1932

Abstract

Bacteria remodel the fluidity of their membrane bilayer precisely via the incorporation of proportionally more unsaturated fatty acids (or fatty acids with analogous properties) as growth temperature decreases. This process, termed homoviscous adaptation, is suited to disrupt the order of the lipid bilayer and optimizes the performance of a large array of cellular physiological processes at the new temperature. As such, microbes have developed molecular strategies to sense changes in membrane fluidity, provoked by a decrease in environmental temperature, and initiate cellular responses that upregulate the biosynthesis of unsaturated fatty acids. This review focuses on the architecture of a membrane fluidity communication network; how thermal information is integrated, processed, and transduced to control gene expression; how membrane-mediated structural changes of a cold sensor are accomplished; and the intriguing possibility that temperature-induced deformations of the cell membrane act as allosteric regulators of protein function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091313-103612
2014-09-08
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/68/1/annurev-micro-091313-103612.html?itemId=/content/journals/10.1146/annurev-micro-091313-103612&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilar PS, Cronan JE, de Mendoza D. 1.  1998. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J. Bacteriol. 180:2194–200 [Google Scholar]
  2. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D. 2.  2001. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J. 20:1681–91 [Google Scholar]
  3. Aguilar PS, Lopez P, de Mendoza D. 3.  1999. Transcriptional control of the low-temperature-inducible des gene, encoding the Δ5 desaturase of Bacillus subtilis. J. Bacteriol. 181:28–33 [Google Scholar]
  4. Albanesi D, Mansilla MC, de Mendoza D. 4.  2004. The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J. Bacteriol. 186:2655–63 [Google Scholar]
  5. Albanesi D, Martín M, Trajtenberg F, Mansilla MC, Haouz A. 5.  et al. 2009. Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc. Natl. Acad. Sci. USA 106:16185–90 [Google Scholar]
  6. Altabe SG, Aguilar P, Caballero GM, de Mendoza D. 6.  2003. The Bacillus subtilis acyl lipid desaturase is a Δ5 desaturase. J. Bacteriol. 185:3228–31 [Google Scholar]
  7. Altabe SG, Mansilla MC, de Mendoza D. 7.  2013. Remodeling of membrane lipids by bacterial desaturases. Stearoyl-CoA Desaturase Genes in Lipid Metabolism JM Ntambi 209–231 New York: Springer [Google Scholar]
  8. Andersen OS, Koeppe RE. 8.  2007. Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36:107–30 [Google Scholar]
  9. Beckering CL, Steil L, Weber MHW, Volker U, Marahiel MA. 9.  2002. Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J. Bacteriol. 184:6395–402 [Google Scholar]
  10. Beranová J, Jemioła-Rzemińska M, Elhottová D, Strzałka K, Konopásek I. 10.  2008. Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation. Biochim. Biophys. Acta 1778:445–53 [Google Scholar]
  11. Beranová J, Mansilla MC, de Mendoza D, Elhottová D, Konopásek I. 11.  2010. Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions. J. Bacteriol. 192:4164–71 [Google Scholar]
  12. Butterworth PH, Bloch K. 12.  1970. Comparative aspects of fatty acid synthesis in Bacillus subtilis and Escherichia coli. Eur. J. Biochem. 12:496–501 [Google Scholar]
  13. Chazarreta-Cifre L, Martiarena L, de Mendoza D, Altabe SG. 13.  2011. Role of ferredoxin and flavodoxins in Bacillus subtilis fatty acid desaturation. J. Bacteriol. 193:4043–48 [Google Scholar]
  14. Coskun U, Simons K. 14.  2011. Cell membranes: the lipid perspective. Structure 19:1543–48 [Google Scholar]
  15. Cronan JE. 15.  1978. Molecular biology of bacterial membrane lipids. Annu. Rev. Biochem. 47:163–89 [Google Scholar]
  16. Cronan JE. 16.  2006. A bacterium that has three pathways to regulate membrane lipid fluidity. Mol. Microbiol. 60:256–59 [Google Scholar]
  17. Cronan JE, Gelmann EP. 17.  1975. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol. Rev. 39:232–56 [Google Scholar]
  18. Cybulski LE, Albanesi D, Mansilla MC, Altabe S, Aguilar PS, de Mendoza D. 18.  2002. Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol. Microbiol. 45:1379–88 [Google Scholar]
  19. Cybulski LE, del Solar G, Craig PO, Espinosa M, de Mendoza D. 19.  2004. Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity. J. Biol. Chem. 279:39340–47 [Google Scholar]
