With support from my parents, I fulfilled their and my expectations of graduating from college and becoming a scientist. My scientific career has focused on two organisms, and , and two experimental systems, aromatic amino acid synthesis and DNA transfer in bacteria and plants. Studies on emphasized the genetics and biochemistry of aromatic amino acid synthesis and the characterization of competence in DNA transformation. I carried out both as a postdoc at Stanford with Josh Lederberg. At the University of Washington, I continued these studies and then investigated how transforms plant cells. In collaboration, Milt Gordon, Mary-Dell Chilton, and I found that this bacterium could transfer a piece of its plasmid into plant cells and thereby modify their properties. This discovery opened up a host of intriguing questions that we have tried to answer over the last 35 years.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ankenbauer R, Nester E. 1.  1993. The Agrobacterium Ti plasmid and crown gall tumorigenesis: a model for signal transduction in host-pathogen interactions. Signal Transduction J Kurjan, B Taylor 67–104 Waltham, MA: Academic [Google Scholar]
  2. Banta LM, Montenegro M. 2.  2008. See 28 74–127
  3. Binns AN. 3.  2005. Armin C. Braun and the discovery of Agrobacterium-mediated transformation of plant cells. Agrobacterium tumefaciens: From Plant Pathology to Biotechnology E Nester, MP Gordon, A Kerr 7–10 St. Paul, MN: APS [Google Scholar]
  4. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ. 4.  1995. Trans-kingdom T- DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14:3206–14 [Google Scholar]
  5. Cangelosi GA, Ankenbauer RG, Nester EW. 5.  1990. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc. Natl. Acad. Sci. USA 87:6708–12 [Google Scholar]
  6. Cascales E, Christie PJ. 6.  2004. Definition of a bacterial type IV secretory pathway for a DNA substrate. Science 304:1170–73 [Google Scholar]
  7. Charles TC, Nester EW. 7.  1993. A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J. Bacteriol. 175:6614–24 [Google Scholar]
  8. Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL. 8.  et al. 1977. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–71 [Google Scholar]
  9. Dubnau D. 9.  1999. DNA uptake in bacteria. Annu. Rev. Microbiol. 53:217–44 [Google Scholar]
  10. Garfinkel D, Nester EW. 10.  1980. Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J. Bacteriol. 144:732–43 [Google Scholar]
  11. Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW. 11.  1981. Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27:143–53 [Google Scholar]
  12. Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M. 12.  et al. 2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323–28 [Google Scholar]
  13. Hamilton RH, Fall MZ. 13.  1971. The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Experentia 27:229–30 [Google Scholar]
  14. Hiei Y, Ohta S, Komari T, Kumashiro T. 14.  1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Cell 6:271–82 [Google Scholar]
  15. Kerr A. 15.  1969. Transfer of virulence between isolates of Agrobacterium. Nature 223:1175–76 [Google Scholar]
  16. Nakatsukasa WM, Nester EW. 16.  1972. Regulation of aromatic acid biosynthesis in Bacillus subtilis 168. I. Evidence for and characterization of a trifunctional enzyme complex. J. Biol. Chem. 247:5972–79 [Google Scholar]
  17. Nester EW, Jensen RA. 17.  1966. Control of aromatic acid biosynthesis in Bacillus subtilis: sequential feedback inhibition. J. Bacteriol. 91:1594–98 [Google Scholar]
  18. Nester EW, Lederberg J. 18.  1961. Linkage of genetic units of Bacillus subtilis in DNA transformation. Proc. Natl. Acad. Sci. USA 47:52–55 [Google Scholar]
  19. Nester EW, Roberts CE, McCarthy BJ, Pearsall NN. 19.  1973. Microbiology: Molecules, Microbes and Man New York: Holt, Rinehart and Winston [Google Scholar]
  20. Nester EW, Schafer M, Lederberg J. 20.  1963. Gene linkage in DNA transfer: a cluster of genes concerned with aromatic biosynthesis in Bacillus subtilis. Genetics 48:529–51 [Google Scholar]
  21. Nester EW, Spizizen J. 21.  1961. Role of one-carbon precursors in the biosynthesis of deoxyribonucleic acid in bacteriophage-infected and growing cells of Escherichia coli. J. Bacteriol. 82:867–74 [Google Scholar]
  22. Nester EW, Stocker BAD. 22.  1963. Biosynthetic latency in early stages of deoxyribonucleic acid transformation in Bacillus subtilis. J. Bacteriol. 86:785–96 [Google Scholar]
  23. Petit A, Delhaye S, Tempe J, Morel G. 23.  1970. Recherches sur guanidines des tissues de crown gall: mis en evidence d’une relation biochimique specifique entre les souches d’Agrobacterium tumefaciens et les tumeurs qu’elles induisent. Physiol. Veg. 8:205–13 [Google Scholar]
  24. Schilperoort RA. 24.  1969. Investigations on plant tumors, crown gall: on the biochemistry of tumor induction by Agrobacterium tumefaciens PhD thesis, Univ. Leiden, Neth. [Google Scholar]
  25. Soltani J, van Heusden GPH, Hooykaas PJJ. 25.  2008. Agrobacterium-mediated transformation of non-plant organisms. See 28 650–75
  26. Stachel SE, Messens E, VanMontagu M, Zambryski P. 26.  1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–28 [Google Scholar]
  27. Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW. 27.  1980. Integration and organization of Ti plasmid sequences in crown gall tumors. Cell 19:729–39 [Google Scholar]
  28. Tzfira T, Citovsky V. 28.  2008. Agrobacterium: From Biology to Biotechnology New York: Springer [Google Scholar]
  29. Ward JE, Akiyoshi DE, Regier D, Datta A, Gordon MP, Nester EW. 29.  1988. Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid. J. Biol. Chem 263:5804–14 [Google Scholar]
  30. Watson B, Currier TC, Gordon MP, Chilton M-D, Nester EW. 30.  1975. Plasmid required for virulence of Agrobacterium tumefaciens. J. Bacteriol 123:255–64 [Google Scholar]
  31. White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW. 31.  1983. Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348–50 [Google Scholar]
  32. Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP. 32.  et al. 2001. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–23 [Google Scholar]
  33. Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP, Nester EW. 33.  1986. The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47:471–77 [Google Scholar]
  34. Zaenen I, van Larebeke N, Teuchy H, Van Montagu M, Schell J. 34.  1974. Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J. Mol. Biol 86:109–27 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error