The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for understanding viral origins as well as the dynamic nature of viral-host interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of recombination, both utilizing their own proteins and commandeering cellular proteins to promote recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both genetic and biochemical analysis and have recently been shown to exhibit some surprising similarities that will guide future studies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Balasubramanian N, Bai P, Buchek G, Korza G, Weller SK. 1.  2010. Physical interaction between the herpes simplex virus type 1 exonuclease, UL12, and the DNA double-strand break-sensing MRN complex. J. Virol. 84:12504–14 [Google Scholar]
  2. Banks L, Purifoy DJ, Hurst PF, Killington RA, Powell KL. 2.  1983. Herpes simplex virus non-structural proteins. IV. Purification of the virus-induced deoxyribonuclease and characterization of the enzyme using monoclonal antibodies. J. Gen. Virol. 64:2249–60 [Google Scholar]
  3. Banks LM, Halliburton IW, Purifoy DJM, Killington RA, Powell KL. 3.  1985. Studies on the herpes simplex virus alkaline nuclease: detection of type-common and type-specific epitopes on the enzyme. J. Gen. Virol. 66:1–14 [Google Scholar]
  4. Bataille D, Epstein A. 4.  1994. Herpes simplex virus replicative concatemers contain l components in inverted orientation. Virology 203:384–88 [Google Scholar]
  5. Bataille D, Epstein AL. 5.  1997. Equimolar generation of the four possible arrangements of adjacent l components in herpes simplex virus type 1 replicative intermediates. J. Virol. 71:7736–43 [Google Scholar]
  6. Bennardo N, Stark JM. 6.  2010. ATM limits incorrect end utilization during non-homologous end joining of multiple chromosome breaks. PLoS Genet. 6:e1001194 [Google Scholar]
  7. Better M, Freifelder D. 7.  1983. Studies on the replication of Escherichia coli phage λ DNA. I. The kinetics of DNA replication and requirements for the generation of rolling circles. Virology 126:168–82 [Google Scholar]
  8. Blumel J, Graper S, Matz B. 8.  2000. Structure of simian virus 40 DNA replicated by herpes simplex virus type 1. Virology 276:445–54 [Google Scholar]
  9. Bortner C, Hernandez TR, Lehman IR, Griffith J. 9.  1993. Herpes simplex virus 1 single-strand DNA-binding protein (ICP8) will promote homologous pairing and strand transfer. J. Mol. Biol. 231:241–50 [Google Scholar]
  10. Boutell C, Everett RD. 10.  2013. Regulation of alphaherpesvirus infections by the ICP0 family of proteins. J. Gen. Virol. 94:465–81 [Google Scholar]
  11. Bowden R, Sakaoka H, Donnelly P, Ward R. 11.  2004. High recombination rate in herpes simplex virus type 1 natural populations suggests significant co-infection. Infect. Genet. Evol. 4:115–23 [Google Scholar]
  12. Brown SM, Ritchie DA, Subak SJH. 12.  1973. Genetic interactions between temperature-sensitive mutants of types 1 and 2 herpes simplex viruses. J. Gen. Virol. 18:347–57 [Google Scholar]
  13. Campbell A. 13.  1994. Comparative molecular biology of lambdoid phages. Annu. Rev. Microbiol. 48:193–222 [Google Scholar]
  14. Chayavichitsilp P, Buckwalter JV, Krakowski AC, Friedlander SF. 14.  2009. Herpes simplex. Pediatr. Rev. 30:119–29 [Google Scholar]
  15. Chen Y, Bai P, Mackay S, Korza G, Carson JH. 15.  et al. 2011. Herpes simplex virus type 1 helicase-primase: DNA binding and consequent protein oligomerization and primase activation. J. Virol. 85:968–78 [Google Scholar]
  16. Ciccia A, Elledge SJ. 16.  2010. The DNA damage response: making it safe to play with knives. Mol. Cell 40:179–204 [Google Scholar]
  17. Conley AJ, Knipe DM, Jones PC, Roizman B. 17.  1981. Molecular genetics of herpes simplex virus. VII. Characterization of a temperature-sensitive mutant produced by in vitro mutagenesis and defective in DNA synthesis and accumulation of γ polypeptides. J. Virol. 37:191–206 [Google Scholar]
