Early parental influence led me first to medical school, but after developing a passion for biochemistry and sensing the need for a deeper foundation, I changed to chemistry. During breaks between semesters, I worked in various biochemistry labs to acquire a feeling for the different areas of investigation. The scientific puzzle that fascinated me most was the metabolism of the anaerobic bacterium , which I took on in 1965 in Karl Decker's lab in Freiburg, Germany. I quickly realized that little was known about the biochemistry of strict anaerobes such as clostridia, methanogens, acetogens, and sulfate-reducing bacteria and that these were ideal model organisms to study fundamental questions of energy conservation, CO fixation, and the evolution of metabolic pathways. My passion for anaerobes was born then and is unabated even after 50 years of study.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acharya P, Goenrich M, Hagemeier CH, Demmer U, Vorholt JA. 1.  et al. 2005. How an enzyme binds the C1 carrier tetrahydromethanopterin. Structure of the tetrahydromethanopterin-dependent formaldehyde-activating enzyme (Fae) from Methylobacterium extorquens AM1. J. Biol. Chem. 280:13712–19 [Google Scholar]
  2. Aeckersberg F, Bak F, Widdel F. 2.  1991. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156:5–14 [Google Scholar]
  3. Albracht SPJ, Graf EG, Thauer RK. 3.  1982. The electron-paramagnetic-resonance properties of nickel in hydrogenase from Methanobacterium thermoautotrophicum. FEBS Lett. 140:311–13 [Google Scholar]
  4. Anderson RF. 4.  1983. Energetics of the one-electron reduction steps of riboflavin, FMN and FAD to their fully reduced forms. Biochim. Biophys. Acta 722:158–62 [Google Scholar]
  5. Andreesen J, Ljungdahl LG. 5.  1973. Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and effects of selenite, molybdate, and tungstate on enzyme activity. J. Bacteriol. 116:867–73 [Google Scholar]
  6. Ankel-Fuchs D, Thauer RK. 6.  1986. Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin. Eur. J. Biochem. 156:171–77 [Google Scholar]
  7. Badziong W, Thauer RK. 7.  1978. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as sole energy sources. Arch. Microbiol. 117:209–14 [Google Scholar]
  8. Badziong W, Thauer RK. 8.  1980. Vectorial electron transport in Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate as sole energy source. Arch. Microbiol. 125:167–74 [Google Scholar]
  9. Badziong W, Thauer RK, Zeikus JG. 9.  1978. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as sole energy source. Arch. Microbiol. 116:41–49 [Google Scholar]
  10. Bartha R, Ordal EJ. 10.  1965. Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains. J. Bacteriol. 89:1015–19 [Google Scholar]
  11. Bartoschek S, Buurman G, Thauer RK, Geierstanger BH, Weyrauch JP. 11.  et al. 2001. Re-face stereo-specificity of methylenetetrahydromethanopterin and methylenetetrahydrofolate dehydrogenases is predetermined by intrinsic properties of the substrate. ChemBioChem 2:530–41 [Google Scholar]
  12. Berkessel A, Thauer RK. 12.  1995. On the mechanism of catalysis by a metal-free hydrogenase from methanogenic Archaea: Enzymatic transformation of H2 without a metal and its analogy to the chemistry of alkanes in superacidic solution. Angew. Chem. Int. Ed. 34:2247–50 [Google Scholar]
  13. Bobik TA, Olson KD, Noll KM, Wolfe RS. 13.  1987. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium. Biochem. Biophys. Res. Commun. 149:455–60 [Google Scholar]
  14. Boer JL, Mulrooney SB, Hausinger RP. 14.  2014. Nickel-dependent metalloenzymes. Arch. Biochem. Biophys. 544:142–52 [Google Scholar]
  15. Bott M, Thauer RK. 15.  1989. Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur. J. Biochem. 179:469–72 [Google Scholar]
  16. Bott M, Thauer RK. 16.  1989. The active species of “CO2” formed by carbon monoxide dehydrogenase from Peptostreptococcus productus. Z. Naturforsch. 44:392–96 [Google Scholar]
  17. Brandis A, Thauer RK. 17.  1981. Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. J. Gen. Microbiol. 126:249–52 [Google Scholar]
