Prokaryotes form ubiquitin (Ub)-like isopeptide bonds on the lysine residues of proteins by at least two distinct pathways that are reversible and regulated. In mycobacteria, the C-terminal Gln of Pup (prokaryotic ubiquitin-like protein) is deamidated and isopeptide linked to proteins by a mechanism distinct from ubiquitylation in enzymology yet analogous to ubiquitylation in targeting proteins for destruction by proteasomes. Ub-fold proteins of archaea (SAMPs, small archaeal modifier proteins) and (TtuB, tRNA-two-thiouridine B) that differ from Ub in amino acid sequence, yet share a common β-grasp fold, also form isopeptide bonds by a mechanism that appears streamlined compared with ubiquitylation. SAMPs and TtuB are found to be members of a small group of Ub-fold proteins that function not only in protein modification but also in sulfur-transfer pathways associated with tRNA thiolation and molybdopterin biosynthesis. These multifunctional Ub-fold proteins are thought to be some of the most ancient of Ub-like protein modifiers.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agren D, Schnell R, Oehlmann W, Singh M, Schneider G. 1.  2008. Cysteine synthase (CysM) of Mycobacterium tuberculosis is an O-phosphoserine sulfhydrylase: evidence for an alternative cysteine biosynthesis pathway in mycobacteria. J. Biol. Chem. 283:31567–74 [Google Scholar]
  2. Ambroggio XI, Rees DC, Deshaies RJ. 2.  2004. JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol. 2:E2 [Google Scholar]
  3. Amerik AY, Hochstrasser M. 3.  2004. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695:189–207 [Google Scholar]
  4. Barandun J, Delley CL, Ban N, Weber-Ban E. 4.  2013. Crystal structure of the complex between prokaryotic ubiquitin-like protein and its ligase PafA. J. Am. Chem. Soc. 135:6794–97 [Google Scholar]
  5. Barandun J, Delley CL, Weber-Ban E. 5.  2012. The pupylation pathway and its role in mycobacteria. BMC Biol. 10:95 [Google Scholar]
  6. Burns KE, Cerda-Maira FA, Wang T, Li H, Bishai WR, Darwin KH. 6.  2010. “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol. Cell 39:821–27 [Google Scholar]
  7. Burns KE, Darwin KH. 7.  2010. Pupylation: a signal for proteasomal degradation in Mycobacterium tuberculosis. Subcell. Biochem. 54:149–57 [Google Scholar]
  8. Burns KE, Darwin KH. 8.  2010. Pupylation versus ubiquitylation: tagging for proteasome-dependent degradation. Cell. Microbiol. 12:424–31 [Google Scholar]
  9. Burns KE, Darwin KH. 9.  2012. Pupylation: proteasomal targeting by a protein modifier in bacteria. Methods Mol. Biol. 832:151–60 [Google Scholar]
  10. Burns KE, Liu WT, Boshoff HI, Dorrestein PC, Barry CE. 10.  2009. Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J. Biol. Chem. 284:3069–75 [Google Scholar]
  11. Burns KE, McAllister FE, Schwerdtfeger C, Mintseris J, Cerda-Maira F. 11.  et al. 2012. Mycobacterium tuberculosis prokaryotic ubiquitin-like protein-deconjugating enzyme is an unusual aspartate amidase. J. Biol. Chem. 287:37522–29 [Google Scholar]
  12. Burns KE, Pearce MJ, Darwin KH. 12.  2010. Prokaryotic ubiquitin-like protein provides a two-part degron to Mycobacterium proteasome substrates. J. Bacteriol. 192:2933–35 [Google Scholar]
  13. Burroughs AM, Balaji S, Iyer LM, Aravind L. 13.  2007. A novel superfamily containing the β-grasp fold involved in binding diverse soluble ligands. Biol. Direct 2:4 [Google Scholar]
  14. Burroughs AM, Balaji S, Iyer LM, Aravind L. 14.  2007. Small but versatile: the extraordinary functional and structural diversity of the β-grasp fold. Biol. Direct 2:18 [Google Scholar]
