serovar Typhi, the cause of typhoid, is host restricted to humans. . Typhi has a monophyletic population structure, indicating that typhoid in humans is a relatively new disease. Antimicrobial usage is reshaping the current . Typhi global population and may be driving the emergence of a specific haplotype, H58, that is well adapted to transmission in modern settings and is able to resist antimicrobial killing more efficiently than other . Typhi. Evidence gathered through genomics and functional studies using the mouse and in vitro cell systems, together with clinical investigations, has provided insight into the mechanisms that underpin the pathogenesis of human typhoid and host restriction. Here we review the latest scientific advances in typhoid research and discuss how these novel approaches are changing our understanding of the disease.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ansong C, Yoon H, Norbeck AD, Gustin JK, McDermott JE. 1.  et al. 2008. Proteomics analysis of the causative agent of typhoid fever. J. Proteome Res. 7:546–57 [Google Scholar]
  2. Baker S, Duy PT, Nga TVT, Dung TTN, Phat VV. 2.  et al. 2013. Fitness benefits in fluoroquinolone-resistant Salmonella Typhi in the absence of antimicrobial pressure. eLife 2:e01229 [Google Scholar]
  3. Baker S, Favorov M, Dougan G. 3.  2010. Searching for the elusive typhoid diagnostic. BMC Infect. Dis. 10:45 [Google Scholar]
  4. Baker S, Hardy J, Sanderson KE, Quail M, Goodhead I. 4.  et al. 2007. A novel linear plasmid mediates flagellar variation in Salmonella Typhi. PLoS Pathog. 3:5e59 [Google Scholar]
  5. Baker S, Holt KE, Clements ACA, Karkey A, Arjyal A. 5.  et al. 2011. Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban typhoid fever transmission. Open Biol. 1:110008 [Google Scholar]
  6. Baker S, Holt KE, van de Vosse E, Roumagnac P, Whitehead S. 6.  et al. 2008. High-throughput genotyping of Salmonella enterica serovar Typhi allowing geographical assignment of haplotypes and pathotypes within an urban district of Jakarta, Indonesia. J. Clin. Microbiol. 46:1741–46 [Google Scholar]
  7. Baker S, Holt KE, Whitehead S, Goodhead I, Perkins T. 7.  et al. 2007. A linear plasmid truncation induces unidirectional flagellar phase change in H:z66 positive Salmonella Typhi. Mol. Microbiol. 66:1207–18 [Google Scholar]
  8. Bhutta ZA, Capeding MR, Bavdekar A, Marchetti E, Ariff S. 8.  et al. 2013. Immunogenicity and safety of the Vi-CRM197 conjugate vaccine against typhoid fever in adults, children, and infants in south and southeast Asia: results from two randomised, observer-blind, age de-escalation, phase 2 trials. Lancet Infect. Dis. 14:119–29 [Google Scholar]
  9. Bishop A, House D, Perkins T, Baker S, Kingsley RA, Dougan G. 9.  2008. Interaction of Salmonella enterica serovar Typhi with cultured epithelial cells: roles of surface structures in adhesion and invasion. Microbiology 7:1914–26 [Google Scholar]
  10. Bravo D, Blondel CJ, Hoare A, Leyton L, Valvano MA, Contreras I. 10.  2011. Type IVb pili are required for invasion but not for adhesion of Salmonella enterica serovar Typhi into BHK epithelial cells in a cystic fibrosis transmembrane conductance regulator-independent manner. Microb. Pathog. 51:373–77 [Google Scholar]
  11. Brehm MA, Shultz LD, Luban J, Greiner DL. 11.  2013. Overcoming current limitations in humanized mouse research. J. Infect. Dis. 208:Suppl.S125–30 [Google Scholar]
  12. Buckle GC, Walker CLF, Black RE. 12.  2012. Typhoid fever and paratyphoid fever: systematic review to estimate global morbidity and mortality for 2010. J. Glob. Health 2:10401 [Google Scholar]
  13. Chan K, Baker S, Kim CC, Detweiler CS, Dougan G, Falkow S. 13.  2003. Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar Typhimurium DNA microarray. J. Bacteriol. 185:553–63 [Google Scholar]
  14. Charles RC, Sultana T, Alam MM, Yu Y, Wu-Freeman Y. 14.  et al. 2013. Identification of immunogenic Salmonella enterica serotype Typhi antigens expressed in chronic biliary carriers of S. Typhi in Kathmandu, Nepal. PLoS Negl. Trop. Dis. 7:e2335 [Google Scholar]