  18. Copeland NG, Jenkins NA, Court DL. 18.  2001. Recombineering: a powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2:769–79 [Google Scholar]
  19. Costa RH, Draper KG, Banks L, Powell KL, Cohen G. 19.  et al. 1983. High-resolution characterization of herpes simplex virus type 1 transcripts encoding alkaline exonuclease and a 50,000-dalton protein tentatively identified as a capsid protein. J. Virol. 48:591–603 [Google Scholar]
  20. Costantino N, Court DL. 20.  2003. Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants. Proc. Natl. Acad. Sci. USA 100:15748–53 [Google Scholar]
  21. Court DL, Sawitzke JA, Thomason LC. 21.  2002. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36:361–88 [Google Scholar]
  22. Datta S, Costantino N, Zhou X, Court DL. 22.  2008. Identification and analysis of recombineering functions from gram-negative and gram-positive bacteria and their phages. Proc. Natl. Acad. Sci. USA 105:1626–31 [Google Scholar]
  23. DiCarlo JE, Conley AJ, Penttilä M, Jäntti J, Wang HH, Church GM. 23.  2013. Yeast oligo-mediated genome engineering (YOGE). ACS Synth. Biol. 2:741–49 [Google Scholar]
  24. Dudas KC, Ruyechan WT. 24.  1998. Identification of a region of the herpes simplex virus single-stranded DNA-binding protein involved in cooperative binding. J. Virol. 72:257–65 [Google Scholar]
  25. Dutch RE, Bianchi V, Lehman IR. 25.  1995. Herpes simplex virus type 1 DNA replication is specifically required for high-frequency homologous recombination between repeated sequences. J. Virol. 69:3084–89 [Google Scholar]
  26. Dutch RE, Bruckner RC, Mocarski ES, Lehman IR. 26.  1992. Herpes simplex virus type 1 recombination: role of DNA replication and viral a sequences. J. Virol. 66:277–85 [Google Scholar]
  27. Dutch RE, Lehman IR. 27.  1993. Renaturation of complementary DNA strands by herpes simplex virus type 1 ICP8. J. Virol. 67:6945–49 [Google Scholar]
  28. Echols H, Gingery R. 28.  1968. Mutants of bacteriophage λ defective in vegetative genetic recombination. J. Mol. Biol. 34:239–49 [Google Scholar]
  29. Efstathiou S, Minson AC, Field HJ, Anderson JR, Wildy P. 29.  1986. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans. J. Virol. 57:446–55 [Google Scholar]
  30. Ellis HM, Yu D, DiTizio T, Court DL. 30.  2001. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA 98:6742–46First demonstration of recombination via ssDNA in E. coli. [Google Scholar]
  31. Enquist LW, Skalka A. 31.  1973. Replication of bacteriophage λ DNA dependent on the function of host and viral genes. I. Interaction of red, gam, and rec. J. Mol. Biol. 75:185–212Suggests λ replication and recombination are linked. [Google Scholar]
  32. Erler A, Wegmann S, Elie-Caille C, Bradshaw CR, Maresca M. 32.  et al. 2009. Conformational adaptability of Redβ during DNA annealing and implications for its structural relationship with Rad52. J. Mol. Biol. 391:586–98 [Google Scholar]
  33. Everett RD. 33.  2000. ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22:761–70Review shows that ICP0 is important for regulating lytic and latent infection. [Google Scholar]
  34. Everett RD, Freemont P, Saitoh H, Dasso M, Orr A. 34.  et al. 1998. The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J. Virol. 72:6581–91 [Google Scholar]
  35. Everett RD, Parada C, Gripon P, Sirma H, Orr A. 35.  2008. Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100. J. Virol. 82:2661–72 [Google Scholar]
  36. Franklin NC. 36.  1967. Deletions and functions of the center of the Φ80-λ phage genome. Evidence for a phage function promoting genetic recombination. Genetics 57:301–18 [Google Scholar]
  37. Garber DA, Beverley SM, Coen DM. 37.  1993. Demonstration of circularization of herpes simplex virus DNA following infection using pulsed field gel electrophoresis. Virology 197:459–62 [Google Scholar]