  15. Burroughs AM, Iyer LM, Aravind L. 15.  2012. Structure and evolution of ubiquitin and ubiquitin-related domains. Methods Mol. Biol. 832:15–63 [Google Scholar]
  16. Burroughs AM, Iyer LM, Aravind L. 16.  2012. The natural history of ubiquitin and ubiquitin-related domains. Front. Biosci. 17:1433–60 [Google Scholar]
  17. Cerda-Maira FA, McAllister F, Bode NJ, Burns KE, Gygi SP, Darwin KH. 17.  2011. Reconstitution of the Mycobacterium tuberculosis pupylation pathway in Escherichia coli. EMBO Rep. 12:863–70 [Google Scholar]
  18. Chen X, Qiu JD, Shi SP, Suo SB, Liang RP. 18.  2013. Systematic analysis and prediction of pupylation sites in prokaryotic proteins. PLoS ONE 8:e74002 [Google Scholar]
  19. Chen X, Solomon WC, Kang Y, Cerda-Maira F, Darwin KH, Walters KJ. 19.  2009. Prokaryotic ubiquitin-like protein Pup is intrinsically disordered. J. Mol. Biol. 392:208–17 [Google Scholar]
  20. Ciechanover A. 20.  2005. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6:79–87 [Google Scholar]
  21. Ciechanover A, Elias S, Heller H, Hershko A. 21.  1982. “Covalent affinity” purification of ubiquitin-activating enzyme. J. Biol. Chem. 257:2537–42 [Google Scholar]
  22. Ciechanover A, Heller H, Katz-Etzion R, Hershko A. 22.  1981. Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system. Proc. Natl. Acad. Sci. USA 78:761–65 [Google Scholar]
  23. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C. 23.  et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–44 [Google Scholar]
  24. Dahl JU, Urban A, Bolte A, Sriyabhaya P, Donahue JL. 24.  et al. 2011. The identification of a novel protein involved in molybdenum cofactor biosynthesis in Escherichia coli. J. Biol. Chem. 286:35801–12 [Google Scholar]
  25. Darwin KH. 25.  2009. Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nat. Rev. Microbiol. 7:485–91 [Google Scholar]
  26. Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF. 26.  2003. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302:1963–66 [Google Scholar]
  27. Darwin KH, Hofmann K. 27.  2010. SAMPyling proteins in archaea. Trends Biochem. Sci. 35:348–51 [Google Scholar]
  28. Delley CL, Striebel F, Heydenreich FM, Özcelik D, Weber-Ban E. 28.  2012. Activity of the mycobacterial proteasomal ATPase Mpa is reversibly regulated by pupylation. J. Biol. Chem. 287:7907–14 [Google Scholar]
  29. Festa RA, McAllister F, Pearce MJ, Mintseris J, Burns KE. 29.  et al. 2010. Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis [corrected]. PLoS ONE 5:e8589 [Google Scholar]
  30. Festa RA, Pearce MJ, Darwin KH. 30.  2007. Characterization of the proteasome accessory factor (paf) operon in Mycobacterium tuberculosis. J. Bacteriol. 189:3044–50 [Google Scholar]
  31. Finley D. 31.  2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78:477–513 [Google Scholar]
  32. Forer N, Korman M, Elharar Y, Vishkautzan M, Gur E. 32.  2013. Bacterial proteasome and PafA, the Pup ligase, interact to form a modular protein tagging and degradation machine. Biochemistry 52:9029–35 [Google Scholar]
  33. Gandotra S, Lebron MB, Ehrt S. 33.  2010. The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxide. PLoS Pathog. 6:e1001040 [Google Scholar]
  34. Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S. 34.  2007. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat. Med. 13:1515–20 [Google Scholar]
  35. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G. 35.  et al. 1998. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615–23 [Google Scholar]
  36. Godert AM, Jin M, McLafferty FW, Begley TP. 36.  2007. Biosynthesis of the thioquinolobactin siderophore: an interesting variation on sulfur transfer. J. Bacteriol. 189:2941–44 [Google Scholar]