  15. Chau TT, Campbell JI, Galindo CM, Hoang NVM, Diep TS. 15.  et al. 2007. Antimicrobial drug resistance of Salmonella enterica serovar Typhi in Asia and molecular mechanism of reduced susceptibility to the fluoroquinolones. Antimicrob. Agents Chemother. 51:4315–23 [Google Scholar]
  16. Colman RW, Edelman R, Scott CF, Gilman RH. 16.  1978. Plasma kallikrein activation and inhibition during typhoid fever. J. Clin. Invest. 61:287–96 [Google Scholar]
  17. Crawford RW, Gibson DL, Kay WW, Gunn JS. 17.  2008. Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. Infect. Immun. 76:5341–49 [Google Scholar]
  18. Crawford RW, Rosales-Reyes R, de la Ramírez-Aguilar M, Chapa-Azuela O, Alpuche-Aranda C, Gunn JS. 18.  2010. Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. Proc. Natl. Acad. Sci. USA 107:4353–58 [Google Scholar]
  19. Crawford RW, Wangdi T, Spees AM, Xavier MN, Tsolis RM, Bäumler AJ. 19.  2013. Loss of very-long O-antigen chains optimizes capsule-mediated immune evasion by Salmonella enterica serovar Typhi. MBio 4:e00232–13 [Google Scholar]
  20. Crump JA, Luby SP, Mintz ED. 20.  2004. The global burden of typhoid fever. Bull. World Health Organ. 82:346–53 [Google Scholar]
  21. Crump JA, Mintz ED. 21.  2010. Global trends in typhoid and paratyphoid fever. Clin. Infect. Dis. 50:241–46 [Google Scholar]
  22. Daigle F, Graham JE, Curtiss R. 22.  2001. Identification of Salmonella Typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol. Microbiol. 41:1211–22 [Google Scholar]
  23. De Jong HK, Parry CM, van der Poll T, Wiersinga WJ. 23.  2012. Host-pathogen interaction in invasive salmonellosis. PLoS Pathog. 8:e1002933 [Google Scholar]
  24. Deng W, Liou S-R, Plunkett G, Mayhew GF, Rose DJ. 24.  et al. 2003. Comparative genomics of Salmonella enterica serovar Typhi strains TY2 and CT18. J. Bacteriol. 185:2330–37 [Google Scholar]
  25. Desai PT, Porwollik S, Long F, Cheng P, Wollam A. 25.  et al. 2013. Evolutionary genomics of Salmonella enterica subspecies. MBio 4:e00579–12 [Google Scholar]
  26. Didelot X, Achtman M, Parkhill J, Thomson NR, Falush D. 26.  2007. A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination?. Genome Res. 17:61–68 [Google Scholar]
  27. Dongol S, Thompson CN, Clare S, Nga TVT, Duy PT. 27.  et al. 2012. The microbiological and clinical characteristics of invasive Salmonella in gallbladders from cholecystectomy patients in Kathmandu, Nepal. PLoS ONE 7:e47342 [Google Scholar]
  28. Dougan G, John V, Palmer S, Mastroeni P. 28.  2011. Immunity to salmonellosis. Immunol. Rev. 240:196–210 [Google Scholar]
  29. Dunstan SJ, Hawn TR, Hue NT, Parry CP, Ho VA. 29.  et al. 2005. Host susceptibility and clinical outcomes in Toll-like receptor 5—deficient patients with typhoid fever in Vietnam. Clin. Res. 191:2–5 [Google Scholar]
  30. Dunstan SJ, Ho VA, Duc CM, Lanh MN, Phuong CX. 30.  et al. 2001. Typhoid fever and genetic polymorphisms at the natural resistance-associated macrophage protein 1. J. Infect. Dis. 183:1156–60 [Google Scholar]
  31. Dunstan SJ, Nguyen TH, Rockett K, Forton J, Morris AP. 31.  et al. 2007. A TNF region haplotype offers protection from typhoid fever in Vietnamese patients. Hum. Genet. 122:51–61 [Google Scholar]
  32. Dunstan SJ, Stephens HA, Blackwell JM, Duc CM, Lanh MN. 32.  et al. 2001. Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam. J. Infect. Dis. 183:261–68 [Google Scholar]
  33. Edsall G, Gaines S, Landy M, Tigertt WD, Sprinz H. 33.  et al. 1960. Studies on infection and immunity in experimental typhoid fever. I. Typhoid fever in chimpanzees orally infected with Salmonella typhosa. J. Exp. Med. 112:143–66 [Google Scholar]
  34. Emary K, Moore CE, Chanpheaktra N, An KP, Chheng K. 34.  et al. 2012. Enteric fever in Cambodian children is dominated by multidrug-resistant H58 Salmonella enterica serovar Typhi with intermediate susceptibility to ciprofloxacin. Trans. R. Soc. Trop. Med. Hyg. 106:718–24 [Google Scholar]
  35. Everest P, Wain J, Roberts M, Rook G, Dougan G. 35.  2001. The molecular mechanisms of severe typhoid fever. Trends Microbiol. 9:316–20 [Google Scholar]