  18. Brandis A, Thauer RK, Stetter KO. 18.  1981. Relatedness of strains ΔH and Marburg of Methanobacterium thermoautotrophicum. Zbl. Bakteriol. Hyg. I Abt. Orig. C 2:311–17 [Google Scholar]
  19. Brioukhanov AL, Netrusov AI. 19.  2007. Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: a review. Appl. Biochem. Microbiol. 43:567–82 [Google Scholar]
  20. Brock TD, Brock KM, Belly RT, Weiss RL. 20.  1972. Sulfolobus: new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 84:54–68 [Google Scholar]
  21. Brock TD, Freeze H. 21.  1969. Thermus aquaticus gen. nov. and sp. nov., a nonsporulating extreme thermophile. J. Bacteriol. 98:289–97 [Google Scholar]
  22. Bryant MP, Wolin EA, Wolin MJ, Wolfe RS. 22.  1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol. 59:20–31 [Google Scholar]
  23. Buckel W, Golding BT. 23.  2006. Radical enzymes in anaerobes. Annu. Rev. Microbiol. 60:27–49 [Google Scholar]
  24. Buckel W, Thauer RK. 24.  2013. Energy conservation via electron-bifurcating ferredoxin reduction and proton/Na+-translocating ferredoxin oxidation. Biochim. Biophys. Acta-Bioenerg. 1827:94–113 [Google Scholar]
  25. Cedervall PE, Dey M, Li XH, Sarangi R, Hedman B. 25.  et al. 2011. Structural analysis of a Ni-methyl species in methyl-coenzyme M reductase from Methanothermobacter marburgensis. J. Am. Chem. Soc. 133:5626–28 [Google Scholar]
  26. Chen SL, Blomberg MRA, Siegbahn PEM. 26.  2014. An investigation of possible competing mechanisms for Ni-containing methyl–coenzyme M reductase. Phys. Chem. Chem. Phys. 16:14029–35 [Google Scholar]
  27. Chistoserdova L, Jenkins C, Kalyuzhnaya MG, Marx CJ, Lapidus A. 27.  et al. 2004. The enigmatic Planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol. Biol. Evol. 21:1234–41 [Google Scholar]
  28. Chistoserdova L, Vorholt JA, Thauer RK, Lidstrom ME. 28.  1998. C1-transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science 281:99–102 [Google Scholar]
  29. Chovnick A. 29.  1961. Cellular Regulatory Mechanisms.. Cold Spring Harb. Symp. Quant. Biol. 26 Cold Spring Harb., NY: Long Isl. Biol. Assoc. [Google Scholar]
  30. Chowdhury NP, Mowafy AM, Demmer JK, Upadhyay V, Koelzer S. 30.  et al. 2014. Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans. J. Biol. Chem. 289:5145–57 [Google Scholar]
  31. Daniels L, Fuchs G, Thauer RK, Zeikus JG. 31.  1977. Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132:118–26 [Google Scholar]
  32. Decker K. 32.  2000. A German biochemist in the twentieth century. Selected Topics in the History of Biochemistry: Personal Recollections VI R Jaenicke, G Semenza 563–633 Compr. Biochem. 41 Amsterdam: Elsevier [Google Scholar]
  33. Decker K, Jungermann K, Thauer RK. 33.  1970. Energy production in anaerobic organisms. Angew. Chem. Int. Ed. 9:138–58 [Google Scholar]
  34. Decker K, Thauer RK, Jungermann K. 34.  1966. Die Kohlenhydratsynthese in Clostridium kluyveri: I. Isotopenversuche zur Biosynthese der Ribose. Biochem. Z. 345:461–71 [Google Scholar]
  35. Deppenmeier U, Müller V, Gottschalk G. 35.  1996. Pathways of energy conservation in methanogenic archaea. Arch. Microbiol. 165:149–63 [Google Scholar]
  36. Diekert G, Hansch M, Conrad R. 36.  1984. Acetate synthesis from 2 CO2 in acetogenic bacteria: Is carbon monoxide an intermediate?. Arch. Microbiol. 138:224–28 [Google Scholar]
  37. Diekert G, Jaenchen R, Thauer RK. 37.  1980. Biosynthetic evidence for a nickel tetrapyrrole structure of factor F430 from Methanobacterium thermoautotrophicum. FEBS Lett. 119:118–20 [Google Scholar]
  38. Diekert G, Klee B, Thauer RK. 38.  1980. Nickel, a component of factor F430 from Methanobacterium thermoautotrophicum. Arch. Microbiol. 124:103–6 [Google Scholar]
  39. Diekert G, Ritter M. 39.  1983. Carbon monoxide fixation into the carboxyl group of acetate during growth of Acetobacterium woodii on H2 and CO2. FEMS Microbiol. Lett. 17:299–302 [Google Scholar]
  40. Diekert G, Ritter M. 40.  1983. Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum. FEBS Lett. 151:41–44 [Google Scholar]
  41. Diekert G, Thauer RK. 41.  1980. The effect of nickel on carbon monoxide dehydrogenase formation in Clostridium thermoaceticum and Clostridium formicoaceticum. FEMS Microbiol. Lett. 7:187–89 [Google Scholar]