  37. Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD, Boyse EA. 37.  1975. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. USA 72:11–15 [Google Scholar]
  38. Guth E, Thommen M, Weber-Ban E. 38.  2011. Mycobacterial ubiquitin-like protein ligase PafA follows a two-step reaction pathway with a phosphorylated Pup intermediate. J. Biol. Chem. 286:4412–19 [Google Scholar]
  39. Hartman A, Norais C, Badger J, Delmas S, Haldenby S. 39.  et al. 2010. The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS ONE 5:e9605 [Google Scholar]
  40. Hepowit NL, Uthandi S, Miranda HV, Toniutti M, Prunetti L. 40.  et al. 2012. Archaeal JAB1/MPN/MOV34 metalloenzyme (HvJAMM1) cleaves ubiquitin-like small archaeal modifier proteins (SAMPs) from protein-conjugates. Mol. Microbiol. 86:971–87 [Google Scholar]
  41. Hershko A, Heller H, Elias S, Ciechanover A. 41.  1983. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258:8206–14 [Google Scholar]
  42. Hochstrasser M. 42.  2009. Origin and function of ubiquitin-like proteins. Nature 458:422–29 [Google Scholar]
  43. Hoeller D, Hecker CM, Wagner S, Rogov V, Dötsch V, Dikic I. 43.  2007. E3-independent monoubiquitination of ubiquitin-binding proteins. Mol. Cell 26:891–98 [Google Scholar]
  44. Horiuchi KY, Harpel MR, Shen L, Luo Y, Rogers KC, Copeland RA. 44.  2001. Mechanistic studies of reaction coupling in Glu-tRNAGln amidotransferase. Biochemistry 40:6450–57 [Google Scholar]
  45. Huang B, Lu J, Byström AS. 45.  2008. A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14:2183–94 [Google Scholar]
  46. Humbard M, Miranda H, Lim J, Krause D, Pritz J. 46.  et al. 2010. Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463:54–60 [Google Scholar]
  47. Imkamp F, Rosenberger T, Striebel F, Keller PM, Amstutz B. 47.  et al. 2010. Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo. Mol. Microbiol. 75:744–54 [Google Scholar]
  48. Imkamp F, Striebel F, Sutter M, Ozcelik D, Zimmermann N. 48.  et al. 2010. Dop functions as a depupylase in the prokaryotic ubiquitin-like modification pathway. EMBO Rep. 11:791–97 [Google Scholar]
  49. Iyer LM, Burroughs AM, Aravind L. 49.  2006. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains. Genome Biol. 7:R60 [Google Scholar]
  50. Iyer LM, Burroughs AM, Aravind L. 50.  2008. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination. Biol. Direct 3:45 [Google Scholar]
  51. Jackson SP, Durocher D. 51.  2013. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell 49:795–807 [Google Scholar]
  52. Kanda F, Sykes DE, Yasuda H, Sandberg AA, Matsui S. 52.  1986. Substrate recognition of isopeptidase: specific cleavage of the epsilon-(alpha-glycyl)lysine linkage in ubiquitin-protein conjugates. Biochim. Biophys. Acta 870:64–75 [Google Scholar]
  53. Katz EJ, Isasa M, Crosas B. 53.  2010. A new map to understand deubiquitination. Biochem. Soc. Trans. 38:21–28 [Google Scholar]
  54. Kerscher O, Felberbaum R, Hochstrasser M. 54.  2006. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22:159–80 [Google Scholar]
  55. Kessler D. 55.  2006. Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. FEMS Microbiol. Rev. 30:825–40 [Google Scholar]
  56. Knipfer N, Shrader TE. 56.  1997. Inactivation of the 20S proteasome in Mycobacterium smegmatis. Mol. Microbiol. 25:375–83 [Google Scholar]
  57. Koonin EV. 57.  2010. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 11:209 [Google Scholar]
  58. Krishnamoorthy K, Begley TP. 58.  2011.. Protein thiocarboxylate-dependent methionine biosynthesis in Wolinella succinogenes J. Am. Chem. Soc. 133:379–86 [Google Scholar]