  36. Faucher SP, Porwollik S, Dozois CM, McClelland M, Daigle F. 36.  2006. Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc. Natl. Acad. Sci. USA 103:1906–11 [Google Scholar]
  37. Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. 37.  2012. Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 379:98352489–99 [Google Scholar]
  38. Feng Y, Johnston RN, Liu G-R, Liu S-L. 38.  2013. Genomic comparison between Salmonella Gallinarum and Pullorum: differential pseudogene formation under common host restriction. PLoS ONE 8:e59427 [Google Scholar]
  39. Forest CG, Ferraro E, Sabbagh SC, Daigle F. 39.  2010. Intracellular survival of Salmonella enterica serovar Typhi in human macrophages is independent of Salmonella pathogenicity island (SPI)-2. Microbiology 156:3689–98 [Google Scholar]
  40. Frankel G, Newton SMC, Schoolnik GK, Stockerl BAD. 40.  1989. Characterization of the H1-j gene of Salmonella Typhi. EMBO J. 8:3149–52 [Google Scholar]
  41. Frey SE, Lottenbach KR, Hill H, Blevins TP, Yu Y. 41.  et al. 2013. A phase I, dose-escalation trial in adults of three recombinant attenuated Salmonella Typhi vaccine vectors producing Streptococcus pneumoniae surface protein antigen PspA. Vaccine 31:4874–80 [Google Scholar]
  42. Fuentes JA, Jofré MR, Villagra NA, Mora GC. 42.  2009. Rpos- and crp-dependent transcriptional control of Salmonella Typhi taiA and hlyE genes: role of environmental conditions. Res. Microbiol. 160:800–8 [Google Scholar]
  43. Fuentes JA, Villagra N, Castillo-Ruiz M, Mora GC. 43.  2008. The Salmonella Typhi hlyE gene plays a role in invasion of cultured epithelial cells and its functional transfer to S. Typhimurium promotes deep organ infection in mice. Res. Microbiol. 159:279–87 [Google Scholar]
  44. Gaines S, Sprinz H, Tully JG, Tigertt WD. 44.  1968. Studies on infection and immunity in experimental typhoid fever. VII. The distribution of Salmonella Typhi in chimpanzee tissue following oral challenge, and the relationship between the numbers of bacilli and morphologic lesions. J. Infect. Dis. 118:293–306 [Google Scholar]
  45. Ghosh S, Chakraborty K, Nagaraja T, Basak S, Koley H. 45.  et al. 2011. An adhesion protein of Salmonella enterica serovar Typhi is required for pathogenesis and potential target for vaccine development. Proc. Natl. Acad. Sci. USA 108:3348–53 [Google Scholar]
  46. Gilman RH, Terminel M, Levine MM, Hernandez-Mendoza P, Hornick RB. 46.  1975. Relative efficacy of blood, urine, rectal swab, bone-marrow, and rose-spot cultures for recovery of Salmonella Typhi in typhoid fever. Lancet 1:79181211–13 [Google Scholar]
  47. Glynn JR, Hornick RB, Levine MM, Bradley DJ. 47.  1995. Infecting dose and severity of typhoid: analysis of volunteer data and examination of the influence of the definition of illness used. Epidemiol. Infect. 115:23–30 [Google Scholar]
  48. Gonzalez-Escobedo G, Marshall JM, Gunn JS. 48.  2011. Chronic and acute infection of the gall bladder by Salmonella Typhi: understanding the carrier state. Nat. Rev. Microbiol. 9:9–14 [Google Scholar]
  49. Gopinath S, Carden S, Monack D. 49.  2012. Shedding light on Salmonella carriers. Trends Microbiol. 20:320–27 [Google Scholar]
  50. Gordon MA. 50.  2008. Salmonella infections in immunocompromised adults. J. Infect. 56:413–22 [Google Scholar]
  51. Greisman SE, Hornick RB. 51.  1971. Typhoid fever: role of endotoxin. N. Engl. J. Med. 284:392 [Google Scholar]
  52. Haghjoo E, Galán JE. 52.  2004. Salmonella Typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc. Natl. Acad. Sci. USA 101:4614–19 [Google Scholar]
  53. Haneda T, Winter SE, Butler BP, Wilson RP, Tükel C. 53.  et al. 2009. The capsule-encoding viaB locus reduces intestinal inflammation by a Salmonella pathogenicity island 1-independent mechanism. Infect. Immun. 77:2932–42 [Google Scholar]
  54. Harris JB, Baresch-Bernal A, Rollins SM, Alam A, LaRocque RC. 54.  et al. 2006. Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi. Infect. Immun. 74:5161–68 [Google Scholar]
  55. Hatta M, Sultan AR, Pastoor R, Smits HL. 55.  2011. New flagellin gene for Salmonella enterica serovar Typhi from the East Indonesian archipelago. Am. J. Trop. Med. Hyg. 84:429–34 [Google Scholar]