  20. Cybulski LE, Martín M, Mansilla MC, Fernández A, de Mendoza D. 20.  2010. Membrane thickness cue for cold sensing in a bacterium. Curr. Biol. 20:1539–44 [Google Scholar]
  21. de Mendoza D, Cronan JE. 21.  1983. Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem. Sci. 8:49–52 [Google Scholar]
  22. Diaz AR, Mansilla MC, Vila AJ, de Mendoza D. 22.  2002. Membrane topology of the acyl-lipid desaturase from Bacillus subtilis. J. Biol. Chem. 277:48099–106 [Google Scholar]
  23. Dowhan W, Bogdanov M. 23.  2009. Lipid-dependent membrane protein topogenesis. Annu. Rev. Biochem. 78:515–40 [Google Scholar]
  24. Fujii DK, Fulco AJ. 24.  1977. Biosynthesis of unsaturated fatty acids by bacilli: hyperinduction and modulation of desaturase synthesis. J. Biol. Chem. 252:3660–70 [Google Scholar]
  25. Fulco AJ. 25.  1967. The effect of temperature on the formation of Δ5-unsaturated fatty acids by bacilli. Biochim. Biophys. Acta 144:701–3 [Google Scholar]
  26. Fulco AJ. 26.  1969. The biosynthesis of unsaturated fatty acids by bacilli. I. Temperature induction of the desaturation reaction. J. Biol. Chem. 244:889–95 [Google Scholar]
  27. Fulco AJ. 27.  1974. Metabolic alterations of fatty acids. Annu. Rev. Biochem. 43:215–41 [Google Scholar]
  28. Fulco AJ. 28.  1983. Fatty acid metabolism in bacteria. Prog. Lipid Res. 22:133–60 [Google Scholar]
  29. Fulco AJ. 29.  2002. My Bloch years: 1961–1963 and beyond. Biochem. Biophys. Res. Commun. 292:1221–26 [Google Scholar]
  30. Fulco AJ, Bloch K. 30.  1962. Cofactor requirements for fatty acid desaturation in Mycobacterium phlei. Biochim. Biophys. Acta 63:545–46 [Google Scholar]
  31. Fulco AJ, Bloch K. 31.  1964. Cofactor requirements for the formation of Δ9-unsaturated fatty acids in Mycobacterium phlei. J. Biol. Chem. 239:993–97 [Google Scholar]
  32. Fulco AJ, Levy R, Bloch K. 32.  1964. The biosynthesis of Δ9 and Δ5 monosaturated fatty acids by bacteria. J. Biol. Chem. 239:998–1003 [Google Scholar]
  33. Gao R, Lynn DG. 33.  2007. Integration of rotation and piston motions in coiled-coil signal transduction. J. Bacteriol. 189:6048–56 [Google Scholar]
  34. Grau R, de Mendoza D. 34.  1993. Regulation of the synthesis of unsaturated fatty acids by growth temperature in Bacillus subtilis. Mol. Microbiol. 8:535–42 [Google Scholar]
  35. Inda ME, Vandenbranden M, Fernandez A, de Mendoza D, Ruysschaert JM, Cybulski L. 35.  2014. A lipid-mediated conformational switch modulates the thermosensing activity of DesK. Proc. Natl. Acad. Sci. USA 111:3579–84 [Google Scholar]
  36. Kaneda T. 36.  1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55:288–302 [Google Scholar]
  37. Klein W, Weber MH, Marahiel MA. 37.  1999. Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J. Bacteriol. 181:5341–49 [Google Scholar]
  38. Lombardi FJ, Fulco AJ. 38.  1980. Temperature-mediated hyperinduction of fatty acid desaturation in pre-existing and newly formed fatty acids synthesized endogenously in Bacillus megaterium. Biochim. Biophys. Acta 618:359–63 [Google Scholar]
  39. Los DA, Murata N. 39.  2004. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta 1666:142–57 [Google Scholar]
  40. Los DA, Zorina A, Sinetova M, Kryazhov S, Mironov K, Zinchenko VV. 40.  2010. Stress sensors and signal transducers in cyanobacteria. Sensors 10:2386–415 [Google Scholar]
  41. Magnuson K, Jackovski S, Rock CO, Cronan JE Jr. 41.  1993. Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol. Rev. 57:522–42 [Google Scholar]
  42. Mansilla MC, Cybulski LE, Albanesi D, de Mendoza D. 42.  2004. Control of membrane lipid fluidity by molecular thermosensors. J. Bacteriol. 186:6681–88 [Google Scholar]
  43. Mansilla MC, de Mendoza D. 43.  2005. The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch. Microbiol. 183:229–35 [Google Scholar]
  44. Martín M, Albanesi D, Alzari PM, de Mendoza D. 44.  2009. Functional in vitro assembly of the integral membrane bacterial thermosensor DesK. Protein Expr. Purif. 66:39–45 [Google Scholar]
  45. Martín M, de Mendoza D. 45.  2013. Regulation of Bacillus subtilis DesK thermosensor by lipids. Biochem. J. 451:2269–75 [Google Scholar]
  46. Martin N, Lombardía E, Altabe SG, de Mendoza D, Mansilla MC. 46.  2009. A lipA (YutB) mutant, encoding lipoic acid synthase, provides insight into the interplay between branched-chain and unsaturated fatty acid biosynthesis in Bacillus subtilis. J. Bacteriol. 191:7447–55 [Google Scholar]
  47. Ntambi J. 47.  2004. Regulation of stearoyl-coA desaturases and role in metabolism. Prog. Lipid Res. 43:91–104 [Google Scholar]