  42. Diekert GB, Graf EG, Thauer RK. 42.  1979. Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum. Arch. Microbiol. 122:117–20 [Google Scholar]
  43. Diekert GB, Thauer RK. 43.  1978. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J. Bacteriol. 136:597–606 [Google Scholar]
  44. Dimarco AA, Bobik TA, Wolfe RS. 44.  1990. Unusual coenzymes of methanogenesis. Annu. Rev. Biochem. 59:355–94 [Google Scholar]
  45. Dixon NE, Gazzola C, Blakeley RL, Zerner B. 45.  1975. Jack-bean urease (EC Metalloenzyme. Simple biological role for nickel. J. Am. Chem. Soc. 97:4131–33 [Google Scholar]
  46. Drake HL, Hu SI, Wood HG. 46.  1980. Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum. J. Biol. Chem. 255:7174–80 [Google Scholar]
  47. Drews G. 47.  2011. The evolution of cyanobacteria and photosynthesis. Bioenergetic Processes of Cyanobacteria: From Evolutionary Singularity to Ecological Diversity GA Peschek, C Obinger, G Renger 265–84 Berlin: Springer [Google Scholar]
  48. Ebner S, Jaun B, Goenrich M, Thauer RK, Harmer J. 48.  2010. Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase. J. Am. Chem. Soc. 132:567–75 [Google Scholar]
  49. Eirich LD, Vogels GD, Wolfe RS. 49.  1978. Proposed structure for coenzyme F420 from Methanobacterium. Biochemistry 17:4583–93 [Google Scholar]
  50. Ellefson WL, Whitman WB, Wolfe RS. 50.  1982. Nickel-containing factor F430: chromophore of the methylreductase of Methanobacterium. PNAS 79:3707–10 [Google Scholar]
  51. Ellermann J, Hedderich R, Böcher R, Thauer RK. 51.  1988. The final step in methane formation: investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 172:669–77 [Google Scholar]
  52. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK. 52.  1997. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–62 [Google Scholar]
  53. Färber G, Keller W, Kratky C, Jaun B, Pfaltz A. 53.  et al. 1991. Coenzyme F430 from methanogenic bacteria: complete assignment of configuration based on an X-ray analysis of 12,13-diepi-F430 pentamethyl ester and on NMR spectroscopy. Helv. Chim. Acta 74:697–716 [Google Scholar]
  54. Fischer R, Thauer RK. 54.  1990. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett. 269:368–72 [Google Scholar]
  55. Fischer R, Thauer RK. 55.  1990. Methanogenesis from acetate in cell extracts of Methanosarcina barkeri: isotope exchange between CO2 and the carbonyl group of acetyl-CoA, and the role of H2. Arch. Microbiol. 153:156–62 [Google Scholar]
  56. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF. 56.  et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [Google Scholar]
  57. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA. 57.  et al. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270:397–403 [Google Scholar]
  58. Friedrich B, Heine E, Finck A, Friedrich CG. 58.  1981. Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus. J. Bacteriol. 145:1144–49 [Google Scholar]
  59. Friedrich CG, Schneider K, Friedrich B. 59.  1982. Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus. J. Bacteriol. 152:42–48 [Google Scholar]
  60. Fuchs G. 60.  2011. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?. Annu. Rev. Microbiol. 65:631–58 [Google Scholar]
  61. Fuchs G, Boll M, Heider J. 61.  2011. Microbial degradation of aromatic compounds: from one strategy to four. Nat. Rev. Microbiol. 9:803–16 [Google Scholar]
  62. Fuchs G, Stupperich E, Thauer RK. 62.  1978. Acetate assimilation and synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch. Microbiol. 117:61–66 [Google Scholar]
  63. Gauer OH. 63.  1966. Rudolf Thauer zum 60. Geburtstag. Z. Kreislaufforsch. 55:1073–81 [Google Scholar]
  64. Gladwell M. 64.  2008. Outliers: The Story of Success New York: Little Brown [Google Scholar]
  65. Goenrich M, Duin EC, Mahlert F, Thauer RK. 65.  2005. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B. J. Biol. Inorg. Chem. 10:333–42 [Google Scholar]
  66. Goenrich M, Thauer RK, Yurimoto H, Kato N. 66.  2005. Formaldehyde activating enzyme (Fae) and hexulose-6-phosphate synthase (Hps) in Methanosarcina barkeri: a possible function in ribose-5-phosphate biosynthesis. Arch. Microbiol. 184:41–48 [Google Scholar]