  56. Hindle Z, Chatfield SN, Phillimore J, Bentley M, Johnson J. 56.  et al. 2002. Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect. Immun. 70:3457–67 [Google Scholar]
  57. Holt KE, Dolecek C, Chau TT, Duy PT, La TTP. 57.  et al. 2011. Temporal fluctuation of multidrug resistant Salmonella Typhi haplotypes in the Mekong River delta region of Vietnam. PLoS Negl. Trop. Dis. 5:e929 [Google Scholar]
  58. Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Goodhead I. 58.  et al. 2008. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat. Genet. 40:987–93 [Google Scholar]
  59. Holt KE, Phan MD, Baker S, Duy PT, Nga TVT. 59.  et al. 2011. Emergence of a globally dominant IncHI1 plasmid type associated with multiple drug resistant typhoid. PLoS Negl. Trop. Dis. 5:e1245 [Google Scholar]
  60. Holt KE, Thomson NR, Wain J, Langridge GC, Hasan R. 60.  et al. 2009. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genomics 10:36–42 [Google Scholar]
  61. Hornick RB, Greisman SE, Woodward TE, DuPont HL, Dawkins AT, Snyder MJ. 61.  1970. Typhoid fever: pathogenesis and immunologic control. 2. N. Engl. J. Med. 283:739–46 [Google Scholar]
  62. House D, Chinh NT, Hien TT, Parry CP, Ly NT. 62.  et al. 2002. Cytokine release by lipopolysaccharide-stimulated whole blood from patients with typhoid fever. J. Infect. Dis. 186:240–45 [Google Scholar]
  63. Hughes KT, Youderian P, Simon MI. 63.  1988. Phase variation in Salmonella: analysis of Hin recombinase and hix recombination site interaction in vivo. Genes Dev. 2:937–48 [Google Scholar]
  64. Jansen AM, Hall LJ, Clare S, Goulding D, Holt KE. 64.  et al. 2011. A Salmonella Typhimurium-Typhi genomic chimera: a model to study Vi polysaccharide capsule function in vivo. PLoS Pathog. 7:e1002131 [Google Scholar]
  65. Jones BD, Falkow S. 65.  1996. Salmonellosis: host immune responses and bacterial virulence determinants. Annu. Rev. Immunol. 14:533–61 [Google Scholar]
  66. Kantele A, Pakkanen SH, Karttunen R, Kantele JM. 66.  2013. Head-to-head comparison of humoral immune responses to Vi capsular polysaccharide and Salmonella Typhi Ty21a typhoid vaccines—a randomized trial. PLoS ONE 8:e60583 [Google Scholar]
  67. Kantele A, Pakkanen SH, Siitonen A, Karttunen R, Kantele JM. 67.  2012. Live oral typhoid vaccine Salmonella Typhi Ty21a—a surrogate vaccine against non-typhoid Salmonella?. Vaccine 30:7238–45 [Google Scholar]
  68. Kariuki S, Revathi G, Kariuki N, Kiiru J, Mwituria J. 68.  et al. 2006. Invasive multidrug-resistant non-typhoidal Salmonella infections in Africa: zoonotic or anthroponotic transmission?. J. Med. Microbiol. 55:Part 5585–91 [Google Scholar]
  69. Kariuki S, Revathi G, Kiiru J, Mengo DM, Mwituria J. 69.  et al. 2010. Typhoid in Kenya is associated with a dominant multidrug-resistant Salmonella enterica serovar Typhi haplotype that is also widespread in Southeast Asia. J. Clin. Microbiol. 48:2171–76 [Google Scholar]
  70. Karkey A, Thompson CN, Tran Vu Thieu N, Dongol S, Le Thi Phuong T. 70.  et al. 2013. Differential epidemiology of Salmonella Typhi and Paratyphi A in Kathmandu, Nepal: a matched case control investigation in a highly endemic enteric fever setting. PLoS Negl. Trop. Dis. 7:8) e2391 [Google Scholar]
  71. Khan MI, Soofi SB, Ochiai RL, Khan MJ, Sahito SM. 71.  et al. 2012. Epidemiology, clinical presentation, and patterns of drug resistance of Salmonella Typhi in Karachi, Pakistan. J. Infect. Dev. Ctries. 6:704–14 [Google Scholar]
  72. Khatri NS, Maskey P, Poudel S, Jaiswal VK, Karkey A. 72.  et al. 2009. Gallbladder carriage of Salmonella Paratyphi A may be an important factor in the increasing incidence of this infection in South Asia. Ann. Intern. Med. 150:8567–68 [Google Scholar]
  73. Khoo SK, Petillo D, Parida M, Tan AC, Resau JH, Obaro SK. 73.  2011. Host response transcriptional profiling reveals extracellular components and ABC (ATP-binding cassette) transporters gene enrichment in typhoid fever-infected Nigerian children. BMC Infect. Dis. 11:241 [Google Scholar]