  38. Gardella T, Medveczky P, Sairenji T, Mulder C. 38.  1984. Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis. J. Virol. 50:248–54 [Google Scholar]
  39. Giladi H, Goldenberg D, Koby S, Oppenheim AB. 39.  1995. Enhanced activity of the bacteriophage λ PL promoter at low temperature. Proc. Natl. Acad. Sci. USA 92:2184–88 [Google Scholar]
  40. Goldstein JN, Weller SK. 40.  1998. In vitro processing of HSV-1 DNA replication intermediates by the viral alkaline nuclease, UL12. J. Virol. 72:8772–81 [Google Scholar]
  41. Gupte SS, Olson JW, Ruyechan WT. 41.  1991. The major herpes simplex virus type-1 DNA-binding protein is a zinc metalloprotein. J. Biol. Chem. 266:11413–16 [Google Scholar]
  42. Hall SD, Kane MF, Kolodner RD. 42.  1993. Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA. J. Bacteriol. 175:277–87 [Google Scholar]
  43. Hall SD, Kolodner RD. 43.  1994. Homologous pairing and strand exchange promoted by the Escherichia coli RecT protein. Proc. Natl. Acad. Sci. USA 91:3205–9 [Google Scholar]
  44. Hayward GS, Frenkel N, Roizman B. 44.  1975. Anatomy of herpes simplex virus DNA: strain differences and heterogeneity in the locations of restriction endonuclease cleavage sites. Proc. Natl. Acad. Sci. USA 72:1768–72 [Google Scholar]
  45. Hoffmann PJ. 45.  1981. Mechanism of degradation of duplex DNA by the DNase induced by herpes simplex virus. J. Virol. 38:1005–14 [Google Scholar]
  46. Hoffmann PJ, Cheng Y-C. 46.  1978. The deoxyribonuclease induced after infection of KB cells by herpes simplex virus type 1 or type 2. I. Purification and characterization of the enzyme. J. Biol. Chem. 253:3557–62 [Google Scholar]
  47. Huen MS, Li XT, Lu LY, Watt RM, Liu DP, Huang JD. 47.  2006. The involvement of replication in single stranded oligonucleotide-mediated gene repair. Nucleic Acids Res. 34:6183–94 [Google Scholar]
  48. Igarashi K, Fawl R, Roller RJ, Roizman B. 48.  1993. Construction and properties of a recombinant herpes simplex virus 1 lacking both S-component origins of DNA synthesis. J. Virol. 67:2123–32 [Google Scholar]
  49. Iyer LM, Koonin EV, Aravind L. 49.  2002. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redβ, ERF and RAD52. BMC Genomics 3:8 [Google Scholar]
  50. Jackson SA, DeLuca NA. 50.  2003. Relationship of herpes simplex virus genome configuration to productive and persistent infections. Proc. Natl. Acad. Sci. USA 100:7871–76 [Google Scholar]
  51. Jacob RJ, Roizman B. 51.  1977. Anatomy of herpes simplex virus DNA. VIII. Properties of the replicating DNA. J. Virol. 23:394–411 [Google Scholar]
  52. Jean JH, Blankenship ML, Ben-Porat T. 52.  1977. Replication of herpesvirus DNA. I. Electron microscopic analysis of replicative structures. Virology 79:281–91 [Google Scholar]
  53. Joseph JW, Kolodner R. 53.  1983. Exonuclease VIII of Escherichia coli. II. Mechanism of action. J. Biol. Chem. 258:10418–24 [Google Scholar]
  54. Joyner A, Isaacs LN, Echols H, Sly WS. 54.  1966. DNA replication and messenger RNA production after induction of wild-type λ bacteriophage and λ mutants. J. Mol. Biol. 19:174–86 [Google Scholar]
  55. Karakousis G, Ye N, Li Z, Chiu SK, Reddy G, Radding CM. 55.  1998. The β protein of phage λ binds preferentially to an intermediate in DNA renaturation. J. Mol. Biol. 276:721–31 [Google Scholar]
  56. Kass EM, Jasin M. 56.  2010. Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett. 584:3703–8 [Google Scholar]
  57. Keir HM, Gold E. 57.  1963. Deoxyribonucleic acid nucleotidyltransferase and deoxyribonuclease from cultured cells infected with herpes simplex virus. Biochim. Biophys. Acta 72:263–76 [Google Scholar]
  58. Kieff ED, Bachenheimer SL, Roizman B. 58.  1971. Size, composition, and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2. J. Virol. 8:125–32 [Google Scholar]
