I was surprised to be invited to write a prefatory chapter for the . Indeed, I did not feel that I belonged to that class of eminent scientists who had written such chapters. Perhaps it is because I am a kind of mutant: In spite of having experienced war, both German and Soviet occupations, repeated bombardments, dictatorships, and a revolution, I managed nonetheless to engage in scientific research, thus realizing a childhood dream. After having obtained my Doctor Rerum Naturalium degree in Budapest, Hungary, I was fortunate to meet Jacques Monod at the Pasteur Institute, and this became a turning point in my scientific career. In his laboratory, I contributed to the definition of the lactose operon promoter, uncovered intracistronic complementation in β-galactosidase, and investigated the role of cAMP in . In my own laboratory, together with many gifted students and collaborators, I studied the role of adenylate cyclase in bacterial virulence. This allowed the engineering of recombinant adenylate cyclase toxin from for the development of protective and therapeutic vaccines.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Antonini E, Wyman J, Moretti R, Rossi-Fanelli A. 1.  1963. The interaction of bromthymol blue with hemoglobin and its effect on the oxygen equilibrium. Biochem. Biophys. Acta 71:124–32 [Google Scholar]
  2. Aricò B, Scarlato V, Monack DM, Falkow S, Rappuoli R. 2.  1991. Structural and genetic analysis of the bvg locus in Bordetella species. Mol. Microbiol. 5:2481–91 [Google Scholar]
  3. Buc MH, Ullmann A, Goldberg ME, Buc H. 3.  1971. Masse moléculaire et coefficient d'extinction de la glycogène phosphorylase b du muscle de lapin. Biochimie 53:283–89 [Google Scholar]
  4. Celada F, Ullmann A, Monod J. 4.  1974. An immunological study of complementary fragments of β-galactosidase. Biochemistry 13:5543–47 [Google Scholar]
  5. Confer DL, Eaton JW. 5.  1982. Phagocyte impotence caused by the invasive bacterial adenylate cyclase. Science 217:948–95 [Google Scholar]
  6. Dessein A, Schwartz M, Ullmann A. 6.  1978. Catabolite repression in Escherichia coli mutants lacking cyclic AMP. Mol. Gen. Genet. 162:83–87 [Google Scholar]
  7. Dienert F. 7.  1900. Sur la fermentation du galactose et sur l'accoutumance des levures à ce sucre. Ann. Inst. Pasteur Paris 19:139–89 [Google Scholar]
  8. Erdos T, Ullmann A. 8.  1959. Effect of streptomycin on the incorporation of amino acids labelled with carbon-14 into ribonucleic acid and protein in a cell-free system of a Mycobacterium. Nature 183:618–19 [Google Scholar]
  9. Erdos T, Ullmann A. 9.  1960. Effect of streptomycin on the incorporation of tyrosine labelled with carbon14 into protein of Mycobacterium cell fractions in vivo. Nature 185:100–101 [Google Scholar]
  10. Fayolle C, Ladant D, Karimova G, Ullmann A, Leclec C. 10.  1999. Therapy of murine tumors with recombinant Bordetella pertussis adenylate cyclase carrying a cytotoxic T cell epitope. J. Immunol. 162:4157–62 [Google Scholar]
  11. Fayolle C, Sebo P, Ladant D, Ullmann A, Leclerc C. 11.  1996. In vivo induction of CTL responses by recombinant adenylate cyclase of Bordetella pertussis carrying viral CD8+ T-cell epitopes. J. Immunol. 156:4697–706 [Google Scholar]
  12. Fischer EH, Appleman MM, Krebs EG. 12.  1964. The structure of phosphorylases. Ciba Foundation Symposium – Control of Glycogen Metabolism H Whelan, MP Cameron 94–106 Chichester, UK: Wiley [Google Scholar]
  13. Gilbert W, Müller-Hill B. 13.  1966. Isolation of the lac repressor. Proc. Natl. Acad. Sci. USA 56:1891–98 [Google Scholar]
  14. Glaser P, Ladant D, Sezer O, Pichot F, Ullmann A, Danchin A. 14.  1988. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol. Microbiol. 2:19–30 [Google Scholar]