  74. Kingsley RA, Humphries AD, Weening EH, De Zoete MR, Winter S. 74.  et al. 2003. Molecular and phenotypic analysis of the CS54 island of Salmonella enterica serotype Typhimurium: identification of intestinal colonization and persistence determinants. Infect. Immun. 71:629–40 [Google Scholar]
  75. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE. 75.  et al. 2009. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 19:2279–87 [Google Scholar]
  76. Kisiela DI, Chattopadhyay S, Libby SJ, Karlinsey JE, Fang FC. 76.  et al. 2012. Evolution of Salmonella enterica virulence via point mutations in the fimbrial adhesin. PLoS Pathog. 8:e1002733 [Google Scholar]
  77. LaRock DL, Brzovic PS, Levin I, Blanc M-P, Miller SI. 77.  2012. A Salmonella Typhimurium-translocated glycerophospholipid:cholesterol acyltransferase promotes virulence by binding to the RhoA protein switch regions. J. Biol. Chem. 287:29654–63 [Google Scholar]
  78. Lawley TD, Chan K, Thompson LJ, Kim CC, Govoni GR, Monack DM. 78.  2006. Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog. 2:e11 [Google Scholar]
  79. Leung DT, Bogetz J, Itoh M, Ganapathi L, Pietroni MAC. 79.  et al. 2012. Factors associated with encephalopathy in patients with Salmonella enterica serotype Typhi bacteremia presenting to a diarrheal hospital in Dhaka, Bangladesh. Am. J. Trop. Med. Hyg. 86:698–702 [Google Scholar]
  80. Levine MM, Ferreccio C, Cryz S, Ortiz E. 80.  1990. Comparison of enteric-coated capsules and liquid formulation of Ty21a typhoid vaccine in randomised controlled field trial. Lancet 336:8720891–94 [Google Scholar]
  81. Liang L, Juarez S, Nga TVT, Dunstan S, Nakajima-Sasaki R. 81.  et al. 2013. Immune profiling with a Salmonella Typhi antigen microarray identifies new diagnostic biomarkers of human typhoid. Sci. Rep. 3:1043 [Google Scholar]
  82. Libby SJ, Brehm MA, Greiner DL, Shultz LD, McClelland M. 82.  et al. 2010. Humanized nonobese diabetic-scid IL2rγnull mice are susceptible to lethal Salmonella Typhi infection. Proc. Natl. Acad. Sci. USA 107:15589–94 [Google Scholar]
  83. Lunguya O, Lejon V, Phoba M-F, Bertrand S, Vanhoof R. 83.  et al. 2012. Salmonella Typhi in the Democratic Republic of the Congo: fluoroquinolone decreased susceptibility on the rise. PLoS Negl. Trop. Dis. 6:11e1921 [Google Scholar]
  84. Lutterloh E, Likaka A, Sejvar J, Manda R, Naiene J. 84.  et al. 2012. Multidrug-resistant typhoid fever with neurologic findings on the Malawi-Mozambique border. Clin. Infect. Dis. 54:1100–6 [Google Scholar]
  85. MacLennan C, Fieschi C, Lammas DA, Picard C, Dorman SE. 85.  et al. 2004. Interleukin (IL)-12 and IL-23 are key cytokines for immunity against Salmonella in humans. J. Infect. Dis. 190:1755–57 [Google Scholar]
  86. Mai NL, Phan VB, Vo AH, Tran CT, Lin FYC. 86.  et al. 2003. Persistent efficacy of Vi conjugate vaccine against typhoid fever in young children. N. Engl. J. Med. 349:1390–91 [Google Scholar]
  87. Marks F, Adu-Sarkodie Y, Hünger F, Sarpong N, Ekuban S. 87.  et al. 2010. Typhoid fever among children, Ghana. Emerg. Infect. Dis. 16:1796–97 [Google Scholar]
  88. Maskey AP, Day JN, Phung QT, Thwaites GE, Campbell JI. 88.  et al. 2006. Salmonella enterica serovar Paratyphi A and S. enterica serovar Typhi cause indistinguishable clinical syndromes in Kathmandu, Nepal. Clin. Infect. Dis. 42:1247–53 [Google Scholar]
  89. Mathur R, Oh H, Zhang D, Park S-G, Seo J. 89.  et al. 2012. A mouse model of Salmonella Typhi infection. Cell 151:590–602 [Google Scholar]
  90. McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S. 90.  et al. 2004. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat. Genet. 36:1268–74 [Google Scholar]
  91. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P. 91.  et al. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:6858852–56 [Google Scholar]
  92. Mian MF, Pek EA, Chenoweth MJ, Coombes BK, Ashkar AA. 92.  2011. Humanized mice for Salmonella Typhi infection: new tools for an old problem. Virulence 2:248–52 [Google Scholar]
  93. Neil KP, Sodha SV, Lukwago L, O-Tipo S, Mikoleit M. 93.  et al. 2012. A large outbreak of typhoid fever associated with a high rate of intestinal perforation in Kasese District, Uganda, 2008–2009. Clin. Infect. Dis. 54:1091–99 [Google Scholar]
