Starting in 2006, surprisingly tiny genomes have been discovered from numerous bacterial symbionts of insect hosts. Despite their size, each retains some genes that enable provisioning of limiting nutrients or other capabilities required by hosts. Genome sequence analyses show that genome reduction is an ongoing process, resulting in a continuum of sizes, with the smallest genome currently known at 112 kilobases. Genome reduction is typical in host-restricted symbionts and pathogens, but the tiniest genomes are restricted to symbionts required by hosts and restricted to specialized host cells, resulting from long coevolution with hosts. Genes are lost in all functional categories, but core genes for central informational processes, including genes encoding ribosomal proteins, are mostly retained, whereas genes underlying production of cell envelope components are especially depleted. Thus, these entities retain cell-like properties but are heavily dependent on coadaptation of hosts, which continuously evolve to support the symbionts upon which they depend.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T. 1.  et al. 2002. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat. Genet. 32:402–7 [Google Scholar]
  2. Bennett GM, Moran NA. 2.  2013. Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biol. Evol. 5:1675–88 [Google Scholar]
  3. Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S, Stern DL. 3.  2003. Developmental origin and evolution of bacteriocytes in the aphid–Buchnera symbiosis. PLoS Biol. 1:E21 [Google Scholar]
  4. Burke G, Fiehn O, Moran N. 4.  2010. Effects of facultative symbionts and heat stress on the metabolome of pea aphids. ISME J. 4:242–52 [Google Scholar]
  5. Burke GR, Moran NA. 5.  2011. Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol. Evol. 3:195–208 [Google Scholar]
  6. Chrostek E, Marialva MSP, Esteves SS, Weinert LA, Martinez J. 6.  et al. 2013. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 9:e1003896 [Google Scholar]
  7. Clayton AL, Oakeson KF, Gutin M, Pontes A, Dunn DM. 7.  et al. 2012. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect-bacterial symbioses. PLoS Genet. 8:e1002990 [Google Scholar]
  8. Comandatore F, Sassera D, Montagna M, Kumar S, Koutsovoulos G. 8.  et al. 2013. Phylogenomics and analysis of shared genes suggest a single transition to mutualism in Wolbachia of nematodes. Genome Biol. Evol. 5:1668–74 [Google Scholar]
  9. Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA. 9.  et al. 2012. Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res. 22:2467–77 [Google Scholar]
  10. Darby AC, Choi JH, Wilkes T, Hughes MA, Hurst GD, Colbourne JK. 10.  2010. Characteristics of the genome of Arsenophonus nasoniae, son-killer bacterium of the wasp Nasonia. Insect Mol. Biol. 19:75–89 [Google Scholar]
  11. de Crécy-Lagard V, Marck C, Grosjean H. 11.  2012. Decoding in Candidatus Riesia pediculicola, close to a minimal tRNA modification set?. Trends Cell Mol. Biol. 7:11–34 [Google Scholar]
  12. Degnan PH, Ochman H, Moran NA. 12.  2011. Sequence conservation and functional constraint on intergenic spacers in reduced genomes of the obligate symbiont Buchnera. PLoS Genet. 7:e1002252 [Google Scholar]
  13. Dunbar HE, Wilson ACC, Ferguson NR, Moran NA. 13.  2007. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol. 5:e96 [Google Scholar]
  14. Dybvig K, Lao P, Jordan DS, Simmons WL. 14.  2010. Fewer essential genes in mycoplasmas than previous studies suggest. FEMS Microbiol. Lett. 311:51–55 [Google Scholar]
  15. Fan Y, Thompson JW, Dubois LG, Moseley MA, Wernegreen JJ. 15.  2013. Proteomic analysis of an unculturable bacterial endosymbiont (Blochmannia) reveals high abundance of chaperonins and biosynthetic enzymes. J. Proteome Res. 12:704–18 [Google Scholar]
