar]
  125. Mowat E, Butcher J, Lang S, Williams C, Ramage G. 125.  2007. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J. Med. Microbiol. 56:1205–12 [Google Scholar]
  126. Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. 126.  2003. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 71:4333–40 [Google Scholar]
  127. Mukherjee PK, Mohamed S, Chandra J, Kuhn D, Liu S. 127.  et al. 2006. Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect. Immun. 74:3804–16 [Google Scholar]
  128. Munoz P, Bouza E, Cuenca-Estrella M, Eiros JM, Perez MJ. 128.  et al. 2005. Saccharomyces cerevisiae fungemia: an emerging infectious disease. Clin. Infect. Dis. 40:1625–34 [Google Scholar]
  129. 129. Natl. Nosocom. Infect. Surveill. Sys 2001. National Nosocomial Infections Surveillance (NNIS) System report, data summary from January 1992-June 2001, issued August 2001. Am. J. Infect. Control. 29:404–21 [Google Scholar]
  130. Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K. 130.  et al. 2007. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 51:510–20 [Google Scholar]
  131. Nett JE, Brooks EG, Cabezas-Olcoz J, Sanchez H, Zarnowski R. 131.  et al. 2014. Rat indwelling urinary catheter model of Candida albicans biofilm infection. Infect. Immun. 82:4931–40 [Google Scholar]
  132. Nett JE, Crawford K, Marchillo K, Andes DR. 132.  2010. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob. Agents Chemother. 54:3505–8 [Google Scholar]
  133. Nett JE, Lepak AJ, Marchillo K, Andes DR. 133.  2009. Time course global gene expression analysis of an in vivo Candida biofilm. J. Infect. Dis. 200:307–13 [Google Scholar]
  134. Nett JE, Marchillo K, Spiegel CA, Andes DR. 134.  2010. Development and validation of an in vivo Candida albicans biofilm denture model. Infect. Immun. 78:3650–59 [Google Scholar]
  135. Nett JE, Sanchez H, Cain MT, Andes DR. 135.  2010. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J. Infect. Dis. 202:171–75 [Google Scholar]
  136. Nett JE, Sanchez H, Cain MT, Ross KM, Andes DR. 136.  2011. Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation. Eukaryot. Cell 10:1660–69 [Google Scholar]
  137. Ni L, Bruce C, Hart C, Leigh-Bell J, Gelperin D. 137.  et al. 2009. Dynamic and complex transcription factor binding during an inducible response in yeast. Genes Dev. 23:1351–63 [Google Scholar]
  138. Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F. 138.  et al. 2006. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLOS Pathog. 2:e63 [Google Scholar]
  139. Nobile CJ, Fox EP, Hartooni N, Mitchell KF, Hnisz D. 139.  et al. 2014. A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans. mBio 5:e01201–14 [Google Scholar]
  140. Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM. 140.  et al. 2012. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–38 [Google Scholar]
  141. Nobile CJ, Mitchell AP. 141.  2005. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr. Biol. 15:1150–55 [Google Scholar]
  142. Nobile CJ, Mitchell AP. 142.  2006. Genetics and genomics of Candida albicans biofilm formation. Cell. Microbiol. 8:1382–91 [Google Scholar]
  143. Nobile CJ, Nett JE, Andes DR, Mitchell AP. 143.  2006. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot. Cell 5:1604–10 [Google Scholar]
  144. Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault JS. 144.  et al. 2009. Biofilm matrix regulation by Candida albicans Zap1. PLOS Biol. 7:e1000133 [Google Scholar]
  145. Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG. 145.  et al. 2008. Complementary adhesin function in C. albicans biofilm formation. Curr. Biol. 18:1017–24 [Google Scholar]
  146. Norice CT, Smith FJ Jr, Solis N, Filler SG, Mitchell AP. 146.  2007. Requirement for Candida albicans Sun41 in biofilm formation and virulence. Eukaryot. Cell 6:2046–55 [Google Scholar]
  147. Palanisamy SK, Ramirez MA, Lorenz M, Lee SA. 147.  2010. Candida albicans PEP12 is required for biofilm integrity and in vivo virulence. Eukaryot. Cell 9:266–77 [Google Scholar]
  148. Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE. 148.  et al. 2004. Guidelines for treatment of candidiasis. Clin. Infect. Dis. 38:161–89 [Google Scholar]