  67. Gottschalk G, Thauer RK. 67.  2001. The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim. Biophys. Acta-Bioenerg. 1505:28–36 [Google Scholar]
  68. Goubeaud M, Schreiner G, Thauer RK. 68.  1997. Purified methyl-coenzyme M reductase is activated when the enzyme-bound coenzyme F430 is reduced to the nickel(I) oxidation state by titanium(III) citrate. Eur. J. Biochem. 243:110–14 [Google Scholar]
  69. Grabarse W, Mahlert F, Duin EC, Goubeaud M, Shima S. 69.  et al. 2001. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J. Mol. Biol. 309:315–30 [Google Scholar]
  70. Graf EG, Thauer RK. 70.  1981. Hydrogenase from Methanobacterium thermoautotrophicum, a nickel-containing enzyme. FEBS Lett. 136:165–69 [Google Scholar]
  71. Gunsalus RP, Wolfe RS. 71.  1977. Stimulation of CO2 reduction to methane by methyl-coenzyme M in extracts of Methanobacterium. Biochem. Biophys. Res. Commun. 76:790–95 [Google Scholar]
  72. Gunsalus RP, Wolfe RS. 72.  1978. Chromophoric factors F342 and F430 of Methanobacterium thermoautotrophicum. FEMS Microbiol. Lett. 3:191–93 [Google Scholar]
  73. Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D. 73.  et al. 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–62 [Google Scholar]
  74. Hamann N, Mander GJ, Shokes JE, Scott RA, Bennati M, Hedderich R. 74.  2007. Cysteine-rich CCG domain contains a novel [4Fe-4S] cluster binding motif as deduced from studies with subunit B of heterodisulfide reductase from Methanothermobacter marburgensis. Biochemistry 46:12875–85 [Google Scholar]
  75. Häussinger D. 75.  2004. Kurt Jungermann: a pioneer in liver research. Anat. Record Part A 280A:807 [Google Scholar]
  76. Hedderich R, Berkessel A, Thauer RK. 76.  1989. Catalytic properties of the heterodisulfide reductase involved in the final step of methanogenesis. FEBS Lett. 255:67–71 [Google Scholar]
  77. Heiden S, Hedderich R, Setzke E, Thauer RK. 77.  1993. Purification of a cytochrome b containing H2:heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri. Eur. J. Biochem. 213:529–35 [Google Scholar]
  78. Heinz E. 78.  1967. Transport through biological membranes. Annu. Rev. Physiol. 29:21–58 [Google Scholar]
  79. Herrmann G, Jayamani E, Mai G, Buckel W. 79.  2008. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J. Bacteriol. 190:784–91 [Google Scholar]
  80. Hiromoto T, Ataka K, Pilak O, Vogt S, Stagni MS. 80.  et al. 2009. The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. FEBS Lett. 583:585–90 [Google Scholar]
  81. Hochheimer A, Hedderich R, Thauer RK. 81.  1999. The DNA binding protein Tfx from Methanobacterium thermoautotrophicum: structure, DNA binding properties and transcriptional regulation. Mol. Microbiol. 31:641–50 [Google Scholar]
  82. Hodges EJ. 82.  1966. The Three Princes of Serendip New York: Atheneum [Google Scholar]
  83. Holzer H. 83.  1961. Regulation of carbohydrate metabolism by enzyme competition. Cold Spring Harb. Symp. Quant. Biol. 26:277–88 [Google Scholar]
  84. Hu SI, Drake HL, Wood HG. 84.  1982. Synthesis of acetyl-coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum. J. Bacteriol. 149:440–48 [Google Scholar]
  85. Huang H, Wang S, Moll J, Thauer RK. 85.  2012. Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2. J. Bacteriol. 194:3689–99 [Google Scholar]
  86. Jaenchen R, Diekert G, Thauer RK. 86.  1981. Incorporation of methionine-derived methyl groups into factor F430 by Methanobacterium thermoautotrophicum. FEBS Lett. 130:133–36 [Google Scholar]
  87. Jannasch HW. 87.  1997. Small is powerful: recollections of a microbiologist and oceanographer. Annu. Rev. Microbiol. 51:1–45 [Google Scholar]
  88. Jungermann K, Kirchniawy FH, Thauer RK. 88.  1970. Ferredoxin-dependent CO2 reduction to formate in Clostridium pasteurianum. Biochem. Biophys. Res. Commun. 41:682–89 [Google Scholar]
  89. Jungermann K, Rupprecht E, Ohrloff C, Thauer R, Decker K. 89.  1971. Regulation of reduced nicotinamide adenine dinucleotide-ferredoxin reductase system in Clostridium kluyveri. J. Biol. Chem. 246:960–63 [Google Scholar]