  48. Nyholm TKM, Ozdirekcan S, Killian JA. 48.  2007. How protein transmembrane segments sense the lipid environment. Biochemistry 46:1457–65 [Google Scholar]
  49. Ottemann KM, Xiao W, Shin YK, Koshland DE. 49.  1999. A piston model for transmembrane signaling of the aspartate receptor. Science 285:1751–54 [Google Scholar]
  50. Parkinson JS. 50.  2010. Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases. Annu. Rev. Microbiol. 64:101–22 [Google Scholar]
  51. Parsons JB, Rock CO. 51.  2013. Bacterial lipids: metabolism and membrane homeostasis. Prog. Lipid Res. 52:249–76 [Google Scholar]
  52. Porrini L, Cybulski L, Altabe SG, Mansilla MC, de Mendoza D. 52.  2014. Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. MicrobiologyOpen 3:213–24 [Google Scholar]
  53. Quinn PJ. 53.  2012. Lipid-lipid interactions in bilayer membranes: married couples and casual liaisons. Prog. Lipid Res. 51:179–98 [Google Scholar]
  54. Ranck JL, Letellier L, Shechter E, Krop B, Pernot P, Tardieu A. 54.  1984. X-ray analysis of the kinetics of Escherichia coli lipid and membrane structural transitions. Biochemistry 23:4955–61 [Google Scholar]
  55. Sackman E. 55.  1995. Physical basis of self-organization and function of membranes: physics of vesicles. Handbook of Biological Physics R Lipowsky, E Sackmann 215–303 Amsterdam: Elsevier [Google Scholar]
  56. Sakamoto T, Murata N. 56.  2002. Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr. Opin. Microbiol. 5:208–10 [Google Scholar]
  57. Scheuerbrandt G, Bloch K. 57.  1962. Unsaturated fatty acids in microorgansims. J. Biol. Chem. 237:2064–68 [Google Scholar]
  58. Scheuerbrandt G, Goldfine H, Baranowsky PE, Bloch K. 58.  1961. A novel mechanism for the biosynthesis of unsaturated fatty acids. J. Biol. Chem. 236:PC70–71 [Google Scholar]
  59. Seelig J, Seelig A. 59.  1980. Lipid conformation in model membranes and biological membranes. Q. Rev. Biophys. 13:19–61 [Google Scholar]
  60. Sengupta P, Garrity P. 60.  2013. Sensing temperature. Curr. Biol. 23:R304–7 [Google Scholar]
  61. Shanklin J, Guy JE, Mishra G, Lindqvist Y. 61.  2009. Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes. J. Biol. Chem. 284:18559–63 [Google Scholar]
  62. Shanklin J, Somerville C. 62.  1991. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc. Natl. Acad. Sci. USA 88:2510–14 [Google Scholar]
  63. Shimura Y, Shiraiwa Y, Sususuki I. 63.  2012. Characterization of the subdomains in the N-terminal region histidine kinase Hik33 in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 53:1255–66 [Google Scholar]
  64. Strickland D, Moffat K, Sosnick TR. 64.  2008. Light-activated DNA binding in a designed allosteric protein. Proc. Natl. Acad. Sci. USA 105:10709–14 [Google Scholar]
  65. Stukey JE, McDonough VM, Martin CE. 65.  1990. The ole1 gene of Saccharomyces cerevisiae encodes the Δ9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J. Biol. Chem. 265:20144–49 [Google Scholar]
  66. Suzuki I, Kanesaki Y, Mikami K, Kanehisa M, Murata N. 66.  2001. Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol. Microbiol. 40:235–44 [Google Scholar]
  67. Suzuki I, Los DA, Kanesaki Y, Mikami K, Murata N. 67.  2000. The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J. 19:1327–34 [Google Scholar]
  68. Suzuki I, Los DA, Murata N. 68.  2000. Perception and transduction of low-temperature signals to induce desaturation of fatty acids. Biochem. Soc. Trans. 28:628–30 [Google Scholar]
  69. Trajtenberg F, Altabe S, Larrieux N, Ficarra F, de Mendoza D. 69.  et al. 2014. Structural insights into bacterial resistance to cerulenin. FEBS J 102324–38 [Google Scholar]
  70. Vigh L, Los DA, Horváth I, Murata N. 70.  1993. The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc. Natl. Acad. Sci. USA 90:199090–94 [Google Scholar]
  71. Weber MH, Klein W, Müller L, Niess UM, Marahiel MA. 71.  2001. Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol. Microbiol. 39:1321–29 [Google Scholar]
  72. Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Pérez-Grau L. 72.  et al. 1993. Cloning of higher plant ω-3 fatty acid desaturases. Plant Physiol. 103:467–76 [Google Scholar]
  73. Zhang Y-M, Rock CO. 73.  2008. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 6:222–33 [Google Scholar]
/content/journals/10.1146/annurev-micro-091313-103612
Loading
/content/journals/10.1146/annurev-micro-091313-103612
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error