  94. Nga TVT, Karkey A, Dongol S, Thuy HN, Dunstan S. 94.  et al. 2010. The sensitivity of real-time PCR amplification targeting invasive Salmonella serovars in biological specimens. BMC Infect. Dis. 10:125–28 [Google Scholar]
  95. Nguyen QC, Everest P, Tran TK, House D, Murch S. 95.  et al. 2004. A clinical, microbiological, and pathological study of intestinal perforation associated with typhoid fever. Clin. Infect. Dis. 39:61–67 [Google Scholar]
  96. Nolan CM, Feeley JC, White PC, Hambie EA, Brown SL, Wong KH. 96.  1980. Evaluation of a new assay for Vi antibody in chronic carriers of Salmonella Typhi. J. Clin. Microbiol. 12:22–26 [Google Scholar]
  97. Ochiai RL, Acosta CJ, Danovaro-Holliday MC, Baiqing D, Bhattacharya SK. 97.  et al. 2008. A study of typhoid fever in five Asian countries: disease burden and implications for control. Bull. World Health Organ. 86:260–68 [Google Scholar]
  98. Ochiai RL, Wang X, Agtini M, Deen JL, Wain J. 98.  et al. 2005. Paratyphi A rates, Asia. Emerg. Infect. Dis. 11:1764–66 [Google Scholar]
  99. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D. 99.  et al. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:6858848–52 [Google Scholar]
  100. Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. 100.  2002. Typhoid fever. N. Engl. J. Med. 347:1770–82 [Google Scholar]
  101. Parry CM, Thuy CT, Dongol S, Karkey A, Vinh H. 101.  et al. 2010. Suitable disk antimicrobial susceptibility breakpoints defining Salmonella enterica serovar Typhi isolates with reduced susceptibility to fluoroquinolones. Antimicrob. Agents Chemother. 54:5201–8 [Google Scholar]
  102. Parry CM, Vinh H, Chinh NT, Wain J, Campbell JI. 102.  et al. 2011. The influence of reduced susceptibility to fluoroquinolones in Salmonella enterica serovar Typhi on the clinical response to ofloxacin therapy. PLoS Negl. Trop. Dis. 5e1163 [Google Scholar]
  103. Parry CM, Wijedoru L, Arjyal A, Baker S. 103.  2011. The utility of diagnostic tests for enteric fever in endemic locations. Expert Rev. Anti-Infect. Ther. 9:711–25 [Google Scholar]
  104. Pekarek RS, Kluge RM, DuPont HL, Wannemacher RW, Hornick RB. 104.  et al. 1975. Serum zinc, iron, and copper concentrations during typhoid fever in man: effect of chloramphenicol therapy. Clin. Chem. 21:528–32 [Google Scholar]
  105. Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD. 105.  et al. 2009. A strand-specific RNA-seq analysis of the transcriptome of the typhoid bacillus Salmonella Typhi. PLoS Genet. 5:7e1000569 [Google Scholar]
  106. Pickard D, Kingsley RA, Hale C, Turner K, Sivaraman K. 106.  et al. 2013. A genomewide mutagenesis screen identifies multiple genes contributing to Vi capsular expression in Salmonella enterica serovar Typhi. J. Bacteriol. 195:1320–26 [Google Scholar]
  107. Pickard D, Wain J, Baker S, Line A, Chohan S. 107.  et al. 2003. Composition, acquisition, and distribution of the Vi exopolysaccharide-encoding Salmonella enterica pathogenicity island SPI-7. J. Bacteriol. 185:5055–65 [Google Scholar]
  108. Pier GB, Grout M, Zaidi T, Meluleni G, Mueschenborn SS. 108.  et al. 1998. Salmonella Typhi uses CFTR to enter intestinal epithelial cells. Nature 393:79–82 [Google Scholar]
  109. Powell CJ, DeSett CR, Lowenthal JP, Berman S. 109.  1980. The effect of adding iron to mucin on the enhancement of virulence for mice of Salmonella Typhi strain Ty2. J. Biol. Stand. 8:79–85 [Google Scholar]
  110. Pulickal AS, Gautam S, Clutterbuck EA, Thorson S, Basynat B. 110.  et al. 2009. Kinetics of the natural, humoral immune response to Salmonella enterica serovar Typhi in Kathmandu, Nepal. Clin. Vaccine Immunol. 16:1413–19 [Google Scholar]
  111. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G. 111.  et al. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361–67 [Google Scholar]
  112. Roumagnac P, Weill F-X, Dolecek C, Baker S, Brisse S. 112.  et al. 2006. Evolutionary history of Salmonella Typhi. Science 314:1301–4 [Google Scholar]