  149. Peltroche-Llacsahuanga H, Goyard S, d'Enfert C, Prill SK, Ernst JF. 149.  2006. Protein O-mannosyltransferase isoforms regulate biofilm formation in Candida albicans. Antimicrob. Agents Chemother. 50:3488–91 [Google Scholar]
  150. Perez A, Pedros B, Murgui A, Casanova M, Lopez-Ribot JL, Martinez JP. 150.  2006. Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Res. 6:1074–84 [Google Scholar]
  151. Perlroth J, Choi B, Spellberg B. 151.  2007. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med. Mycol. 45:321–46 [Google Scholar]
  152. Pfaller MA, Diekema DJ. 152.  2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20:133–63 [Google Scholar]
  153. Pietrella D, Enjalbert B, Zeidler U, Znaidi S, Rachini A. 153.  et al. 2012. A luciferase reporter for gene expression studies and dynamic imaging of superficial Candida albicans infections. Methods Mol. Biol. 845:537–46 [Google Scholar]
  154. Pitangui NS, Sardi JC, Silva JF, Benaducci T, Moraes da Silva RA. 154.  et al. 2012. Adhesion of Histoplasma capsulatum to pneumocytes and biofilm formation on an abiotic surface. Biofouling 28:711–18 [Google Scholar]
  155. Puri S, Kumar R, Chadha S, Tati S, Conti HR. 155.  et al. 2012. Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis. PLOS ONE 7:e46020 [Google Scholar]
  156. Ramage G, Bachmann S, Patterson TF, Wickes BL, Lopez-Ribot JL. 156.  2002. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J. Antimicrob. Chemother. 49:973–80 [Google Scholar]
  157. Ramage G, Martinez JP, Lopez-Ribot JL. 157.  2006. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res. 6:979–86 [Google Scholar]
  158. Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. 158.  2009. Our current understanding of fungal biofilms. Crit. Rev. Microbiol. 35:340–55 [Google Scholar]
  159. Ramage G, Rajendran R, Gutierrez-Correa M, Jones B, Williams C. 159.  2011. Aspergillus biofilms: clinical and industrial significance. FEMS Microbiol. Lett. 324:89–97 [Google Scholar]
  160. Ramage G, Rajendran R, Sherry L, Williams C. 160.  2012. Fungal biofilm resistance. Int. J. Microbiol. 2012:528521 [Google Scholar]
  161. Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL. 161.  2005. Candida biofilms: an update. Eukaryot. Cell 4:633–38 [Google Scholar]
  162. Ramage G, Tomsett K, Wickes BL, Lopez-Ribot JL, Redding SW. 162.  2004. Denture stomatitis: a role for Candida biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 98:53–59 [Google Scholar]
  163. Ramage G, VandeWalle K, Lopez-Ribot JL, Wickes BL. 163.  2002. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol. Lett. 214:95–100 [Google Scholar]
  164. Reynolds TB, Fink GR. 164.  2001. Bakers' yeast, a model for fungal biofilm formation. Science 291:878–81 [Google Scholar]
  165. Richard ML, Nobile CJ, Bruno VM, Mitchell AP. 165.  2005. Candida albicans biofilm-defective mutants. Eukaryot. Cell 4:1493–502 [Google Scholar]
  166. Ricicova M, Kucharikova S, Tournu H, Hendrix J, Bujdakova H. 166.  et al. 2010. Candida albicans biofilm formation in a new in vivo rat model. Microbiology 156:909–19 [Google Scholar]
  167. Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G. 167.  et al. 2011. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLOS Pathog. 7:e1002257 [Google Scholar]
  168. Rouabhia M, Semlali A, Chandra J, Mukherjee P, Chmielewski W, Ghannoum MA. 168.  2012. Disruption of the ECM33 gene in Candida albicans prevents biofilm formation, engineered human oral mucosa tissue damage and gingival cell necrosis/apoptosis. Mediat. Inflamm. 2012:398207 [Google Scholar]
  169. Ryan O, Shapiro RS, Kurat CF, Mayhew D, Baryshnikova A. 169.  et al. 2012. Global gene deletion analysis exploring yeast filamentous growth. Science 337:1353–56 [Google Scholar]
  170. Sahni N, Yi S, Daniels KJ, Srikantha T, Pujol C, Soll DR. 170.  2009. Genes selectively up-regulated by pheromone in white cells are involved in biofilm formation in Candida albicans. PLOS Pathog. 5:e1000601 [Google Scholar]
  171. Sandini S, Stringaro A, Arancia S, Colone M, Mondello F. 171.  et al. 2011. The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans. BMC Microbiol. 11:106 [Google Scholar]