  59. Krishnaswamy PR, Pamiljans V, Meister A. 59.  1960. Activated glutamate intermediate in the enzymatic synthesis of glutamine. J. Biol. Chem. 235:PC39–40 [Google Scholar]
  60. Lake MW, Wuebbens MM, Rajagopalan KV, Schindelin H. 60.  2001. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 414:325–29 [Google Scholar]
  61. Lamichhane G, Raghunand TR, Morrison NE, Woolwine SC, Tyagi S. 61.  et al. 2006. Deletion of a Mycobacterium tuberculosis proteasomal ATPase homologue gene produces a slow-growing strain that persists in host tissues. J. Infect. Dis. 194:1233–40 [Google Scholar]
  62. Leidel S, Pedrioli PG, Bucher T, Brost R, Costanzo M. 62.  et al. 2009. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458:228–32 [Google Scholar]
  63. Leigh JA, Albers SV, Atomi H, Allers T. 63.  2011. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol. Rev. 35:577–608 [Google Scholar]
  64. Leimkühler S, Freuer A, Araujo JA, Rajagopalan KV, Mendel RR. 64.  2003. Mechanistic studies of human molybdopterin synthase reaction and characterization of mutants identified in group B patients of molybdenum cofactor deficiency. J. Biol. Chem. 278:26127–34 [Google Scholar]
  65. Leimkühler S, Wuebbens MM, Rajagopalan KV. 65.  2001. Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor. J. Biol. Chem. 276:34695–701 [Google Scholar]
  66. Liao S, Shang Q, Zhang X, Zhang J, Xu C, Tu X. 66.  2009. Pup, a prokaryotic ubiquitin-like protein, is an intrinsically disordered protein. Biochem. J. 422:207–15 [Google Scholar]
  67. Liaw SH, Eisenberg D. 67.  1994. Structural model for the reaction mechanism of glutamine synthetase, based on five crystal structures of enzyme-substrate complexes. Biochemistry 33:675–81 [Google Scholar]
  68. Lin G, Chidawanyika T, Tsu C, Warrier T, Vaubourgeix J. 68.  et al. 2013. N,C-Capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets. J. Am. Chem. Soc. 135:9968–71 [Google Scholar]
  69. Lin G, Li D, de Carvalho LP, Deng H, Tao H. 69.  et al. 2009. Inhibitors selective for mycobacterial versus human proteasomes. Nature 461:621–26 [Google Scholar]
  70. Liu Z, Ma Q, Cao J, Gao X, Ren J, Xue Y. 70.  2011. GPS-PUP: computational prediction of pupylation sites in prokaryotic proteins. Mol. Biosyst. 7:2737–40 [Google Scholar]
  71. Lorenz S, Cantor AJ, Rape M, Kuriyan J. 71.  2013. Macromolecular juggling by ubiquitylation enzymes. BMC Biol. 11:65 [Google Scholar]
  72. Lupas A, Zwickl P, Baumeister W. 72.  1994. Proteasome sequences in eubacteria. Trends Biochem. Sci. 19:533–34 [Google Scholar]
  73. Makarova KS, Koonin EV. 73.  2010. Archaeal ubiquitin-like proteins: functional versatility and putative ancestral involvement in tRNA modification revealed by comparative genomic analysis. Archaea 2010:710303 [Google Scholar]
  74. Maldonado AY, Burz DS, Reverdatto S, Shekhtman A. 74.  2013. Fate of Pup inside the Mycobacterium proteasome studied by in-cell NMR. PLoS ONE 8:e74576 [Google Scholar]
  75. Marchese A, Trejo J. 75.  2013. Ubiquitin-dependent regulation of G protein-coupled receptor trafficking and signaling. Cell. Signal. 25:707–16 [Google Scholar]
  76. Marelja Z, Mullick Chowdhury M, Dosche C, Hille C, Baumann O. 76.  et al. 2013. The l-cysteine desulfurase NFS1 is localized in the cytosol where it provides the sulfur for molybdenum cofactor biosynthesis in humans. PLoS ONE 8:e60869 [Google Scholar]
  77. Maupin-Furlow J. 77.  2012. Proteasomes and protein conjugation across domains of life. Nat. Rev. Microbiol. 10:100–11 [Google Scholar]