  113. Sabbagh SC, Forest CG, Lepage C, Leclerc J-M, Daigle F. 113.  2010. So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol. Lett. 305:1–13 [Google Scholar]
  114. Sabbagh SC, Lepage C, McClelland M, Daigle F. 114.  2012. Selection of Salmonella enterica serovar Typhi genes involved during interaction with human macrophages by screening of a transposon mutant library. PLoS ONE 7:e36643 [Google Scholar]
  115. Selander RK, Beltran P, Smith NH, Helmuth R, Rubin FA. 115.  et al. 1990. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect. Immun. 58:2262–75 [Google Scholar]
  116. Sheikh A, Charles RC, Sharmeen N, Rollins SM, Harris JB. 116.  et al. 2011. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh. PLoS Negl. Trop. Dis. 5e1419 [Google Scholar]
  117. Sheikh A, Khanam F, Sayeed MA, Rahman T, Pacek M. 117.  et al. 2011. Interferon-γ and proliferation responses to Salmonella enterica serotype Typhi proteins in patients with S. Typhi bacteremia in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 5:e1193 [Google Scholar]
  118. Snyder MJ, Hornick RB, McCrumb FR, Morse LJ, Woodward TE. 118.  1963. Asymptomatic typhoidal bacteremia in volunteers. Antimicrob. Agents Chemother. 161:604–7 [Google Scholar]
  119. Song J, Gao X, Galán JE. 119.  2013. Structure and function of the Salmonella Typhi chimaeric A2B5 typhoid toxin. Nature 499:350–54 [Google Scholar]
  120. Song J, Willinger T, Rongvaux A, Eynon EE, Stevens S. 120.  et al. 2010. A mouse model for the human pathogen Salmonella Typhi. Cell Host Microbe 8:369–76 [Google Scholar]
  121. Spanò S, Galán JE. 121.  2012. A Rab32-dependent pathway contributes to Salmonella Typhi host restriction. Science 338:960–63 [Google Scholar]
  122. Spanò S, Ugalde JE, Galán JE. 122.  2008. Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment. Cell Host Microbe 3:30–38 [Google Scholar]
  123. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M. 123.  et al. 2007. Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5:2177–89 [Google Scholar]
  124. Sur D, Ochiai RL, Bhattacharya SK, Ganguly NK, Ali M. 124.  et al. 2009. A cluster-randomized effectiveness trial of Vi typhoid vaccine in India. N. Engl. J. Med. 361:335–44 [Google Scholar]
  125. Swart AL, Hensel M. 125.  2012. Interactions of Salmonella enterica with dendritic cells. Virulence 3:660–67 [Google Scholar]
  126. Sztein MB. 126.  2007. Cell-mediated immunity and antibody responses elicited by attenuated Salmonella enterica serovar Typhi strains used as live oral vaccines in humans. Clin. Infect. Dis. 45:Suppl. 1S15–19 [Google Scholar]
  127. Tacket CO, Hone DM, Curtiss R, Kelly SM, Losonsky G. 127.  et al. 1992. Comparison of the safety and immunogenicity of ΔaroC ΔaroD and Δcya Δcrp Salmonella typhi strains in adult volunteers. Infect. Immun. 60:536–41 [Google Scholar]
  128. Tacket CO, Sztein MB, Losonsky GA, Wasserman SS, Nataro JP. 128.  et al. 1997. Safety of live oral Salmonella typhi vaccine strains with deletions in htrA and aroC aroD and immune response in humans. Infect. Immun. 65:452–56 [Google Scholar]
  129. Tacket CO, Sztein MB, Wasserman SS, Losonsky G, Kotloff KL. 129.  et al. 2000. Phase 2 clinical trial of attenuated Salmonella enterica serovar Typhi oral live vector vaccine CVD 908-htrA in U.S. volunteers. Infect. Immun. 68:31196–201 [Google Scholar]
  130. Tang L, Wang C-X, Zhu S-L, Li Y, Deng X. 130.  et al. 2013. Genetic boundaries to delineate the typhoid agent and other Salmonella serotypes into distinct natural lineages. Genomics 102:331–37 [Google Scholar]
  131. Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V. 131.  et al. 2011. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl. Acad. Sci. USA 108:17480–85 [Google Scholar]
  132. Thompson LJ, Dunstan SJ, Dolecek C, Perkins T, House D. 132.  et al. 2009. Transcriptional response in the peripheral blood of patients infected with Salmonella enterica serovar Typhi. Proc. Natl. Acad. Sci. USA 106:22433–38 [Google Scholar]
  133. Thomson N, Baker S, Pickard D, Fookes M, Anjum M. 133.  et al. 2004. The role of prophage-like elements in the diversity of Salmonella enterica serovars. J. Mol. Biol. 339:279–300 [Google Scholar]