  59. Kintner RL, Allan RW, Brandt CR. 59.  1995. Recombinants are isolated at high frequency following in vivo mixed ocular infection with two avirulent herpes simplex virus type 1 strains. Arch. Virol. 140:231–44 [Google Scholar]
  60. Kmiec E, Holloman WK. 60.  1981. β protein of bacteriophage λ promotes renaturation of DNA. J. Biol. Chem. 256:12636–39 [Google Scholar]
  61. Knopf CW, Weisshart K. 61.  1990. Comparison of exonucleolytic activities of herpes simplex virus type-1 DNA polymerase and DNase. Eur. J. Biochem. 191:263–73 [Google Scholar]
  62. Kourilsky P. 62.  1974. Lysogenization by bacteriophage lambda. II. Identification of genes involved in the multiplicity dependent processes. Biochimie 56:1511–16 [Google Scholar]
  63. Kovall R, Matthews BW. 63.  1997. Toroidal structure of λ-exonuclease. Science 277:1824–27 [Google Scholar]
  64. Kowalczykowski SC, Eggleston AK. 64.  1994. Homologous pairing and DNA strand-exchange proteins. Annu. Rev. Biochem. 63:991–1043 [Google Scholar]
  65. Krejci L, Altmannova V, Spirek M, Zhao X. 65.  2012. Homologous recombination and its regulation. Nucleic Acids Res. 40:5795–818 [Google Scholar]
  66. Kuzminov A. 66.  1999. Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiol. Mol. Biol. Rev. 63:751–813Excellent review with a comprehensive set of models for recombinational repair. [Google Scholar]
  67. Lajoie MJ, Gregg CJ, Mosberg JA, Washington GC, Church GM. 67.  2012. Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering. Nucleic Acids Res. 40:e170 [Google Scholar]
  68. Lederberg EM, Lederberg J. 68.  1953. Genetic studies of lysogenicity in Escherichia coli. Genetics 38:51–64 [Google Scholar]
  69. Lederberg J. 69.  1947. Gene recombination and linked segregations in Escherichia coli. Genetics 32:505–25 [Google Scholar]
  70. Lees-Miller SP, Long MC, Kilvert MA, Lam V, Rice SA, Spencer CA. 70.  1996. Attenuation of DNA-dependent protein kinase activity and its catalytic subunit by the herpes simplex virus type 1 transactivator ICP0. J. Virol. 70:7471–77 [Google Scholar]
  71. Leib DA, Coen DM, Bogard CL, Hicks KA, Yager DR. 71.  et al. 1989. Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J. Virol. 63:759–68 [Google Scholar]
  72. Li XT, Thomason LC, Sawitzke JA, Costantino N, Court DL. 72.  2013. Bacterial DNA polymerases participate in oligonucleotide recombination. Mol. Microbiol. 88:906–20Shows direct involvement of DNA polymerases with ssDNA recombination. [Google Scholar]
  73. Lilley CE, Chaurushiya MS, Boutell C, Landry S, Suh J. 73.  et al. 2010. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J. 29:943–55 [Google Scholar]
  74. Lingen M, Hengerer F, Falke D. 74.  1997. Mixed vaginal infections of Balb/c mice with low virulent herpes simplex type 1 strains result in restoration of virulence properties: vaginitis/vulvitis and neuroinvasiveness. Med. Microbiol. Immunol. 185:217–22 [Google Scholar]
  75. Little JW. 75.  1967. An exonuclease induced by bacteriophage λ. II. Nature of the enzymatic reaction. J. Biol. Chem. 242:679–86 [Google Scholar]
  76. Luder A, Mosig G. 76.  1982. Two alternative mechanisms for initiation of DNA replication forks in bacteriophage T4: priming by RNA polymerase and by recombination. Proc. Natl. Acad. Sci. USA 79:1101–5Demonstrates how recombination can initiate a DNA replication fork. [Google Scholar]
  77. Makhov AM, Boehmer PE, Lehman IR, Griffith JD. 77.  1996. Visualization of the unwinding of long DNA chains by the herpes simplex virus type 1 UL9 protein and ICP8. J. Mol. Biol. 258:789–99 [Google Scholar]
  78. Makhov AM, Griffith JD. 78.  2006. Visualization of the annealing of complementary single-stranded DNA catalyzed by the herpes simplex virus type 1 ICP8 SSB/recombinase. J. Mol. Biol. 355:911–22 [Google Scholar]
  79. Makhov AM, Sen A, Yu X, Simon MN, Griffith JD, Egelman EH. 79.  2009. The bipolar filaments formed by herpes simplex virus type 1 SSB/recombination protein (ICP8) suggest a mechanism for DNA annealing. J. Mol. Biol. 386:273–79 [Google Scholar]