  78. Maupin-Furlow JA. 78.  2013. Archaeal proteasomes and sampylation. Subcell. Biochem. 66:297–327 [Google Scholar]
  79. Maupin-Furlow JA. 79.  2013. Ubiquitin-like proteins and their roles in archaea. Trends Microbiol. 21:31–38 [Google Scholar]
  80. McGrath JP, Jentsch S, Varshavsky A. 80.  1991. UBA1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10:227–36 [Google Scholar]
  81. Mendel RR, Kruse T. 81.  2012. Cell biology of molybdenum in plants and humans. Biochim. Biophys. Acta 1823:1568–79 [Google Scholar]
  82. Midelfort CF, Rose IA. 82.  1976. A stereochemical method for detection of ATP terminal phosphate transfer in enzymatic reactions. Glutamine synthetase. J. Biol. Chem. 251:5881–87 [Google Scholar]
  83. Min M, Mayor U, Lindon C. 83.  2013. Ubiquitination site preferences in anaphase promoting complex/cyclosome (APC/C) substrates. Open Biol. 3:130097 [Google Scholar]
  84. Miranda H, Nembhard N, Su D, Hepowit N, Krause D. 84.  et al. 2011. E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea. Proc. Natl. Acad. Sci. USA 108:4417–22 [Google Scholar]
  85. Miranda HV, Antelmann H, Hepowit N, Chavarria NE, Krause DJ. 85.  et al. 2014. Archaeal ubiquitin-like SAMP3 is isopeptide-linked to proteins via a UbaA-dependent mechanism. Mol. Cell. Proteomics 13:220–39 [Google Scholar]
  86. Moffat JM, Mintern JD, Villadangos JA. 86.  2013. Control of MHC II antigen presentation by ubiquitination. Curr. Opin. Immunol. 25:109–14 [Google Scholar]
  87. Nakagawa H, Kuratani M, Goto-Ito S, Ito T, Katsura K. 87.  et al. 2013. Crystallographic and mutational studies on the tRNA thiouridine synthetase TtuA. Proteins 81:1232–44 [Google Scholar]
  88. Nakai Y, Harada A, Hashiguchi Y, Nakai M, Hayashi H. 88.  2012. Arabidopsis molybdopterin biosynthesis protein Cnx5 collaborates with the ubiquitin-like protein Urm11 in the thio-modification of tRNA. J. Biol. Chem. 287:30874–84 [Google Scholar]
  89. Nakai Y, Nakai M, Hayashi H. 89.  2008. Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J. Biol. Chem. 283:27469–76 [Google Scholar]
  90. Nercessian D, de Castro RE, Conde RD. 90.  2002. Ubiquitin-like proteins in halobacteria. J. Basic Microbiol. 42:277–83 [Google Scholar]
  91. Nercessian D, Marino Buslje C, Ordóñez MV, de Castro RE, Conde RD. 91.  2009. Presence of structural homologs of ubiquitin in haloalkaliphilic Archaea. Int. Microbiol. 12:167–73 [Google Scholar]
  92. Noma A, Sakaguchi Y, Suzuki T. 92.  2009. Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res. 37:1335–52 [Google Scholar]
  93. Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J. 93.  et al. 2011. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39:3204–23 [Google Scholar]
  94. Ofer N, Forer N, Korman M, Vishkautzan M, Khalaila I, Gur E. 94.  2013. Allosteric transitions direct protein tagging by PafA, the prokaryotic ubiquitin-like protein (Pup) ligase. J. Biol. Chem. 288:11287–93 [Google Scholar]
  95. O’Leary SE, Jurgenson CT, Ealick SE, Begley TP. 95.  2008. O-phospho-l-serine and the thiocarboxylated sulfur carrier protein CysO-COSH are substrates for CysM, a cysteine synthase from Mycobacterium tuberculosis. Biochemistry 47:11606–15 [Google Scholar]
  96. Orlowski M, Meister A. 96.  1971. Partial reactions catalyzed by γ-glutamylcysteine synthetase and evidence for an activated glutamate intermediate. J. Biol. Chem. 246:7095–105 [Google Scholar]
  97. Özcelik D, Barandun J, Schmitz N, Sutter M, Guth E. 97.  et al. 2012. Structures of Pup ligase PafA and depupylase Dop from the prokaryotic ubiquitin-like modification pathway. Nat. Commun. 3:1014 [Google Scholar]