  134. Townsend SM, Kramer NE, Edwards R, Baker S, Hamlin N. 134.  et al. 2001. Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect. Immun. 69:2894–901 [Google Scholar]
  135. Tran TH, Nguyen TD, Nguyen TT, Ninh TTV, Tran NBC. 135.  et al. 2010. A randomised trial evaluating the safety and immunogenicity of the novel single oral dose typhoid vaccine M01ZH09 in healthy Vietnamese children. PLoS ONE 5:7e11778 [Google Scholar]
  136. Trombert AN, Berrocal L, Fuentes JA, Mora GC. 136.  2010. S. Typhimurium sseJ gene decreases the S. Typhi cytotoxicity toward cultured epithelial cells. BMC Microbiol. 10:312 [Google Scholar]
  137. Tsui ISM, Yip CMC, Hackett J, Morris C. 137.  2003. The type IVb pili of Salmonella enterica serovar Typhi bind to the cystic fibrosis transmembrane conductance regulator. Infect. Immun. 71:6049–50 [Google Scholar]
  138. van de Vosse E, Ali S, de Visser AW, Surjadi C, Widjaja S. 138.  et al. 2005. Susceptibility to typhoid fever is associated with a polymorphism in the cystic fibrosis transmembrane conductance regulator (CTFR). Hum. Genet. 118:138–40 [Google Scholar]
  139. Waddington CS, Darton TC, Jones C, Haworth K, Peters A. 139.  et al. 2014. An outpatient, ambulant design, controlled human infection model using escalating doses of Salmonella Typhi challenge delivered in sodium bicarbonate solution. Clin. Infect. Dis 58:1230–40 [Google Scholar]
  140. Wain J, Bay PVB, Vinh H, Duong NM, Diep TOS. 140.  et al. 2001. Quantitation of bacteria in bone marrow from patients with typhoid fever: relationship between counts and clinical features. J. Clin. Microbiol. 39:1571–76 [Google Scholar]
  141. Wain J, Diep TS, Ho VA, Walsh AM, Thi N. 141.  et al. 1998. Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. Microbiology 36:1683–87 [Google Scholar]
  142. Wain J, Hien TT, Connerton P, Ali T, Parry CM. 142.  et al. 1999. Molecular typing of multiple-antibiotic-resistant Salmonella enterica serovar Typhi from Vietnam: application to acute and relapse cases of typhoid fever. J. Clin. Microbiol. 37:2466–72 [Google Scholar]
  143. Wang S, Kong Q, Curtiss R. 143.  2013. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb. Pathog. 58:17–28 [Google Scholar]
  144. Wannemacher RW, DuPont HL, Pekarek RS, Powanda MC, Schwartz A. 144.  et al. 1972. An endogenous mediator of depression of amino acids and trace metals in serum during typhoid fever. J. Infect. Dis. 126:77–86 [Google Scholar]
  145. Wilson RP, Raffatellu M, Chessa D, Winter SE, Tükel C, Bäumler AJ. 145.  2008. The Vi-capsule prevents Toll-like receptor 4 recognition of Salmonella. Cell. Microbiol. 10:876–90 [Google Scholar]
  146. Winter SE, Raffatellu M, Wilson RP, Rüssmann H, Bäumler AJ. 146.  2008. The Salmonella enterica serotype Typhi regulator TviA reduces interleukin-8 production in intestinal epithelial cells by repressing flagellin secretion. Cell. Microbiol. 10:247–61 [Google Scholar]
  147. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL. 147.  et al. 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426–29 [Google Scholar]
  148. Wood MW, Jones MA, Watson PR, Siber AM, McCormick BA. 148.  et al. 2000. The secreted effector protein of Salmonella dublin, SopA, is translocated into eukaryotic cells and influences the induction of enteritis. Cell. Microbiol. 2:293–303 [Google Scholar]
  149. Woods CW, Murdoch DR, Zimmerman MD, Glover WA, Basnyat B. 149.  et al. 2006. Emergence of Salmonella enterica serotype Paratyphi A as a major cause of enteric fever in Kathmandu, Nepal. Trans. R. Soc. Trop. Med. Hyg. 100:1063–67 [Google Scholar]
  150. Yap K-P, Gan HM, Teh CSJ, Baddam R, Chai L-C. 150.  et al. 2012. Genome sequence and comparative pathogenomics analysis of a Salmonella enterica serovar Typhi strain associated with a typhoid carrier in Malaysia. J. Bacteriol. 194:5970–71 [Google Scholar]
  151. Zhang S, Santos RL, Tsolis RM, Stender S, Hardt W. 151.  et al. 2002. The Salmonella enterica serotype Typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect. Immun. 70:3843–55 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error