  80. Maresca M, Erler A, Fu J, Friedrich A, Zhang Y, Stewart AF. 80.  2010. Single-stranded heteroduplex intermediates in λ Red homologous recombination. BMC Mol. Biol. 11:54 [Google Scholar]
  81. Marsić N, Roje S, Stojiljković I, Salaj-Smic E, Trgovcević Z. 81.  1993. In vivo studies on the interaction of RecBCD enzyme and λ Gam protein. J. Bacteriol. 175:4738–43 [Google Scholar]
  82. Martinez R, Sarisky RT, Weber PC, Weller SK. 82.  1996. Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J. Virol. 70:2075–85 [Google Scholar]
  83. Matsubara K, Malay AD, Curtis FA, Sharples GJ, Heddle JG. 83.  2013. Structural and functional characterization of the Redβ recombinase from bacteriophage λ. PLoS ONE 8:e78869 [Google Scholar]
  84. Mohni KN, Mastrocola AS, Bai P, Weller SK, Heinen CD. 84.  2011. DNA mismatch repair proteins are required for efficient herpes simplex virus type I replication. J. Virol. 85:12241–53 [Google Scholar]
  85. Mosberg JA, Lajoie MJ, Church GM. 85.  2010. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186:791–99 [Google Scholar]
  86. Mosig G. 86.  1994. Homologous recombination. Bacteriophage T4 JD Karam 54–82 Washington, DC: ASM [Google Scholar]
  87. Muniyappa K, Radding CM. 87.  1986. The homologous recombination system of phage λ: pairing activities of β protein. J. Biol. Chem. 261:7472–78 [Google Scholar]
  88. Murphy KC. 88.  2012. Phage recombinases and their applications. Adv. Virus Res. 83:367–414 [Google Scholar]
  89. Muylaert I, Elias P. 89.  2010. Contributions of nucleotide excision repair, DNA polymerase η, and homologous recombination to replication of UV-irradiated herpes simplex virus type 1. J. Biol. Chem. 285:13761–68 [Google Scholar]
  90. Muylaert I, Tang KW, Elias P. 90.  2011. Replication and recombination of herpes simplex virus DNA. J. Biol. Chem. 286:15619–24 [Google Scholar]
  91. Muyrers JP, Zhang Y, Buchholz F, Stewart AF. 91.  2000. RecE/RecT and Redα/Redβ initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev. 14:1971–82 [Google Scholar]
  92. Mythili E, Kumar KA, Muniyappa K. 92.  1996. Characterization of the DNA-binding domain of β protein, a component of phage λ Red-pathway, by UV catalyzed cross-linking. Gene 182:81–87 [Google Scholar]
  93. Ogawa T, Tomizawa J. 93.  1968. Replication of bacteriophage DNA. I. Replication of DNA of lambda phage defective in early functions. J. Mol. Biol. 38:217–25 [Google Scholar]
  94. Ojala PM, Sodeik B, Ebersold MW, Kutay U, Helenius A. 94.  2000. Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol. Cell. Biol. 20:4922–31 [Google Scholar]
  95. Parkinson J, Lees-Miller SP, Everett RD. 95.  1999. Herpes simplex virus type 1 immediate-early protein Vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA-dependent protein kinase. J. Virol. 73:650–57 [Google Scholar]
  96. Passy SI, Yu X, Li Z, Radding CM, Egelman EH. 96.  1999. Rings and filaments of β protein from bacteriophage λ suggest a superfamily of recombination proteins. Proc. Natl. Acad. Sci. USA 96:4279–84 [Google Scholar]
  97. Poffenberger KL, Roizman B. 97.  1985. A noninverting genome of a viable herpes simplex virus 1: presence of head-to-tail linkages in packaged genomes and requirements for circularization after infection. J. Virol. 53:587–95 [Google Scholar]
  98. Polvino-Bodnar M, Orberg PK, Schaffer PA. 98.  1987. Herpes simplex virus type 1 oriL is not required for virus replication or for the establishment and reactivation of latent infection in mice. J. Virol. 61:3528–35 [Google Scholar]
  99. Porter IM, Stow ND. 99.  2004. Virus particles produced by the herpes simplex virus type 1 alkaline nuclease null mutant ambUL12 contain abnormal genomes. J. Gen. Virol. 85:583–91 [Google Scholar]
  100. Poteete AR. 100.  2008. Involvement of DNA replication in phage lambda Red-mediated homologous recombination. Mol. Microbiol. 68:66–74 [Google Scholar]