  16. Fan Y, Wernegreen JJ. 16.  2013. Can't take the heat: High temperature depletes bacterial endosymbionts of ants. Microb. Ecol. 66:727–33 [Google Scholar]
  17. Ferri E, Bain O, Barbuto M, Martin C, Lo N. 17.  et al. 2011. New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species. PLoS ONE 6:e20843 [Google Scholar]
  18. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF. 18.  et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [Google Scholar]
  19. Foster J, Ganatra M, Kamal I, Ware J, Makarova K. 19.  et al. 2005. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol. 3:e121 [Google Scholar]
  20. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA. 20.  et al. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270:397–403 [Google Scholar]
  21. Ghedin E, Wang S, Spiro D, Caler E, Zhao Q. 21.  et al. 2007. Draft genome of the filarial nematode parasite Brugia malayi. Science 317:1756–60 [Google Scholar]
  22. Haegeman A, Vanholme B, Jacob J, Vandekerckhove TTM, Claeys M. 22.  et al. 2009. An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup. Int. J. Parasitol. 39:1045–54 [Google Scholar]
  23. Hansen AK, Moran NA. 23.  2011. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc. Natl. Acad. Sci. USA 108:2849–54 [Google Scholar]
  24. Hansen AK, Moran NA. 24.  2012. Altered tRNA characteristics and 3′ maturation in bacterial symbionts with reduced genomes. Nucleic Acids Res. 40:7870–84 [Google Scholar]
  25. Hendry TA, de Wet JR, Dunlap PV. 25.  2014. Genomic signatures of obligate host dependence in the luminous bacterial symbiont of a vertebrate. Environ. Microbiol. 162611–22 [Google Scholar]
  26. Hosokawa T, Nikoh N, Koga R, Satô M, Tanahashi M. 26.  et al. 2012. Reductive genome evolution, host-symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. ISME J. 6:577–87 [Google Scholar]
  27. Huang CY, Sabree ZL, Moran NA. 27.  2012. Genome sequence of Blattabacterium sp. strain BGIGA, endosymbiont of the Blaberus giganteus cockroach. J. Bacteriol. 194:4450–51 [Google Scholar]
  28. Husnik F, Nikoh N, Koga R, Ross L, Duncan RP. 28.  et al. 2013. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153:1567–78 [Google Scholar]
  29. Hutchison CA, Peterson SN, Gill SR, Cline RT, White O. 29.  et al. 1999. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–69 [Google Scholar]
  30. 30. Int. Aphid Genomics Consort 2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 8:e1000313 [Google Scholar]
  31. Ioannidis P, Johnston KL, Riley DR, Kumar N. 31.  2013. Extensively duplicated and transcriptionally active recent lateral gene transfer from a bacterial Wolbachia endosymbiont to its host filarial nematode Brugia malayi. BMC Genomics 4:639 [Google Scholar]
  32. Jiang Z, Jones DH, Khuri S, Tsinoremas NF, Wyss T. 32.  et al. 2013. Comparative analysis of genome sequences from four strains of the Buchnera aphidicola Mp endosymbiont of the green peach aphid, Myzus persicae. BMC Genomics 14:917 [Google Scholar]
  33. Jiang Z-F, Xia F, Johnson KW, Brown CD, Bartom E. 33.  et al. 2013. Comparison of the genome sequences of “Candidatus Portiera aleyrodidarum” primary endosymbionts of the whitefly Bemisia tabaci B and Q biotypes. Appl. Environ. Microbiol. 79:1757–59 [Google Scholar]
  34. Kambhampati S, Alleman A, Park Y. 34.  2013. Complete genome sequence of the endosymbiont Blattabacterium from the cockroach Nauphoeta cinerea (Blattodea: Blaberidae). Genomics 102:479–83 [Google Scholar]
  35. Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA. 35.  et al. 2010. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc. Natl. Acad. Sci. USA 107:12168–73 [Google Scholar]
  36. Koga R, Bennett GM, Cryan JR, Moran NA. 36.  2013. Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environ. Microbiol. 15:2073–81 [Google Scholar]