  90. Jungermann K, Thauer RK, Decker K. 90.  1968. Synthesis of one-carbon units from CO2 in Clostridium kluyveri. Eur. J. Biochem. 3:351–59 [Google Scholar]
  91. Jungermann K, Thauer RK, Leimenstoll G, Decker K. 91.  1973. Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochim. Biophys. Acta 305:268–80 [Google Scholar]
  92. Kaesler B, Schönheit P. 92.  1989. The sodium cycle in methanogenesis: CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4. Eur. J. Biochem. 186:309–16 [Google Scholar]
  93. Kahnt J, Buchenau B, Mahlert F, Krüger M, Shima S, Thauer RK. 93.  2007. Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea. FEBS J. 274:4913–21 [Google Scholar]
  94. Karrasch M, Bott M, Thauer RK. 94.  1989. Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch. Microbiol. 151:137–42 [Google Scholar]
  95. Kaster AK, Moll J, Parey K, Thauer RK. 95.  2011. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. PNAS 108:2981–86 [Google Scholar]
  96. Kornberg A. 96.  2000. Ten commandments: lessons from the enzymology of DNA replication. J. Bacteriol. 182:3613–68 [Google Scholar]
  97. Kortüm G. 97.  1960. Einführung in die Chemische Thermodynamik Göttingen, Germ: Vandenhoeck Ruprecht [Google Scholar]
  98. Krebs HA. 98.  1967. Making of a scientist. Nature 215:1244–48 [Google Scholar]
  99. Kristjansson JK, Schönheit P, Thauer RK. 99.  1982. Different Ks values for hydrogen of methanogenic bacteria and sulfate-reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch. Microbiol. 131:278–82 [Google Scholar]
  100. Krüger M, Meyerdierks A, Glockner FO, Amann R, Widdel F. 100.  et al. 2003. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–81 [Google Scholar]
  101. Kuhner CH, Lindenbach BD, Wolfe RS. 101.  1993. Component A2 of methyl-coenzyme M reductase system from Methanobacterium thermoautotrophicum ΔH: nucleotide sequence and functional expression by Escherichia coli. J. Bacteriol. 175:3195–203 [Google Scholar]
  102. Lee HLT, Boccazzi P, Ram RJ, Sinskey AJ. 102.  2006. Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control. Lab Chip 6:1229–35 [Google Scholar]
  103. Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK. 103.  2008. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J. Bacteriol. 190:843–50 [Google Scholar]
  104. Lyon EJ, Shima S, Buurman G, Chowdhuri S, Batschauer A. 104.  et al. 2004. UV-A/blue-light inactivation of the ‘metal-free’ hydrogenase (Hmd) from methanogenic archaea: The enzyme contains functional iron after all. Eur. J. Biochem. 271:195–204 [Google Scholar]
  105. Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E, Sly LI. 105.  1993. Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int. J. Syst. Bacteriol. 43:135–42 [Google Scholar]
  106. Mahlert F, Grabarse W, Kahnt J, Thauer RK, Duin EC. 106.  2002. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro interconversions among the EPR detectable MCR-red1 and MCR-red2 states. J. Biol. Inorg. Chem. 7:101–12 [Google Scholar]
  107. McBride BC, Wolfe RS. 107.  1971. New coenzyme of methyl transfer, coenzyme M. Biochemistry 10:2317–24 [Google Scholar]
  108. McCord JM, Fridovich I. 108.  1969. Superoxide dismutase, an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–55 [Google Scholar]
  109. Miller TL, Lin CZ. 109.  2002. Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Int. J. Syst. Evol. Microbiol. 52:819–22 [Google Scholar]
  110. Mitchell P. 110.  1975. The protonmotive Q cycle: general formulation. FEBS Lett. 59:137–39 [Google Scholar]
  111. Möller-Zinkhan D, Börner G, Thauer RK. 111.  1989. Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch. Microbiol. 152:362–68 [Google Scholar]
  112. Möller-Zinkhan D, Thauer RK. 112.  1990. Anaerobic lactate oxidation to 3 CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts. Arch. Microbiol. 153:215–18 [Google Scholar]
  113. Mutters R, Ihm P, Pohl S, Frederiksen W, Mannheim W. 113.  1985. Reclassification of the genus Pasteurella Trevisan 1887 on the basis of deoxyribonucleic acid homology, with proposals for the new species Pasteurella dagmatis, Pasteurella canis, Pasteurella stomatis, Pasteurella anatis, and Pasteurella langaa. Int. J. Syst. Bacteriol. 35:309–22 [Google Scholar]