  15. Goyard S, Ullmann A. 15.  1993. Functional analysis of the cya promoter of Bordetella pertussis. Mol. Microbiol. 7:693–704 [Google Scholar]
  16. Gros F, Gilbert W, Hiatt HH, Attardi G, Spahr PF, Watson JD. 16.  1961. Molecular and biological characterization of messenger RNA. Cold Spring Harb. Symp. Quant. Biol. 26:111–13 [Google Scholar]
  17. Guidi-Rontani C, Danchin A, Ullmann A. 17.  1984. Transcriptional control of polarity in Escherichia coli by cAMP. Mol. Gen. Genet. 195:96–100 [Google Scholar]
  18. Guiso N, Ullmann A. 18.  1976. Expression and regulation of lactose genes carried by plasmids. J. Bacteriol. 127:691–97 [Google Scholar]
  19. Guo Q, Shen Y, Lee YS, Gibbs CS, Mrksich M, Tang W-J. 19.  2005. Structural basis for the interaction of Bordetella pertussis adenylate cyclase toxin with calmodulin. EMBO J. 24:3190–201 [Google Scholar]
  20. Hewlett EL, Wolff J. 20.  1976. Soluble abenylate cyclase from the culture medium Bordetella pertussis: purification and characterization. J. Bacteriol. 127:890–98 [Google Scholar]
  21. Jacob F, Ullmann A, Monod J. 21.  1965. Délétions fusionnant l'opéron lactose et un opéron purine chez Escherichia coli.. J. Mol. Biol. 31:704–19 [Google Scholar]
  22. Jacobson RH, Zhang XJ, DuBose RF, Matthews BW. 22.  1994. Three-dimensional structure of β-galactosidase of E. coli.. Nature 369:761–66 [Google Scholar]
  23. Karimova G, Bellalou J, Ullmann A. 23.  1996. Phosphorylation-dependent binding of BvgA to the upstream region of the cyaA gene of Bordetella pertussis. Mol. Microbiol. 20:489–96 [Google Scholar]
  24. Karimova G, Pidoux J, Ullmann A, Ladant D. 24.  1998. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA 95:5752–56 [Google Scholar]
  25. Kolb A, Busby S, Buc H, Garges S, Adhya S. 25.  1993. Transcriptional activation by cAMP and its receptor protein. Annu. Rev. Biochem. 62:749–95 [Google Scholar]
  26. Krebs EG, Fischer EH. 26.  1962. Molecular properties and transformations of glycogen phosphorylase in animal tissues. Adv. Enzymol. 24:263–90 [Google Scholar]
  27. Ladant D. 27.  1988. Interaction of Bordetella pertussis adenylate cyclase with calmodulin: identification of two separate calmodulin binding domains. J. Biol. Chem. 263:2612–18 [Google Scholar]
  28. Ladant D, Glaser P, Ullmann A. 28.  1992. Insertional mutagenesis of Bordetella pertussis adenylate cyclase. J. Biol. Chem. 267:2244–50 [Google Scholar]
  29. Ladant D, Ullmann A. 29.  1999. Bordetella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol. 7:172–76 [Google Scholar]
  30. Laoide BM, Ullmann A. 30.  1990. Virulence dependent and independent regulation of the Bordetella pertussis cya operon. EMBO J. 9:999–1005 [Google Scholar]
  31. Leppla SH. 31.  1982. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations in eukaryotic cells. Proc. Natl. Acad. Sci. USA 79:3162–66 [Google Scholar]
  32. Magasanik B. 32.  1970. Glucose effects: inducer exclusion and repression. The Lactose Operon JR Beckwith, D Zipser 189–219 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  33. Makman RS, Sutherland EW. 33.  1965. Adenosine 3′,5′-phosphate in Escherichia coli.. J. Biol. Chem. 240:1309–14 [Google Scholar]
  34. Mock M, Ullmann A. 34.  1993. Calmodulin-activated bacterial adenylate cyclases as virulence factors. Trends Microbiol. 1:187–92 [Google Scholar]
  35. Monod J. 35.  1958. Recherche sur la croissance des cultures bactériennes. Paris: Hermann et Cie.210 [Google Scholar]
  36. Monod J, Cohn M. 36.  1952. La biosynthèse induite des enzymes (adaptation enzymatique). Adv. Enzymol. 13:67–119 [Google Scholar]
  37. Pardee AB, Jacob F, Monod J. 37.  1959. The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase in Escherichia coli.. J. Mol. Biol. 1:165–78 [Google Scholar]