  172. Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ. 172.  2013. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 62:10–24 [Google Scholar]
  173. Schinabeck MK, Long LA, Hossain MA, Chandra J, Mukherjee PK. 173.  et al. 2004. Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob. Agents Chemother. 48:1727–32 [Google Scholar]
  174. Schweizer A, Rupp S, Taylor BN, Rollinghoff M, Schroppel K. 174.  2000. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol. Microbiol. 38:435–45 [Google Scholar]
  175. Seddiki SM, Boucherit-Otmani Z, Boucherit K, Badsi-Amir S, Taleb M, Kunkel D. 175.  2013. Assessment of the types of catheter infectivity caused by Candida species and their biofilm formation: first study in an intensive care unit in Algeria. Int. J. Gen. Med. 6:1–7 [Google Scholar]
  176. Seidler MJ, Salvenmoser S, Muller FM. 176.  2008. Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob. Agents Chemother. 52:4130–36 [Google Scholar]
  177. Sellam A, Al-Niemi T, McInnerney K, Brumfield S, Nantel A, Suci PA. 177.  2009. A Candida albicans early stage biofilm detachment event in rich medium. BMC Microbiol. 9:25 [Google Scholar]
  178. Sellam A, Askew C, Epp E, Tebbji F, Mullick A. 178.  et al. 2010. Role of transcription factor CaNdt80p in cell separation, hyphal growth, and virulence in Candida albicans. Eukaryot. Cell 9:634–44 [Google Scholar]
  179. Sen M, Shah B, Rakshit S, Singh V, Padmanabhan B. 179.  et al. 2011. UDP-glucose 4, 6-dehydratase activity plays an important role in maintaining cell wall integrity and virulence of Candida albicans. PLOS Pathog. 7:e1002384 [Google Scholar]
  180. Shah AH, Singh A, Dhamgaye S, Chauhan N, Vandeputte P. 180.  et al. 2014. Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans. Biochem. J. 460:223–35 [Google Scholar]
  181. Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H. 181.  et al. 2009. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr. Biol. 19:621–29 [Google Scholar]
  182. Singh V, Satheesh SV, Raghavendra ML, Sadhale PP. 182.  2007. The key enzyme in galactose metabolism, UDP-galactose-4-epimerase, affects cell-wall integrity and morphology in Candida albicans even in the absence of galactose. Fungal Genet. Biol. 44:563–74 [Google Scholar]
  183. Srikantha T, Daniels KJ, Pujol C, Kim E, Soll DR. 183.  2013. Identification of genes upregulated by the transcription factor Bcr1 that are involved in impermeability, impenetrability, and drug resistance of Candida albicans a/α biofilms. Eukaryot. Cell 12:875–88 [Google Scholar]
  184. Srikantha T, Daniels KJ, Pujol C, Sahni N, Yi S, Soll DR. 184.  2012. Nonsex genes in the mating type locus of Candida albicans play roles in a/α biofilm formation, including impermeability and fluconazole resistance. PLOS Pathog. 8:e1002476 [Google Scholar]
  185. Srinivasan A, Gupta CM, Agrawal CM, Leung KP, Lopez-Ribot JL, Ramasubramanian AK. 185.  2014. Drug susceptibility of matrix-encapsulated Candida albicans nano-biofilms. Biotechnol. Bioeng. 111:418–24 [Google Scholar]
  186. Strijbis K, van Roermund CW, Visser WF, Mol EC, van den Burg J. 186.  et al. 2008. Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation. Eukaryot. Cell 7:610–18 [Google Scholar]
  187. Sullivan DJ, Westerneng TJ, Haynes KA, Bennett DE, Coleman DC. 187.  1995. Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141:Part 71507–21 [Google Scholar]
  188. Sun X, Lu H, Jiang Y, Cao Y. 188.  2013. CaIPF19998 reduces drug susceptibility by enhancing the ability of biofilm formation and regulating redox homeostasis in Candida albicans. Curr. Microbiol. 67:322–26 [Google Scholar]
  189. Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H. 189.  et al. 2012. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLOS Pathog. 8:e1002848 [Google Scholar]
  190. Tan X, Fuchs BB, Wang Y, Chen W, Yuen GJ. 190.  et al. 2014. The role of Candida albicans SPT20 in filamentation, biofilm formation and pathogenesis. PLOS ONE 9:e94468 [Google Scholar]
  191. Thomas DP, Bachmann SP, Lopez-Ribot JL. 191.  2006. Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics 6:5795–804 [Google Scholar]