  114. Nethe-Jaenchen R, Thauer RK. 114.  1984. Growth yields and saturation constant of Desulfovibrio vulgaris in chemostat culture. Arch. Microbiol. 137:236–40 [Google Scholar]
  115. Noll KM, Rinehart KL, Tanner RS, Wolfe RS. 115.  1986. Structure of component B (7-mercaptoheptanoylthreonine phosphate) of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum. PNAS 83:4238–42 [Google Scholar]
  116. Paulsen J, Kröger A, Thauer RK. 116.  1986. ATP-driven succinate oxidation in the catabolism of Desulfuromonas acetoxidans. Arch. Microbiol. 144:78–83 [Google Scholar]
  117. Perski HJ, Schönheit P, Thauer RK. 117.  1982. Sodium dependence of methane formation in methanogenic bacteria. FEBS Lett. 143:323–26 [Google Scholar]
  118. Pfaltz A, Jaun B, Fässler A, Eschenmoser A, Jaenchen R. 118.  et al. 1982. Factor F430 from methanogenic bacteria: structure of the porphinoid ligand system. Helv. Chim. Acta 65:828–65 [Google Scholar]
  119. Pfennig N, Biebl H. 119.  1976. Desulfuromonas acetoxidans gen. nov. and sp. nov.: new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol. 110:3–12 [Google Scholar]
  120. Prakash D, Wu YN, Suh SJ, Duin EC. 120.  2014. Elucidating the process of activation of methyl-coenzyme M reductase. J. Bacteriol. 196:2491–98 [Google Scholar]
  121. Ragsdale SW, Kumar M. 121.  1996. Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem. Rev. 96:2515–39 [Google Scholar]
  122. Ragsdale SW, Ljungdahl LG, DerVartanian DV. 122.  1982. EPR evidence for nickel-substrate interaction in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochem. Biophys. Res. Commun. 108:658–63 [Google Scholar]
  123. Ragsdale SW, Pierce E. 123.  2008. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta Proteins Proteomics 1784:1873–98 [Google Scholar]
  124. Rospert S, Böcher R, Albracht SPJ, Thauer RK. 124.  1991. Methyl-coenzyme M reductase preparations with high specific activity from H2-preincubated cells of Methanobacterium thermoautotrophicum. FEBS Lett. 291:371–75 [Google Scholar]
  125. Rouvière PE, Wolfe RS. 125.  1988. Novel biochemistry of methanogenesis. J. Biol. Chem. 263:7913–16 [Google Scholar]
  126. Scheller S, Goenrich M, Böcher R, Thauer RK, Jaun B. 126.  2010. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–8 [Google Scholar]
  127. Scheller S, Goenrich M, Thauer RK, Jaun B. 127.  2013. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M. J. Am. Chem. Soc. 135:14985–95 [Google Scholar]
  128. Scheller S, Goenrich M, Thauer RK, Jaun B. 128.  2013. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane. J. Am. Chem. Soc. 135:14975–84 [Google Scholar]
  129. Schönheit P, Kristjansson JK, Thauer RK. 129.  1982. Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Arch. Microbiol. 132:285–88 [Google Scholar]
  130. Schönheit P, Moll J, Thauer RK. 130.  1979. Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch. Microbiol. 123:105–7 [Google Scholar]
  131. Schönheit P, Moll J, Thauer RK. 131.  1980. Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum. Arch. Microbiol. 127:59–65 [Google Scholar]
  132. Schuchmann K, Müller V. 132.  2012. A bacterial electron-bifurcating hydrogenase. J. Biol. Chem. 287:31165–71 [Google Scholar]
  133. Schuchmann K, Müller V. 133.  2014. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12:809–21 [Google Scholar]
  134. Schut GJ, Adams MWW. 134.  2009. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J. Bacteriol. 191:4451–57 [Google Scholar]
  135. Seedorf H, Fricke WF, Veith B, Brüggemann H, Liesegang H. 135.  et al. 2008. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. PNAS 105:2128–33 [Google Scholar]
  136. Shima S, Krueger M, Weinert T, Demmer U, Kahnt J. 136.  et al. 2012. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481:98–101 [Google Scholar]
  137. Shima S, Lyon EJ, Sordel-Klippert MS, Kauss M, Kahnt J. 137.  et al. 2004. The cofactor of the iron-sulfur cluster free hydrogenase Hmd: structure of the light-inactivation product. Angew. Chem. Int. Ed. 43:2547–51 [Google Scholar]