  101. Poteete AR. 101.  2013. Involvement of Escherichia coli DNA replication proteins in phage lambda Red-mediated homologous recombination. PLoS ONE 8:e67440 [Google Scholar]
  102. Radding CM, Rosenzweig J, Richards F, Cassuto E. 102.  1971. Separation and characterization of exonuclease, β protein, and a complex of both. J. Biol. Chem. 246:2510–12 [Google Scholar]
  103. Rajagopala SV, Casjens S, Uetz P. 103.  2011. The protein interaction map of bacteriophage lambda. BMC Microbiol. 11:213 [Google Scholar]
  104. Reuven NB, Antoku S, Weller SK. 104.  2004. The UL12.5 gene product of herpes simplex virus type 1 exhibits nuclease and strand exchange activities but does not localize to the nucleus. J. Virol. 78:4599–608 [Google Scholar]
  105. Reuven NB, Staire AE, Myers RS, Weller SK. 105.  2003. The herpes simplex virus type 1 alkaline nuclease and single-stranded DNA binding protein mediate strand exchange in vitro. J. Virol. 77:7425–33First report that UL12/ICP8 could act as a recombinase. [Google Scholar]
  106. Reuven NB, Willcox S, Griffith JD, Weller SK. 106.  2004. Catalysis of strand exchange by the HSV-1 UL12 and ICP8 proteins: Potent ICP8 recombinase activity is revealed upon resection of dsDNA substrate by nuclease. J. Mol. Biol. 342:57–71 [Google Scholar]
  107. Roca AI, Cox MM. 107.  1997. RecA protein: structure, function, and role in recombinational DNA repair. Prog. Nucleic Acid Res. Mol. Biol. 56:129–223 [Google Scholar]
  108. Roizman B. 108.  1979. The structure and isomerization of herpes simplex virus genomes. Cell 16:481–94 [Google Scholar]
  109. Samaniego LA, Neiderhiser L, DeLuca NA. 109.  1998. Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J. Virol. 72:3307–20 [Google Scholar]
  110. Sarisky RT, Weber PC. 110.  1994. Requirement for double-strand breaks but not for specific DNA sequences in herpes simplex virus type 1 genome isomerization events. J. Virol. 68:34–47 [Google Scholar]
  111. Sawitzke JA, Costantino N, Li XT, Thomason LC, Bubunenko M. 111.  et al. 2011. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J. Mol. Biol. 407:45–59Shows optimization. Defines conditions where recombineering can be done without selection. [Google Scholar]
  112. Sawitzke JA, Thomason LC, Bubunenko M, Li X, Costantino N, Court DL. 112.  2013. Recombineering: highly efficient in vivo genetic engineering using single-strand oligos. Methods Enzymol. 533:157–77 [Google Scholar]
  113. Sawitzke JA, Thomason LC, Costantino N, Bubunenko M, Datta S, Court DL. 113.  2007. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol. 421:171–99 [Google Scholar]
  114. Schaffer PA, Tevethia MJ, Benyesh MM. 114.  1974. Recombination between temperature-sensitive mutants of herpes simplex virus type 1. Virology 58:219–28 [Google Scholar]
  115. Scherer G. 115.  1978. Nucleotide sequence of the O gene and of the origin of replication in bacteriophage lambda DNA. Nucleic Acids Res. 5:3141–56 [Google Scholar]
  116. Schumacher AJ, Mohni KN, Kan Y, Hendrickson EA, Stark JM, Weller SK. 116.  2012. The HSV-1 exonuclease, UL12, stimulates recombination by a single strand annealing mechanism. PLoS Pathog. 8:e1002862First report that HSV can stimulate SSA in a UL12 dependent fashion. [Google Scholar]
  117. Severini A, Morgan AR, Tovell DR, Tyrrell DL. 117.  1994. Study of the structure of replicative intermediates of HSV-1 DNA by pulsed-field gel electrophoresis. Virology 200:428–35 [Google Scholar]
  118. Severini A, Scraba DG, Tyrrell DL. 118.  1996. Branched structures in the intracellular DNA of herpes simplex virus type 1. J. Virol. 70:3169–75 [Google Scholar]
  119. Shao L, Rapp LM, Weller SK. 119.  1993. Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus. Virology 196:146–62 [Google Scholar]