  98. Pearce MJ, Arora P, Festa RA, Butler-Wu SM, Gokhale RS, Darwin KH. 98.  2006. Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J. 25:5423–32 [Google Scholar]
  99. Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH. 99.  2008. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322:1104–7 [Google Scholar]
  100. Poulsen C, Akhter Y, Jeon AH, Schmitt-Ulms G, Meyer HE. 100.  et al. 2010. Proteome-wide identification of mycobacterial pupylation targets. Mol. Syst. Biol. 6:386 [Google Scholar]
  101. Prunetti L, Reuter CJ, Hepowit NL, Wu Y, Barrueto L. 101.  et al. 2014. Structural and biochemical properties of an extreme ‘salt-loving’ proteasome activating nucleotidase from the archaeon Haloferax volcanii. Extremophiles. 18:283–93 [Google Scholar]
  102. Ranjan N, Damberger FF, Sutter M, Allain FH, Weber-Ban E. 102.  2011. Solution structure and activation mechanism of ubiquitin-like small archaeal modifier proteins. J. Mol. Biol. 405:1040–55 [Google Scholar]
  103. Reyes-Turcu FE, Ventii KH, Wilkinson KD. 103.  2009. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78:363–97 [Google Scholar]
  104. Rodriguez MS, Dargemont C, Hay RT. 104.  2001. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276:12654–59 [Google Scholar]
  105. Samanovic MI, Li H, Darwin KH. 105.  2013. The Pup-proteasome system of Mycobacterium tuberculosis. Subcell. Biochem. 66:267–95 [Google Scholar]
  106. Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M. 106.  et al. 2008. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455:358–62 [Google Scholar]
  107. Schlieker CD, van der Veen AG, Damon JR, Spooner E, Ploegh HL. 107.  2008. A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proc. Natl. Acad. Sci. USA 105:18255–60 [Google Scholar]
  108. Schmitz J, Chowdhury MM, Hänzelmann P, Nimtz M, Lee EY. 108.  et al. 2008. The sulfurtransferase activity of Uba4 presents a link between ubiquitin-like protein conjugation and activation of sulfur carrier proteins. Biochemistry 47:6479–89 [Google Scholar]
  109. Schulman BA, Harper JW. 109.  2009. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10:319–31 [Google Scholar]
  110. Seufert W, Jentsch S. 110.  1991. Yeast ubiquitin-conjugating enzymes involved in selective protein degradation are essential for cell viability. Acta Biol. Hung. 42:27–37 [Google Scholar]
  111. Seufert W, McGrath JP, Jentsch S. 111.  1990. UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation. EMBO J. 9:4535–41 [Google Scholar]
  112. Shigi N. 112.  2012. Posttranslational modification of cellular proteins by a ubiquitin-like protein in bacteria. J. Biol. Chem. 287:17568–77 [Google Scholar]
  113. Shigi N, Sakaguchi Y, Asai S, Suzuki T, Watanabe K. 113.  2008. Common thiolation mechanism in the biosynthesis of tRNA thiouridine and sulphur-containing cofactors. EMBO J. 27:3267–78 [Google Scholar]
  114. Smirnov D, Dhall A, Sivanesam K, Sharar RJ, Chatterjee C. 114.  2013. Fluorescent probes reveal a minimal ligase recognition motif in the prokaryotic ubiquitin-like protein from Mycobacterium tuberculosis. J. Am. Chem. Soc. 135:2887–90 [Google Scholar]
  115. Striebel F, Hunkeler M, Summer H, Weber-Ban E. 115.  2010. The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus. EMBO J. 29:1262–71 [Google Scholar]
  116. Striebel F, Imkamp F, Özcelik D, Weber-Ban E. 116.  2014. Pupylation as a signal for proteasomal degradation in bacteria. Biochim. Biophys. Acta 1843:103–13 [Google Scholar]
  117. Striebel F, Imkamp F, Sutter M, Steiner M, Mamedov A, Weber-Ban E. 117.  2009. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat. Struct. Mol. Biol. 16:647–51 [Google Scholar]