  138. Shima S, Pilak O, Vogt S, Schick M, Stagni MS. 138.  et al. 2008. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321:572–75 [Google Scholar]
  139. Shima S, Thauer RK. 139.  2007. A third type of hydrogenase catalyzing H2 activation. Chem. Rec. 7:37–46 [Google Scholar]
  140. Stanier RY, Vanniel CB. 140.  1962. Concept of a bacterium. Arch. Mikrobiol. 42:17–35 [Google Scholar]
  141. Stetter KO. 141.  2013. A brief history of the discovery of hyperthermophilic life. Biochem. Soc. Transact. 41:416–20 [Google Scholar]
  142. Stöffler G, Thauer RK, Uehleke H. 142.  1965. Methämoglobinbildung durch p-Hydroxylaminobenzolsulfonamid in Nabelschnur- und Erwachsenenerythrocyten. Naunyn-Schmiedeberg's Arch. Pharmacol. 252:359–67 [Google Scholar]
  143. Stupperich E, Fuchs G. 143.  1984. Autotrophic synthesis of activated acetic acid from 2 CO2 in Methanobacterium thermoautotrophicum: 2. Evidence for different origins of acetate carbon atoms. Arch. Microbiol. 139:14–20 [Google Scholar]
  144. Stupperich E, Hammel KE, Fuchs G, Thauer RK. 144.  1983. Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium. FEBS Lett. 152:21–23 [Google Scholar]
  145. ter Meulen V, Thauer R. 145.  2009. Celebrating Achim Trebst's 80th birthday. Photosynth. Res. 100:117–19 [Google Scholar]
  146. Thauer CR. 146.  2014. The Managerial Sources of Corporate Social Responsibility: The Spread of Global Standards Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  147. Thauer J. 147.  2001. Gerichtspraxis in der ländlichen Gesellschaft: Eine mikrohistorische Untersuchung am Beispiel eines altmärkischen Patrimonialgerichts um 1700 Berlin: Nomos Verlagsgesellschaft [Google Scholar]
  148. Thauer K. 148.  1994. Les marques distributeurs: un nouveau défi pour les fournisseurs traditionnels de la grande distribution Master's Thesis, Ec. Supér. Gest., Paris. [Google Scholar]
  149. Thauer RK. 149.  1972. CO2-reduction to formate by NADPH: initial step in total synthesis of acetate from CO2 in Clostridium thermoaceticum. FEBS Lett. 27:111–15 [Google Scholar]
  150. Thauer RK. 150.  1988. Citric acid cycle, 50 years on: modifications and an alternative pathway in anaerobic bacteria. Eur. J. Biochem. 176:497–508 [Google Scholar]
  151. Thauer RK. 151.  1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–406 [Google Scholar]
  152. Thauer RK. 152.  2007. A fifth pathway of carbon fixation. Science 318:1732–33 [Google Scholar]
  153. Thauer RK. 153.  2012. The Wolfe cycle comes full circle. PNAS 109:15084–85 [Google Scholar]
  154. Thauer RK, Fuchs G, Käufer B, Schnitker U. 154.  1974. Carbon monoxide oxidation in cell free extracts of Clostridium pasteurianum. Eur. J. Biochem. 45:343–49 [Google Scholar]
  155. Thauer RK, Jungermann K, Decker K. 155.  1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–80 [Google Scholar]
  156. Thauer RK, Jungermann K, Henninger H, Wenning J, Decker K. 156.  1968. The energy metabolism of Clostridium kluyveri. Eur. J. Biochem. 4:173–80 [Google Scholar]
  157. Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S. 157.  2010. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu. Rev. Biochem. 79:507–36 [Google Scholar]
  158. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. 158.  2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6:579–91 [Google Scholar]
  159. Thauer RK, Klein AR, Hartmann GC. 159.  1996. Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chem. Rev. 96:3031–42 [Google Scholar]
  160. Thauer RK, Möller-Zinkhan D, Spormann AM. 160.  1989. Biochemistry of acetate catabolism in anaerobic chemotropic bacteria. Annu. Rev. Microbiol. 43:43–67 [Google Scholar]
  161. Thauer RK, Morris JG. 161.  1984. Metabolism of chemotrophic anaerobes: old views and new aspects. The Microbe 1984. Part II: Prokaryotes and Eukaryotes DP Kelly, NG Carr 123–68 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  162. Thauer RK, Rupprecht E, Jungermann K. 162.  1970. The synthesis of one-carbon units from CO2 via a new ferredoxin dependent monocarboxylic acid cycle. FEBS Lett. 8:304–7 [Google Scholar]
  163. Thauer RK, Rupprecht E, Ohrloff C, Jungermann K, Decker K. 163.  1971. Regulation of the reduced nico-tinamide adenine dinucleotide phosphate-ferredoxin reductase system in Clostridium kluyveri. J. Biol. Chem. 246:954–59 [Google Scholar]