  37. Koga R, Meng X-Y, Tsuchida T, Fukatsu T. 37.  2012. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface. Proc. Natl. Acad. Sci. USA 109:E1230–37 [Google Scholar]
  38. Koga R, Moran NA. 38.  2014. Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME J. 81237–46 [Google Scholar]
  39. Koonin EV. 39.  2000. How many genes can make a cell: the minimal-gene-set concept. Annu. Rev. Genomics Hum. Genet. 1:99–116 [Google Scholar]
  40. Koskiniemi S, Sun S, Berg OG, Andersson DI. 40.  2012. Selection-driven gene loss in bacteria. PLoS Genet. 8:e1002787 [Google Scholar]
  41. Kwan JC, Donia MS, Han AW, Hirose E, Haygood MG, Schmidt EW. 41.  2012. Genome streamlining and chemical defense in a coral reef symbiosis. Proc. Natl. Acad. Sci. USA 109:20655–60 [Google Scholar]
  42. Kwan JC, Schmidt EW. 42.  2013. Bacterial endosymbiosis in a chordate host: long-term co-evolution and conservation of secondary metabolism. PLoS ONE 8:e80822 [Google Scholar]
  43. Lamelas A, Gosalbes MJ, Manzano-Marín A, Peretó J, Moya A, Latorre A. 43.  2011. Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont. PLoS Genet. 7:e1002357 [Google Scholar]
  44. Lo N. 44.  2003. Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Mol. Biol. Evol. 20:907–13 [Google Scholar]
  45. Login FH, Balmand S, Vallier A, Vincent-Monégat C, Vigneron A. 45.  et al. 2011. Antimicrobial peptides keep insect endosymbionts under control. Science 334:362–65 [Google Scholar]
  46. López-Madrigal S, Latorre A, Porcar M, Moya A, Gil R. 46.  2013. Mealybugs nested endosymbiosis: going into the “matryoshka” system in Planococcus citri in depth. BMC Microbiol. 13:74 [Google Scholar]
  47. López-Sánchez MJ, Neef A, Peretó J, Patiño-Navarrete R, Pignatelli M. 47.  et al. 2009. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica. PLoS Genet. 5:e1000721 [Google Scholar]
  48. Macdonald SJ, Lin GG, Russell CW, Thomas GH, Douglas AE. 48.  2012. The central role of the host cell in symbiotic nitrogen metabolism. Proc. Biol. Sci. 279:2965–73 [Google Scholar]
  49. McCutcheon JP. 49.  2010. The bacterial essence of tiny symbiont genomes. Curr. Opin. Microbiol. 13:73–78 [Google Scholar]
  50. McCutcheon JP, McDonald BR, Moran NA. 50.  2009. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. USA 106:15394–99 [Google Scholar]
  51. McCutcheon JP, McDonald BR, Moran NA. 51.  2009. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet 5:e1000565 [Google Scholar]
  52. McCutcheon JP, Moran NA. 52.  2007. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc. Natl. Acad. Sci. USA 104:19392–97 [Google Scholar]
  53. McCutcheon JP, Moran NA. 53.  2010. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol. Evol. 2:708–18 [Google Scholar]
  54. McCutcheon JP, Moran NA. 54.  2012. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10:13–26 [Google Scholar]
  55. McCutcheon JP, von Dohlen CD. 55.  2011. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr. Biol 21:1366–72 [Google Scholar]
  56. McNulty SN, Foster JM, Mitreva M, Dunning Hotopp JC, Martin J. 56.  et al. 2010. Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer. PLoS ONE 5:e11029 [Google Scholar]
  57. Melnikow E, Xu S, Liu J, Bell AJ, Ghedin E. 57.  et al. 2013. A potential role for the interaction of Wolbachia surface proteins with the Brugia malayi glycolytic enzymes and cytoskeleton in maintenance of endosymbiosis. PLoS Negl. Trop. Dis. 7:e2151 [Google Scholar]
  58. Merhej V, Raoult D. 58.  2011. Rickettsial evolution in the light of comparative genomics. Biol. Rev. Camb. Philos. Soc. 86:379–405 [Google Scholar]
  59. Mira A, Ochman H, Moran NA. 59.  2001. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17:589–96 [Google Scholar]
  60. Moran NA. 60.  1996. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc. Natl. Acad. Sci. USA 93:2873–78 [Google Scholar]