  120. Sheldrick P, Berthelot N. 120.  1975. Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harb. Symp. Quant. Biol. 39:Part 2667–78 [Google Scholar]
  121. Shinohara A, Shinohara M, Ohta T, Matsuda S, Ogawa T. 121.  1998. Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3:145–56 [Google Scholar]
  122. Shlomai J, Friedmann A, Becker Y. 122.  1976. Replication intermediates of herpes simplex virus DNA. Virology 69:647–59 [Google Scholar]
  123. Shulman MJ, Hallick LM, Echols H, Signer ER. 123.  1970. Properties of recombination-deficient mutants of bacteriophage λ. J. Mol. Biol. 52:501–20 [Google Scholar]
  124. Smith MG, Skalka A. 124.  1966. Some properties of DNA from phage-infected bacteria. J. Gen. Physiol. 49:127–42 [Google Scholar]
  125. Sodeik B, Ebersold MW, Helenius A. 125.  1997. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J. Cell Biol. 136:1007–21 [Google Scholar]
  126. Stahl FW, Fox MS, Faulds D, Stahl MM. 126.  1990. Break-join recombination in phage λ. Genetics 125:463–74 [Google Scholar]
  127. Stahl FW, Kobayashi I, Stahl MM. 127.  1985. In phage λ, cos is a recombinator in the Red pathway. J. Mol. Biol. 181:199–209 [Google Scholar]
  128. Stahl FW, McMilin KD, Stahl MM, Nozu Y. 128.  1972. An enhancing role for DNA synthesis in formation of bacteriophage λ recombinants. Proc. Natl. Acad. Sci. USA 69:3598–601 [Google Scholar]
  129. Stahl MM, Thomason L, Poteete AR, Tarkowski T, Kuzminov A, Stahl FW. 129.  1997. Annealing vs. invasion in phage λ recombination. Genetics 147:961–77Key paper defining what types of recombination λ Red can do. [Google Scholar]
  130. Stengel G, Kuchta RD. 130.  2011. Coordinated leading and lagging strand DNA synthesis by using the herpes simplex virus 1 replication complex and minicircle DNA templates. J. Virol. 85:957–67 [Google Scholar]
  131. St-Pierre F, Endy D. 131.  2008. Determination of cell fate selection during phage lambda infection. Proc. Natl. Acad. Sci. USA 105:20705–10 [Google Scholar]
  132. Strang BL, Stow ND. 132.  2005. Circularization of the herpes simplex virus type 1 genome upon lytic infection. J. Virol. 79:12487–94 [Google Scholar]
  133. Strobel-Fidler M, Francke B. 133.  1980. Alkaline deoxyribonuclease induced by herpes simplex virus type 1: composition and properties of the purified enzyme. Virology 103:493–501 [Google Scholar]
  134. Swingle B, Bao Z, Markel E, Chambers A, Cartinhour S. 134.  2010. Recombineering using RecTE from Pseudomonas syringae. Appl. Environ. Microbiol. 76:4960–68 [Google Scholar]
  135. Taylor TJ, Knipe DM. 135.  2004. Proteomics of herpes simplex virus replication compartments: association of cellular DNA replication, repair, recombination, and chromatin remodeling proteins with ICP8. J. Virol. 78:5856–66 [Google Scholar]
  136. Thaler DS, Stahl MM, Stahl FW. 136.  1987. Double-chain-cut sites are recombination hotspots in the Red pathway of phage λ. J. Mol. Biol. 195:75–87 [Google Scholar]
  137. Thaler DS, Stahl MM, Stahl FW. 137.  1987. Evidence that the normal route of replication-allowed Red-mediated recombination involves double-chain ends. EMBO J. 6:3171–76 [Google Scholar]
  138. Thomas MS, Gao M, Knipe DM, Powell KL. 138.  1992. Association between the herpes simplex virus major DNA-binding protein and alkaline nuclease. J. Virol. 66:1152–61 [Google Scholar]
  139. Thomason LC, Sawitzke JA, Li X, Costantino N, Court DL. 139.  2014. Recombineering: genetic engineering in bacteria using homologous recombination. Curr. Protoc. Mol. Biol. 106:1.16.1–39 [Google Scholar]
  140. Thomason LC, Thaler DS, Stahl MM, Stahl FW. 140.  1997. In vivo packaging of bacteriophage λ monomeric chromosomes. J. Mol. Biol. 267:75–87 [Google Scholar]
  141. Thresher RJ, Makhov AM, Hall SD, Kolodner R, Griffith JD. 141.  1995. Electron microscopic visualization of RecT protein and its complexes with DNA. J. Mol. Biol. 254:364–71 [Google Scholar]