  118. Sutter M, Damberger FF, Imkamp F, Allain FH, Weber-Ban E. 118.  2010. Prokaryotic ubiquitin-like protein (Pup) is coupled to substrates via the side chain of its C-terminal glutamate. J. Am. Chem. Soc. 132:5610–12 [Google Scholar]
  119. Sutter M, Striebel F, Damberger FF, Allain FH, Weber-Ban E. 119.  2009. A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa. FEBS Lett. 583:3151–57 [Google Scholar]
  120. Tamura T, Nagy I, Lupas A, Lottspeich F, Cejka Z. 120.  et al. 1995. The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr. Biol. 5:766–74 [Google Scholar]
  121. Teixeira LK, Reed SI. 121.  2013. Ubiquitin ligases and cell cycle control. Annu. Rev. Biochem. 82:387–414 [Google Scholar]
  122. Tran HJ, Allen MD, Löwe J, Bycroft M. 122.  2003. Structure of the Jab1/MPN domain and its implications for proteasome function. Biochemistry 42:11460–65 [Google Scholar]
  123. Tung CW. 123.  2012. PupDB: a database of pupylated proteins. BMC Bioinformatics 13:40 [Google Scholar]
  124. van der Veen AG, Ploegh HL. 124.  2012. Ubiquitin-like proteins. Annu. Rev. Biochem. 81:323–57 [Google Scholar]
  125. Verlhac MH, Terret ME, Pintard L. 125.  2010. Control of the oocyte-to-embryo transition by the ubiquitin-proteolytic system in mouse and C. elegans. Curr. Opin. Cell Biol. 22:758–63 [Google Scholar]
  126. Vierstra RD. 126.  2012. The expanding universe of ubiquitin and ubiquitin-like modifiers. Plant Physiol. 160:2–14 [Google Scholar]
  127. Vijay-Kumar S, Bugg CE, Cook WJ. 127.  1987. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 194:531–44 [Google Scholar]
  128. Wang T, Darwin KH, Li H. 128.  2010. Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat. Struct. Mol. Biol. 17:1352–57 [Google Scholar]
  129. Wilcox M. 129.  1969. γ-Glutamyl phosphate attached to glutamine-specific tRNA. A precursor of glutaminyl-tRNA in Bacillus subtilis. Eur. J. Biochem. 11:405–12 [Google Scholar]
  130. Wilkinson KD, Audhya TK. 130.  1981. Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH-terminal sequence Arg-Gly-Gly. J. Biol. Chem. 256:9235–41 [Google Scholar]
  131. Williams MJ, Kana BD, Mizrahi V. 131.  2011. Functional analysis of molybdopterin biosynthesis in mycobacteria identifies a fused molybdopterin synthase in Mycobacterium tuberculosis. J. Bacteriol. 193:98–106 [Google Scholar]
  132. Wilson HL, Ou MS, Aldrich HC, Maupin-Furlow J. 132.  2000. Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome. J. Bacteriol. 182:1680–92 [Google Scholar]
  133. Wolf S, Lottspeich F, Baumeister W. 133.  1993. Ubiquitin found in the archaebacterium Thermoplasma acidophilum. FEBS Lett. 326:42–44 [Google Scholar]
  134. Wolf S, Nagy I, Lupas A, Pfeifer G, Cejka Z. 134.  et al. 1998. Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis. J. Mol. Biol. 277:13–25 [Google Scholar]
  135. Xi J, Ge Y, Kinsland C, McLafferty FW, Begley TP. 135.  2001. Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: identification of an acyldisulfide-linked protein–protein conjugate that is functionally analogous to the ubiquitin/E1 complex. Proc. Natl. Acad. Sci. USA 98:8513–18 [Google Scholar]
  136. Ye K, Liao S, Zhang W, Fan K, Zhang X. 136.  et al. 2013. Ionic strength-dependent conformations of a ubiquitin-like small archaeal modifier protein (SAMP1) from Haloferax volcanii. Protein Sci. 22:1174–82 [Google Scholar]
  137. Zwickl P, Ng D, Woo KM, Klenk HP, Goldberg AL. 137.  1999. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J. Biol. Chem. 274:26008–14 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error