  38. Perrin D. 38.  1963. Complementation between products of the β-galactosidase structural gene of Escherichia coli.. Cold Spring Harbor Symp. Quant. Biol 28:529–31 [Google Scholar]
  39. Roy A, Danchin A, Joseph E, Ullmann A. 39.  1983. Two functional domains in adenylate cyclase of Escherichia coli.. J. Mol. Biol. 165:197–202 [Google Scholar]
  40. Sanzey B, Ullmann A. 40.  1976. Urea, a specific inhibitor of catabolite sensitive operons. Biochem. Biophys. Res. Commun. 71:1062–68 [Google Scholar]
  41. Saron MF, Fayolle C, Sebo P, Ladant D, Ullmann A, Leclerc C. 41.  1997. Anti-viral protection conferred by recombinant adenylate cyclase toxins from Bordetella pertussis carrying a CD8+ T cell epitope from lymphocytic choriomeningitis virus. Proc. Natl. Acad. Sci. USA 94:3314–19 [Google Scholar]
  42. Sebo P, Glaser P, Sakamoto H, Ullmann A. 42.  1991. High-level synthesis of active adenylate cyclase toxin of Bordetella pertussis in a reconstructed Escherichia coli system. Gene 10:19–24 [Google Scholar]
  43. Seery VL, Fischer EH, Teller DC. 43.  1967. A reinvestigation of the molecular weight of glycogen phosphorylase. Biochemistry 6:3315–27 [Google Scholar]
  44. Sory MP, Cornelis GR. 44.  1994. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Microbiol. 14:583–94 [Google Scholar]
  45. Steffen P, Goyard S, Ullmann A. 45.  1996. Phosphorylated BvgA is sufficient for transcriptional activation of virulence-regulated genes in Bordetella pertussis. EMBO J. 15:102–109 [Google Scholar]
  46. Ullmann A. 46.  1984. One-step purification of hybrid proteins which have β-galactosidase activity. Gene 29:27–31 [Google Scholar]
  47. Ullmann A, Danchin A. 47.  1983. Role of cyclic AMP in bacteria. Advances in Cyclic Nucleotide Research P Greengard, GA Robison 151–53 New York: Raven Press [Google Scholar]
  48. Ullmann A, Goldberg ME, Perrin D, Monod J. 48.  1968. On the determination of molecular weight of proteins and protein subunits in 6M guanidine. Biochemistry 7:261–65 [Google Scholar]
  49. Ullmann A, Jacob F, Monod J. 49.  1967. Characterization by in vitro complementation of a peptide corresponding to an operator proximal segment of the β-galactosidase structural gene of Escherichia coli.. J. Mol. Biol. 24:339–43 [Google Scholar]
  50. Ullmann A, Jacob F, Monod J. 50.  1968. On the subunit structure of wild-type versus complemented β-galactosidase of Escherichia coli.. J. Mol. Biol. 32:1–13 [Google Scholar]
  51. Ullmann A, Joseph E, Danchin A. 51.  1979. Cyclic AMP as a modulator of polarity in polycistronic transcriptional units. Proc. Natl. Acad. Sci. USA 76:3194–97 [Google Scholar]
  52. Ullmann A, Monod J. 52.  1968. Cyclic AMP as an antagonist of catabolite repression in Escherichia coli.. FEBS Lett. 2:57–60 [Google Scholar]
  53. Ullmann A, Perrin D, Jacob F, Monod J. 53.  1965. Identification par complémentation in vitro et purification d'un segment peptidique de la β-galactosidase d'Escherichia coli.. J. Mol. Biol. 12:918–23 [Google Scholar]
  54. Ullmann A, Tillier F, Monod J. 54.  1976. Catabolite modulator factor: a possible mediator of catabolite repression in bacteria. Proc. Natl. Acad. Sci. USA 73:3476–79 [Google Scholar]
  55. Ullmann A, Vagelos PR, Monod J. 55.  1964. The effect of 5′ adenylic acid upon the association between bromthymol blue and muscle phosphorylase b. Biochem. Biophys. Res. Commun. 17:86–92 [Google Scholar]
  56. Weiss AA, Falkow S. 56.  1984. Genetic analysis of phase change in Bordetella pertussis. Infect. Immun. 43:263–69 [Google Scholar]
  57. Wolff J, Cook GH, Goldhammer AR, Berkowitz SA. 57.  1980. Calmodulin activates prokaryotic adenylate cyclase. Proc. Natl. Acad. Sci. USA 77:3840–44 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error