  192. Thomas DP, Lopez-Ribot JL, Lee SA. 192.  2009. A proteomic analysis of secretory proteins of a pre-vacuolar mutant of Candida albicans. J. Proteomics 73:342–51 [Google Scholar]
  193. Tsai PW, Chen YT, Yang CY, Chen HF, Tan TS. 193.  et al. 2014. The role of Mss11 in Candida albicans biofilm formation. Mol. Genet. Genomics 289:807–19 [Google Scholar]
  194. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK. 194.  et al. 2010. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLOS Pathog. 6:e1000828 [Google Scholar]
  195. Uppuluri P, Pierce CG, Thomas DP, Bubeck SS, Saville SP, Lopez-Ribot JL. 195.  2010. The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Eukaryot. Cell 9:1531–37 [Google Scholar]
  196. Uwamahoro N, Qu Y, Jelicic B, Lo TL, Beaurepaire C. 196.  et al. 2012. The functions of Mediator in Candida albicans support a role in shaping species-specific gene expression. PLOS Genet. 8:e1002613 [Google Scholar]
  197. Vande Velde G, Kucharikova S, Schrevens S, Himmelreich U, Van Dijck P. 197.  2014. Towards non-invasive monitoring of pathogen-host interactions during Candida albicans biofilm formation using in vivo bioluminescence. Cell. Microbiol. 16:115–30 [Google Scholar]
  198. Vande Velde G, Kucharikova S, Van Dijck P, Himmelreich U. 198.  2014. Bioluminescence imaging of fungal biofilm development in live animals. Methods Mol. Biol. 1098:153–67 [Google Scholar]
  199. Wang X, Fries BC. 199.  2011. A murine model for catheter-associated candiduria. J. Med. Microbiol. 60:1523–29 [Google Scholar]
  200. Watanabe NA, Miyazaki M, Horii T, Sagane K, Tsukahara K, Hata K. 200.  2012. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob. Agents Chemother. 56:960–71 [Google Scholar]
  201. Weig M, Gross U, Muhlschlegel F. 201.  1998. Clinical aspects and pathogenesis of Candida infection. Trends Microbiol. 6:468–70 [Google Scholar]
  202. Wenzel RP. 202.  1995. Nosocomial candidemia: risk factors and attributable mortality. Clin. Infect. Dis. 20:1531–34 [Google Scholar]
  203. Wilson NK, Foster SD, Wang X, Knezevic K, Schutte J. 203.  et al. 2010. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7:532–44 [Google Scholar]
  204. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. 204.  2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39:309–17 [Google Scholar]
  205. Yeater KM, Chandra J, Cheng G, Mukherjee PK, Zhao X. 205.  et al. 2007. Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology 153:2373–85 [Google Scholar]
  206. Young RA. 206.  2011. Control of the embryonic stem cell state. Cell 144:940–54 [Google Scholar]
  207. Yu Q, Wang F, Zhao Q, Chen J, Zhang B. 207.  et al. 2014. A novel role of the vacuolar calcium channel Yvc1 in stress response, morphogenesis and pathogenicity of Candida albicans. Int. J. Med. Microbiol. 304:339–50 [Google Scholar]
  208. Yu Q, Wang H, Xu N, Cheng X, Wang Y. 208.  et al. 2012. Spf1 strongly influences calcium homeostasis, hyphal development, biofilm formation and virulence in Candida albicans. Microbiology 158:2272–82 [Google Scholar]
  209. Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR. 209.  et al. 2014. Novel entries in a fungal biofilm matrix encyclopedia. mBio 5:e01333–14 [Google Scholar]
  210. Zeidler U, Bougnoux ME, Lupan A, Helynck O, Doyen A. 210.  et al. 2013. Synergy of the antibiotic colistin with echinocandin antifungals in Candida species. J. Antimicrob. Chemother. 68:1285–96 [Google Scholar]
  211. Zhang X, Sun X, Wang Z, Zhang Y, Hou W. 211.  2012. Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility. Invest. Ophthalmol. Visual Sci. 53:7774–78 [Google Scholar]
  212. Zhao X, Daniels KJ, Oh SH, Green CB, Yeater KM. 212.  et al. 2006. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152:2287–99 [Google Scholar]
  213. Zhao X, Oh SH, Yeater KM, Hoyer LL. 213.  2005. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 151:1619–30 [Google Scholar]
/content/journals/10.1146/annurev-micro-091014-104330
Loading
/content/journals/10.1146/annurev-micro-091014-104330
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error