  61. Moran NA. 61.  2002. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–86 [Google Scholar]
  62. Moran NA, Tran P, Gerardo NM. 62.  2005. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl. Environ. Microbiol. 71:8802–10 [Google Scholar]
  63. Nakabachi A, Ueoka R, Oshima K, Teta R, Mangoni A. 63.  et al. 2013. Defensive bacteriome symbiont with a drastically reduced genome. Curr. Biol. 23:1478–84 [Google Scholar]
  64. Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE. 64.  et al. 2006. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267 [Google Scholar]
  65. Neef A, Latorre A, Peretó J, Silva FJ, Pignatelli M, Moya A. 65.  2011. Genome economization in the endosymbiont of the wood roach Cryptocercus punctulatus due to drastic loss of amino acid synthesis capabilities. Genome Biol. Evol. 3:1437–48 [Google Scholar]
  66. Newton ILG, Woyke T, Auchtung TA, Dilly GF, Dutton RJ. 66.  et al. 2007. The Calyptogena magnifica chemoautotrophic symbiont genome. Science 315:998–1000 [Google Scholar]
  67. Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T. 67.  2011. Reductive evolution of bacterial genome in insect gut environment. Genome Biol. Evol. 3:702–14 [Google Scholar]
  68. Nikoh N, McCutcheon JP, Kudo T, Miyagishima S-Y, Moran NA, Nakabachi A. 68.  2010. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet. 6:e1000827 [Google Scholar]
  69. Nikoh N, Nakabachi A. 69.  2009. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol. 7:12 [Google Scholar]
  70. Nováková E, Hypsa V, Moran NA. 70.  2009. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 9:143 [Google Scholar]
  71. Ochman H. 71.  2005. Genomes on the shrink. Proc. Natl. Acad. Sci. USA 102:11959–60 [Google Scholar]
  72. Oshima K, Maejima K, Namba S. 72.  2013. Genomic and evolutionary aspects of phytoplasmas. Front. Microbiol. 4:230 [Google Scholar]
  73. Patiño-Navarrete R, Moya A, Latorre A, Peretó J. 73.  2013. Comparative genomics of Blattabacterium cuenoti: the frozen legacy of an ancient endosymbiont genome. Genome Biol. Evol. 5:351–61 [Google Scholar]
  74. Pérez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M. 74.  et al. 2006. A small microbial genome: the end of a long symbiotic relationship?. Science 314:312–13 [Google Scholar]
  75. Poliakov A, Russell CW, Ponnala L, Hoops HJ, Sun Q. 75.  et al. 2011. Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis. Mol. Cell Proteomics 10:M110.007039 [Google Scholar]
  76. Price DRG, Duncan RP, Shigenobu S, Wilson ACC. 76.  2011. Genome expansion and differential expression of amino acid transporters at the aphid/Buchnera symbiotic interface. Mol. Biol. Evol. 28:3113–26 [Google Scholar]
  77. Price DRG, Feng H, Baker JD, Bavan S, Luetje CW, Wilson ACC. 77.  2014. Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts. Proc. Natl. Acad. Sci. USA 111:320–25 [Google Scholar]
  78. Ratzka C, Gross R, Feldhaar H. 78.  2013. Gene expression analysis of the endosymbiont-bearing midgut tissue during ontogeny of the carpenter ant Camponotus floridanus. J. Insect Physiol. 59:611–23 [Google Scholar]
  79. Reyes-Prieto M, Latorre A, Moya A. 79.  2014. Scanty microbes, the ‘symbionelle’ concept. Environ. Microbiol. 16:335–38 [Google Scholar]
  80. Rio RVM, Symula RE, Wang J, Lohs C, Wu Y-N. 80.  et al. 2012. Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: Glossinidae) obligate symbiont Wigglesworthia. MBio 3:e00240–11 [Google Scholar]
  81. Rogers MJ, Simmons J, Walker RT, Weisburg WG, Woese CR. 81.  et al. 1985. Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. Proc. Natl. Acad. Sci. USA 82:1160–64 [Google Scholar]
  82. Sabree ZL, Huang CY, Arakawa G, Tokuda G, Lo N. 82.  et al. 2012. Genome shrinkage and loss of nutrient-providing potential in the obligate symbiont of the primitive termite Mastotermes darwiniensis. Appl. Environ. Microbiol. 78:204–10 [Google Scholar]