  142. Tolun G, Makhov AM, Ludtke SJ, Griffith JD. 142.  2013. Details of ssDNA annealing revealed by an HSV-1 ICP8-ssDNA binary complex. Nucleic Acids Res. 41:5927–37Recent paper describing ssDNA annealing by ICP8. [Google Scholar]
  143. Tsurimoto T, Matsubara K. 143.  1981. Purified bacteriophage λ O protein binds to four repeating sequences at the λ replication origin. Nucleic Acids Res. 9:1789–99 [Google Scholar]
  144. van Kessel JC, Hatfull GF. 144.  2007. Recombineering in Mycobacterium tuberculosis. Nat. Methods 4:147–52 [Google Scholar]
  145. van Oijen AM, Blainey PC, Crampton DJ, Richardson CC, Ellenberger T, Xie XS. 145.  2003. Single-molecule kinetics of λ exonuclease reveal base dependence and dynamic disorder. Science 301:1235–38 [Google Scholar]
  146. van Pijkeren J-P, Britton RA. 146.  2012. High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res. 40:e76 [Google Scholar]
  147. Vaughan PJ, Banks LM, Purifoy DJ, Powell KL. 147.  1984. Interactions between herpes simplex virus DNA-binding proteins. J. Gen. Virol. 65:2033–41 [Google Scholar]
  148. Vellani TS, Myers RS. 148.  2003. Bacteriophage SPP1 Chu is an alkaline exonuclease in the SynExo family of viral two-component recombinases. J. Bacteriol. 185:2465–74 [Google Scholar]
  149. Vos M. 149.  2009. Why do bacteria engage in homologous recombination?. Trends Microbiol. 17:226–32 [Google Scholar]
  150. Ward S, Weller S. 150.  2011. HSV-1 DNA replication. Alphaherpesviruses: Molecular Virology SK Weller 89–112 Norfolk, UK: Caister Academic [Google Scholar]
  151. Weber PC, Challberg MD, Nelson NJ, Levine M, Glorioso JC. 151.  1988. Inversion events in the HSV-1 genome are directly mediated by the viral DNA replication machinery and lack sequence specificity. Cell 54:369–81 [Google Scholar]
  152. Weller SK, Coen DM. 152.  2012. Herpes simplex viruses: mechanisms of DNA replication. Cold Spring Harb. Perspect. Biol. 4:a013011 [Google Scholar]
  153. Weller SK, Lee KJ, Sabourin DJ, Schaffer PA. 153.  1983. Genetic analysis of temperature-sensitive mutants which define the gene for the major herpes simplex virus type 1 DNA-binding protein. J. Virol. 45:354–66 [Google Scholar]
  154. Wickner SH. 154.  1979. DNA replication proteins of Escherichia coli and phage λ. Cold Spring Harb. Symp. Quant. Biol. 43:Part 1303–10 [Google Scholar]
  155. Wilkie NM. 155.  1973. The synthesis and substructure of herpesvirus DNA: the distribution of alkali-labile single strand interruptions in HSV-1 DNA. J. Gen. Virol. 21:453–67 [Google Scholar]
  156. Wyman C, Kanaar R. 156.  2006. DNA double-strand break repair: All's well that ends well. Annu. Rev. Genet. 40:363–83 [Google Scholar]
  157. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL. 157.  2000. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97:5978–83 [Google Scholar]
  158. Yu D, Sawitzke JA, Ellis H, Court DL. 158.  2003. Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate. Proc. Natl. Acad. Sci. USA 100:7207–12 [Google Scholar]
  159. Zhang J, Xing X, Herr AB, Bell CE. 159.  2009. Crystal structure of E. coli RecE protein reveals a toroidal tetramer for processing double-stranded DNA breaks. Structure 17:690–702 [Google Scholar]
  160. Zhang X, Efstathiou S, Simmons A. 160.  1994. Identification of novel herpes simplex virus replicative intermediates by field inversion gel electrophoresis: implications for viral DNA amplification strategies. Virology 202:530–39 [Google Scholar]
  161. Zhang Y, Buchholz F, Muyrers JP, Stewart AF. 161.  1998. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20:123–28First demonstration of RecET-promoted recombineering using short homologies. [Google Scholar]
  162. Zissler J, Signer E, Schaefer F. 162.  1971. The role of recombination in growth of bacteriophage λ. I. The gamma gene. The Bacteriophage Lambda AD Hershey 455–68 New York: Cold Spring Harb. Lab. [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error