  164. Thauer RK, Shima S. 164.  2006. Biogeochemistry: methane and microbes. Nature 440:878–79 [Google Scholar]
  165. Thauer RK, Stöffler G, Uehleke H. 165.  1965. N-Hydroxylierung von Sulfanilamid zu p-Hydroxylaminobenzolsulfonamid durch Lebermikrosomen. Naunyn-Schmiedeberg's Arch. Pharmacol. 252:32–42 [Google Scholar]
  166. Ursini F, Maiorino M. 166.  2010. Redox pioneer: Professor Leopold Flohé. Antioxid. Redox Signal. 13:1617–22 [Google Scholar]
  167. Vitt S, Ma K, Warkentin E, Moll J, Pierik AJ. 167.  et al. 2014. The F420-reducing [NiFe]-hydrogenase complex from Methanothermobacter marburgensis, the first X-ray structure of a group-3 family member. J. Mol. Biol. 426:2813–26 [Google Scholar]
  168. Vorholt J, Kunow J, Stetter KO, Thauer RK. 168.  1995. Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch. Microbiol. 163:112–18 [Google Scholar]
  169. Vorholt JA, Chistoserdova L, Stolyar SM, Thauer RK, Lidstrom ME. 169.  1999. Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J. Bacteriol. 181:5750–57 [Google Scholar]
  170. Vorholt JA, Hafenbradl D, Stetter KO, Thauer RK. 170.  1997. Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus. Arch. Microbiol. 167:19–23 [Google Scholar]
  171. Wang SN, Huang HY, Kahnt J, Müller AP, Köpke M, Thauer RK. 171.  2013. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J. Bacteriol. 195:4373–86 [Google Scholar]
  172. Wang SN, Huang HY, Kahnt J, Thauer RK. 172.  2013. A reversible electron-bifurcating ferredoxin- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica. J. Bacteriol. 195:1267–75 [Google Scholar]
  173. Wang SN, Huang HY, Kahnt J, Thauer RK. 173.  2013. Clostridium acidurici electron-bifurcating formate dehydrogenase. Appl. Environ. Microbiol. 79:6176–79 [Google Scholar]
  174. Wang SN, Huang HY, Moll J, Thauer RK. 174.  2010. NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J. Bacteriol. 192:5115–23 [Google Scholar]
  175. Weitzel G, Schneider F, Hirschmann W, Durst J, Thauer R. 175.  et al. 1967. Untersuchungen zum cytostatischen Wirkungsmechanismus der Methylhydrazine, III. Hoppe-Seyler's Z. Physiol. Chem. 348:443–54 [Google Scholar]
  176. Whitman WB, Wolfe RS. 176.  1980. Presence of nickel in Factor F430 from Methanobacterium bryantii. Biochem. Biophys. Res. Commun. 92:1196–201 [Google Scholar]
  177. Woese CR, Fox GE. 177.  1977. Phylogenetic structure of prokaryotic domain: primary kingdoms. PNAS 74:5088–90 [Google Scholar]
  178. Woese CR, Kandler O, Wheelis ML. 178.  1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87:4576–79 [Google Scholar]
  179. Wolfe RS. 179.  1991. My kind of biology. Annu. Rev. Microbiol. 45:1–35 [Google Scholar]
  180. Wolfenden R. 180.  2014. Massive thermal acceleration of the emergence of primordial chemistry, the incidence of spontaneous mutation, and the evolution of enzymes. J. Biol. Chem. 289:30198–204 [Google Scholar]
  181. Wood HG. 181.  1985. Then and now. Annu. Rev. Biochem. 54:1–41 [Google Scholar]
  182. Zeikus JG, Fuchs G, Kenealy W, Thauer RK. 182.  1977. Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J. Bacteriol. 132:604–13 [Google Scholar]
  183. Zeikus JG, Wolfe RS. 183.  1972. Methanobacterium thermoautotrophicus sp. nov., an anaerobic, autotrophic, extreme thermophile. J. Bacteriol. 109:707–13 [Google Scholar]
  184. Zheng Y, Kahnt J, Kwon IH, Mackie RI, Thauer RK. 184.  2014. Hydrogen formation and its regulation in Ruminococcus albus: involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase and of a putative hydrogen-sensing [FeFe]-hydrogenase. J. Bacteriol. 190:3840–52 [Google Scholar]
  185. Zirngibl C, Hedderich R, Thauer RK. 185.  1990. N5,N10-Methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum has hydrogenase activity. FEBS Lett. 261:112–16 [Google Scholar]
  186. Zirngibl C, van Dongen W, Schwörer B, von Bünau R, Richter M. 186.  et al. 1992. H2-forming methylene-tetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. Eur. J. Biochem. 208:511–20 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error