  83. Sabree ZL, Huang CY, Okusu A, Moran NA, Normark BB. 83.  2012. The nutrient supplying capabilities of Uzinura, an endosymbiont of armoured scale insects. Environ. Microbiol. 15:1988–99 [Google Scholar]
  84. Sabree ZL, Kambhampati S, Moran NA. 84.  2009. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl. Acad. Sci. USA 106:19521–26 [Google Scholar]
  85. Shigenobu S, Stern DL. 85.  2013. Aphids evolved novel secreted proteins for symbiosis with bacterial endosymbiont. Proc. Biol. Sci. 280:20121952 [Google Scholar]
  86. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. 86.  2000. Genome sequence of the endocellular bacterial symbiont of aphids, Buchnera sp. APS. Nature 407:81–86 [Google Scholar]
  87. Sloan DB, Moran NA. 87.  2012. Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol. Lett. 8:986–89 [Google Scholar]
  88. Sloan DB, Moran NA. 88.  2012. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol. Biol. Evol 29:3781–92 [Google Scholar]
  89. Sloan DB, Moran NA. 89.  2013. The evolution of genomic instability in the obligate endosymbionts of whiteflies. Genome Biol. Evol. 5:783–93 [Google Scholar]
  90. Sloan DB, Nakabachi A, Richards S, Qu J, Murali SC. 90.  et al. 2014. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol. Biol. Evol. 31:857–71 [Google Scholar]
  91. Snyder AK, Rio RVM. 91.  2013. Interwoven biology of the tsetse holobiont. J. Bacteriol. 195:4322–30 [Google Scholar]
  92. Takiya DM, Tran PL, Dietrich CH, Moran NA. 92.  2006. Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Mol. Ecol. 15:4175–91 [Google Scholar]
  93. Tamames J, Gil R, Latorre A, Peretó J, Silva FJ, Moya A. 93.  2007. The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol. Biol. 7:181 [Google Scholar]
  94. Toh H, Weiss BL, Perkin SAH, Yamashita A, Oshima K. 94.  et al. 2006. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 16:149–56 [Google Scholar]
  95. Tokuda G, Elbourne LDH, Kinjo Y, Saitoh S, Sabree Z. 95.  et al. 2013. Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach. Biol. Lett. 9:20121153 [Google Scholar]
  96. Tokuda G, Lo N, Watanabe H, Slaytor M, Matsumoto T, Noda H. 96.  1999. Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim. Biophys. Acta 1447:146–59 [Google Scholar]
  97. Urban JM, Cryan JR. 97.  2012. Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evol. Biol. 12:87 [Google Scholar]
  98. von Dohlen CD, Kohler S, Alsop ST, McManus WR. 98.  2001. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412:433–36 [Google Scholar]
  99. Wernegreen JJ. 99.  2002. Genome evolution in bacterial endosymbionts of insects. Nat. Rev. Genet. 3:850–61 [Google Scholar]
  100. Wilcox JL, Dunbar HE, Wolfinger RD, Moran NA. 100.  2003. Consequences of reductive evolution for gene expression in an obligate endosymbiont. Mol. Microbiol. 48:1491–500 [Google Scholar]
  101. Woolfit M, Iturbe-Ormaetxe I, Brownlie JC, Walker T, Riegler M. 101.  et al. 2013. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol. Evol. 5:2189–204 [Google Scholar]
  102. Wu B, Novelli J, Jiang D, Dailey HA, Landmann F. 102.  et al. 2013. Interdomain lateral gene transfer of an essential ferrochelatase gene in human parasitic nematodes. Proc. Natl. Acad. Sci. USA 110:7748–53 [Google Scholar]
  103. Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL. 103.  et al. 2006. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 4:e188 [Google Scholar]
  104. Zhang C-M, Hou Y-M. 104.  2004. Synthesis of cysteinyl-tRNACys by a prolyl-tRNA synthetase. RNA Biol. 1:35–41 [Google Scholar]
  105. Zug R, Hammerstein P. 105.  2012. Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7:e38544 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error